
Revealing Disocclusions in Temporal View Synthesis through Infilling Vector
Prediction

Supplementary Material

Vijayalakshmi Kanchana Nagabhushan Somraj Suraj Yadwad Rajiv Soundararajan
Indian Institute of Science, Bengaluru, India

{vijayalaksh1, nagabhushans, surajyadwad, rajivs}@iisc.ac.in

Overview

The contents of this supplementary material has been organized into the following sections:

A. Video samples
B. Pose warping
C. Temporal prior estimation
D. Details of the network architecture
E. Example scenes from our database
F. Additional qualitative results

A. Video Samples

We show results of our model on a longer video sequence of 5 seconds from our database and compare it with
EdgeConnect [4] and Synsin [8]. The videos are attached along with this pdf. In the EdgeConnect video, we see
flicker in the infilled regions next the cubes in the video. One such region is highlighted with a bounding box in
the video. This is due to incorrect infilling by EdgeConnect, which appears as a flicker since every alternate frame
is graphically rendered. In the SynSin video, we again see flicker artifacts, perhaps more dominant in the known
region. As explained in Section B.2, this is perhaps due to incorrect decoding of features to RGB intensity values
in the known regions by SynSin. In both cases, our model is able to produce better videos with minimal artifacts.

B. Pose Warping

B.1. Our Method

In this section, we elaborate on the warping equation (1) in the main paper and explain the interpolation/splatting
we employ. We represent a point (i, j) in frame fn as pn(i, j). Let p̂n(i, j) = [i, j, 1]T represent the point location
in homogeneous coordinates. We first unproject p̂n(i, j) using depth dn and the 3× 3 camera intrinsic matrix K,
to find the 3d point coordinates in view n

Pn(i, j) = dn(i, j)K
−1 p̂n(i, j) (5)

We then convert Pn(i, j) to homogeneous coordinates by appending 1 in the fourth dimension to get P̂n(i, j).
Using the relative transformation from frame fn to frame fn+1 as Tn, we find the 3d point coordinates in view
n+ 1 in homogeneous form as

P̂n+1(i, j) = TnP̂n(i, j) (6)

1

By removing the fourth dimension of P̂n+1(i, j), we get the 3d coordinates Pn+1(i, j). Note that, Pn+1(i, j)
provides 3d coordinates in view n + 1 corresponding to the point pn(i, j) in frame fn. The third coordinate of
Pn+1(i, j) gives the depth in view n+1 for the point pn(i, j) and is denoted as dw(i, j). We then project the point
Pn+1(i, j) to the image plane of view n + 1 by multiplying with camera matrix to find the location of the point
pn(i, j) in frame fn+1 in homogeneous form

p̂n+1(i, j) = K Pn+1(i, j) (7)

By normalizing the 3rd dimension to 1, we get the actual 2d coordinates as pn+1(i, j). Thus, we obtain the 2d
coordinates pn+1(i, j) in frame fn+1 corresponding to the point pn(i, j) in frame fn. Let (pxn+1(i, j), p

y
n+1(i, j))

represent the x and y components of pn+1(i, j). We copy the intensity from frame fn to frame fn+1 as

fn+1(p
x
n+1(i, j), p

y
n+1(i, j)) = fn(i, j) (8)

We repeat the above for every pixel pn(i, j) in frame fn, where i = 1, 2, . . . ,W and j = 1, 2, . . . ,H . W and H
are the width and height of the frame respectively.

However, the locations pn+1(i, j) can be fractional and hence to reconstruct the known regions of frame fn+1,
we need to interpolate the intensities at the grid locations. To obtain the intensities at the grid locations, we use
inverse bilinear interpolation employed in [7]. In bilinear interpolation, the intensity at an intermediate location
within a grid is computed as a weighted combination of the intensities at nearest grid locations. Here, we do the
opposite i.e. given the intensities at intermediate locations, we compute the intensities at grid locations. Hence,
we term this operation as inverse bilinear interpolation.

