
Supplementary Material to ”Typenet: Towards Camera Enabled Touch Typing
on Flat Surfaces through Self-Refinement”

Ben Maman
Tel Aviv University

Amit H. Bermano
Tel Aviv University

1. Dataset

We provide detailed information regarding our intro-
duced TypingHands26 dataset. For all 26 users keyboard
data was collected, and for 10 of the users surface data was
collected as well. All surface sessions were collected with-
out any real-time feedback to the user. Detailed keyboard
data information is given in Table 1, and surface data in-
formation is given in Table 2. In each of the tables, for
each user we list the number of sessions (column 2), total
recorded time (column 3), and total length of text typed in
characters (column 4).

We also provide statistics of the dataset - distribution of
keypress length, distribution of number of simultaneous ac-
tive keys, and gender distribution (Figure 1 and Tables 3, 4).

1.1. Keyboard Data Automatic Labelling

In order to automatically label keyboard data, we record
users typing on a physical R-go keyboard. The keyboard
is split and flat, in order to resemble the real use case (see
Figure 2). For each key press, we log the precise keypress
and release event times. Video recording and logging are
done simultaneously by the same script, thus there is no
alignment required for keyboard data. After the recording,
labels are assigned as follows: for each key press, all frames
occurring between the time of press and time of release of
the key are labelled as having the key active. As can be
seen in Table 3, most frames either have a single active key
or none at all, but some frames have 2 active keys, and even
3, the latter being rare.

1.2. Train / Test Splits

For each of the 10 users, we used one surface session for
testing. The test sessions can be seen in Table 5. Valida-
tion and early stopping were done on the remaining surface
sessions (even when included in the training set for the fine
tuning).

For the new user experiments (Table 3 in the main paper),
testing was done on the same sessions as in Table 5.

User KB Sessions Time Length C
Be. 3 01:06:41 12895
Ya. 2 40:23 6134
Or. 2 45:06 7533
Ey. 6 52:07 7373
Am. 3 01:02:03 12298
Al. 2 01:06:05 5108

Ey.2 3 51:08 7489
To. 2 51:38 5419
Ad. 3 01:08:15 9293
Om. 4 01:14:58 9303
Yo. 1 23:48 3777
Ro. 3 36:42 5126
Zi. 4 01:30:57 6982
Ma. 3 01:03:25 8843
Ya. 3 54:20 6884
Ra. 3 56:45 8259
Tu. 7 01:23:01 10376
Jor. 8 01:19:08 14548
An. 1 24:51 2986
Sh. 4 01:33:39 12728
Jo. 3 43:48 6095
Ni. 9 01:06:13 20426
Joh. 8 01:18:56 12023
Gi. 6 52:08 15056
Co. 3 29:14 4467
Da. 4 37:02 5722
All 100 24:52:35 227,143

Table 1. Keyboard data information. Column 2 - number of video
sessions, column 3 - total video time, column 4 - total length of
text entered in characters.

1.3. Test Sessions - Qualitative Results

Our system’s output on the test sessions can be seen in
Figures 5-14. Best results were obtained for the skilled
typists: Gi., Am., Ni., Joh., Be., and Jor.. Note that the
provided ground truth text in Figures 5-14 is the original
provided text. This means that some of the discrepancies
between the provided text and the actual typed text is in

User Surface Sessions Time Length C
Jor. 20 58:20 7513
Ey. 20 01:03:20 7768
Ro. 7 22:46 2186
Jo. 2 07:47 1037
Sh. 2 07:27 1531
Am. 8 26:19 8116
Be. 7 34:49 8066
Ni. 4 49:36 17097
Gi. 3 21:36 8466
Joh. 9 58:23 14708
All 79 05:50:29 76,488

Table 2. Surface data information. Column 2 - number of video
sessions, column 3 - total video time, column 4 - total length of
text entered in characters.

Figure 1. Key press length distribution (length in frames, fre-
quency given in percentage of total key presses). Left - keyboard
data, right - surface data. As can be seen, most key presses last 3-5
frames.

0 1 2 3
KB 61.3 34.8 3.8 0.05

Surface 58.7 37.2 4.1 0.0
All 61.5 34.6 3.8 0.04

Table 3. Key press simultaneous active keys distribution. Fre-
quency given in percentage of total frames. Second column - no
active key, third column - single active key, etc. First row - key-
board data, second row - surface data. Most frames with an active
key have a single active key, but ∼4% of the frames have 2 simul-
taneously active keys. 3 simultaneously active keys also exist but
are rare.

Figure 2. Split keyboard used for keyboard data.

part due to user typing errors or word repetitions. Reported
character-level accuracy in the main paper (93.5% on aver-
age for the 10 test sessions) is w.r.t. to the actual typed text,

Users Time Len C
Male (KB) 15 14:14:40 124,238

Female (KB) 11 10:37:54 102,905
All (KB) 26 24:52:35 227,143

Male (Surface) 8 04:39:15 50925
Female (Surface) 2 01:11:13 25563

All (Surface) 10 05:50:29 76,488

Table 4. Gender distribution in the dataset. Column 2 - number
of users, column 3 - total video time, column 4 - total length of
text entered in characters. Rows 2-4 - keyboard data, rows 5-7 -
surface data.