We compute the intensity at pixel (m,n) in frame fn+1 as follows. We consider a 2×2 neighborhood N(m,n)
around the pixel (m,n) and compute weighted average of the points within this grid.

fwn+1(m,n) =

∑
(i,j)∈N(m,n)w(m,n, i, j) fn(i, j)∑

(i,j)∈N(m,n)w(m,n, i, j)
(9)

We use two sets of weights, one based on proximity wp and the other based on depth wd.

w(m,n, i, j) = wp(m,n, i, j) wd(i, j) (10)

The proximity weights are computed similar to bilinear interpolation as

wp(m,n, i, j) = (1− |m− pxn+1(i, j)|) · (1− |n− p
y
n+1(i, j)|) (11)

Using depth weights, we provide higher weightage to foreground objects (lower depth) and lower weightage to
background objects (higher depth). As a result, when there is an occlusion i.e. multiple objects map to a same
location in frame fn+1, the intensity of the object nearest to camera is picked and not that of occluded objects. We
compute the depth weights as

wd(i, j) =
1

(1 + dw(i, j))γ
(12)

Recall that dw(i, j) is obtained as the third coordinate of Pn+1(i, j) obtained in Equation 6. Here, γ is a global
scaling constant that widens the gap between weights of foreground and background objects. By trial and error on
5 scenes, we found γ that gives best reconstruction as

γ =
50

max
1≤k≤W,1≤l≤H

log(1 + dw(k, l))
(13)

Also, since outdoor scenes can have very large depth values (eg. sky), we clip dw to the range [0, 1000].

Model RVS StereoMag SynSin 3DP Ours
K-MSE 52 201 114 72 42

Table 3: Comparison of different warping methods in terms of error in known regions.

Figure 8: Comparison of known region reconstruction by different methods. Disoccluded regions are filled with
ground truth values.

B.2. Comparison with Other Methods

We compare our warping method with the other methods used in the view synthesis algorithms based on recon-
struction of known regions in our test set. The Reference View Synthesizer (RVS) [2] from the Motion Pictures
Experts Group (MPEG) uses mesh based warping. It divides each grid into two triangles and warps the triangles.
As a result, in the disoccluded regions, the triangles get stretched which leads to artifacts as seen in Figure 11.
StereoMag [9] and 3DP [6] build a representation of the scene from the input and then generate the frame for the
given viewpoint. While StereoMag builds Multi-Plane Images (MPI) from two past frames, 3DP builds Layered
Depth Image (LDI) from the RGB-D input, as the internal scene representation. SynSin [8] is the closest to our
approach. They warp the points using depth and then use learnable splatting module provided by PyTorch3D [1]
library. However, they warp the points in feature space rather than in RGB space. We note that, only our approach
and RVS are not learning based, while the other three use learning components to reconstruct the known region.
Also, StereoMag is the only approach that does not use ground truth depth and uses two past frames, while all
other approaches use a single frame and its ground truth depth.

In Table 3, we compare the different methods by computing mean squared error in the known regions (K-MSE).
We show few samples from all the approaches in Figure 8. We observe that our approach has least MSE and also
has minimum visual artifacts. While RVS is a close contender in terms of MSE, it is more susceptible to small
errors in depth map, which are not uncommon in graphically rendered videos. Since SynSin warps the frame
in feature space and then has to reconstruct intensities from the features, it sometimes fails to reconstruct color
correctly, which can be seen in the second example. We also note that this shift in color leads to flicker, which can

be noticed in the attached video. For the first example, we observe that 3DP incorrectly increases the thickness
of the fence. Since StereoMag does not use ground truth depth, its reconstructions can be blurry, as seen in first
example.

C. Temporal Prior Estimation

Figure 9: This figure illustrates the infilling vector estimation from the past frames, using the ground truth frame
fn and the frame fwn warped from fn−2.

Extending from Section 4.2 in main paper, we illustrate the estimation of infilling vectors in frame fn in Fig-
ure 9. For easy reference, we reproduce the textual explanation here.

“For every disoccluded pixel at (x, y) in the warped frame fwn , we search for the nearest neighbor in the known
regions of the frame, in the four cardinal directions. We compare the intensities at these four locations with the true
intensity at (x, y), available from the ground truth frame fn. We pick the neighbor that has the least mean squared
error (MSE) with the ground truth value, and set the infilling vector at (x, y) to point to this optimal neighbor’s
location. To avoid noisy estimates, we consider a small patch around the pixels, instead of individual pixels, and
compute the MSE between the patches.”

In Figure 9, the patch with purple square at (x1, y1) is the best match for the patch at (x, y) in ground truth
frame. Hence, we set the fictitious infilling vector as

(αn, βn) = (x1 − x, y1 − y) (14)

D. Details of the Network Architecture

For depth processing, we use a 4 layer convolutional network. The network details are shown in Table 4. For
infilling vector prediction, we use a U-Net [5] based architecture, consisting of a total of 9 layers including 4
subsampling layers and skip connections. The network details are shown in Table 5.

E. Example Scenes from Our Database

The 200 scenes in our database consist of both indoor and outdoor scenes, and have no object motion. Since
egomotion is the only source of motion in the scene, and hence disocclusions, the scenes were chosen such that
they had foreground objects that can cause disocclusions on appropriate camera motion. Figure 10 shows four
indoor and outdoor scenes from the database.

Layer No. 1 2 3 4
Kernel size 7 7 7 7
No. of output channels 16 32 16 1
Stride 2 2 0.5 0.5
Padding 3 3 3 3
Activation ReLU ReLU ReLU Sigmoid

Table 4: Architecture details of depth processing network. Fractional strides represent upsampling followed by
the convolution layer.

Layer No. 1 2 3 4 5 6 7 8 9
Kernel size 7 5 3 3 3 3 3 3 3
No. of output channels 64 128 256 256 256 256 128 64 2
Skip Connection - - - - - 4 3 2 1
Stride 1 2 2 2 2 0.5 0.5 0.5 0.5
Padding 3 2 1 1 1 1 1 1 1
Activation ReLU ReLU ReLU ReLU ReLU ReLU ReLU ReLU Linear

Table 5: Architecture details of infilling vector prediction network. Fractional strides represent upsampling fol-
lowed by skip connection and the convolution layer. Skip connection at lth layer specifies the layer number whose
output is concatenated with the input of lth layer.

Figure 10: Some examples of indoor and outdoor scenes from our database.

F. Additional Qualitative Results

In this section we show more samples of predicted frames from our database as well as from SceneNet RGB-
D [3], for various benchmarks. Figure 11 shows comparison between different view synthesis models. Fig-
ure 12 shows comparison between different inpainting models. For examples from our database, we show cropped
patches so that the disocclusions are visible.

References
[1] Accelerating 3d deep learning with PyTorch3D. arXiv e-prints, page arXiv:2007.08501, 2020.
[2] Sarah Fachada, Bart Kroon, Daniele Bonatto, Bart Sonneveldt, and Gauthier Lafruit. Reference view synthesizer (RVS)

2.0 manual, 2018.

Figure 11: Comparison of temporally synthesized views by different view synthesis models. The first two rows
correspond to samples from our database and the last row corresponds to a sample from SceneNet RGB-D
database.

Figure 12: Comparison of temporally synthesized views by different inpainting models. The first two rows corre-
spond to samples from our database and the last row corresponds to a sample from SceneNet RGB-D database.

[3] John McCormac, Ankur Handa, Stefan Leutenegger, and Andrew J Davison. Scenenet rgb-d: Can 5m synthetic images
beat generic imagenet pre-training on indoor segmentation? In Proceedings of the IEEE International Conference on
Computer Vision, pages 2678–2687, 2017.

[4] Kamyar Nazeri, Eric Ng, Tony Joseph, Faisal Qureshi, and Mehran Ebrahimi. Edgeconnect: Structure guided image
inpainting using edge prediction. In The IEEE International Conference on Computer Vision (ICCV) Workshops, Oct

2019.
[5] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmen-

tation. In International Conference on Medical image computing and computer-assisted intervention, pages 234–241.
Springer, 2015.

[6] Meng-Li Shih, Shih-Yang Su, Johannes Kopf, and Jia-Bin Huang. 3d photography using context-aware layered depth
inpainting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8028–8038,
2020.

[7] Yang Wang, Yi Yang, Zhenheng Yang, Liang Zhao, Peng Wang, and Wei Xu. Occlusion aware unsupervised learning of
optical flow. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4884–4893,
2018.

[8] Olivia Wiles, Georgia Gkioxari, Richard Szeliski, and Justin Johnson. Synsin: End-to-end view synthesis from a single
image. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7467–7477,
2020.

[9] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely. Stereo magnification: Learning view
synthesis using multiplane images. In SIGGRAPH, 2018.