User Session Time Length C
Gi. gi****s9 02:48 1108

Am. am****s2 02:02 791
Ni. ni****s2 03:57 1252
Joh. joh****s4 05:19 1424
Sh. sh****s6 01:20 319
Be. be****s5 06:05 1378
Ey. ey****s17 02:42 437
Jor. jor****s17 02:24 473
Ro. ro****s6 02:46 434
Jo. jo****s5 01:23 227
All 30:52 12949

Table 5. Test Sessions.

Method Raw C LSTM C
Ours 91.4 93.5

Hand Pose 54.8 49.0

Table 6. Comparison to detection based on hand pose estimation,
where we use predicted keypoint locations as frame features.

which was manually adjusted after the fact according to the
typist’s performance as best as possible. Character-level ac-
curacy of the 10 test sessions w.r.t the original provided text
is 93.1% on average.

2. Supplementary Experiments
2.1. Alternative Approach - Hand Pose Estimation

Hand Tracking, or Hand Pose Estimation, is the task of
detecting the location of the 21 keypoints of the palm, in a
video. Locations can be either 2d or 3d. A natural approach
for our task would be to detect key presses according to
predictions of a hand tracking system. Various systems ex-
ist which perform this task from a monocular RGB video,
among which is the Google Media Pipe Hand Landmark
Model [6]. We tried using this system for our virtual typing
task. We applied the system on all videos in our dataset, to
receive per-frame 3d keypoint locations, which we regard
as per-frame features. We trained an RNN-based model to
classify the frames based on the keypoint locations relative

to the wrist (3 ∗ (21 − 1) = 60 coordinates for each hand).
The model is composed of a (120, 512) linear layer, a 2-
layer GRU with input and hidden size of 512 followed by a
(512, C) linear layer, where C is the number of classes. We
used the same training data, and the same test sessions as in
all the above experiments. As can be seen in Table 6, our
proposed system outperformed the pose estimation based
system by over 36%. Hand pose estimation is known to be
a challenging task, and in our case a small error in the key-
point regression leads to false key predictions. However, the
Media Pipe Hands system can be used for tasks where small
regression errors have less effect, such as gesture recogni-
tion, as explained in the Google Media Pipe Documenta-
tion.

Richardson et al. [3] study the application of hand track-
ing for our task. However, they use marked gloves to facil-
itate hand tracking and to ensure high hand tracking accu-
racy. They also use a different camera angle which facili-
tates detection, but is less practical - above the hands. This
highlights the fact that current accuracy of monocular RGB
hand tracking systems is insufficient for the task.

2.2. Temporal Context

We have performed an ablation study for the effect of the
two kinds of temporal context we apply: for frame feature
extraction, and using an RNN-based classifier.

On the frame level, we denote by n the frame with off-
set n relative to the frame currently considered. The frame
itself is denoted by 0. For example, −4 means four frames
before the frame in question. We trained models with RNN
classifiers, with different choices for temporal context for
frame feature extraction (using sequence length of 48 for
training the RNN). We have also tried classifying each
frame independently, by using a single linear layer, instead
of an RNN. We did this using temporal context at frame fea-
ture extraction, and without it. Results can be seen in Table
7.

We have applied two different training schemes: In the
first, we train a network on keyboard data and validate on
surface sessions, and fine tune on combined surface and
keyboard data. We denote this scheme A in Table 7. In the
second scheme, we train the network from scratch on com-
bined surface and keyboard data. We denote this scheme B
in Table 7. As can be seen, the employed design choices
outperform the other options typically by a non-negligible
margin.

2.3. Speed Invariance

An important property that is desired for our system is
pace invariance, i.e., the system should output the same text
regardless of the speed it was typed in. In order to test this
property, we perform temporal subsampling on the test ses-
sions, in order to simulate different typing speeds for each

session. For each test session, we use four different sub-
sampling rates: (i) keeping all frames (ii) omitting every 4-
th frame, increasing speed by a factor of 1.33 (iii) omitting
every third frame, increasing speed by a factor of 1.5 (iv)
omitting every second frame, increasing speed by a factor
of 2. This, of course, could have also been achieved us-
ing an interpolation based temporal retiming scheme. The
difference is negligible for our task.

When using temporal context, whether for feature ex-
traction or using an RNN classifier, typing speed will have
an impact on the prediction. This is especially true when us-
ing temporal context for extracting frame features, since the
frame features will depend on the typing speed. In order to
create robustness to variance in typing speed, we train our
system with random temporal subsampling: During train-
ing, in each epoch, for each video session we randomly se-
lect a temporal subsampling rate, either (i) none, (ii) every
second frame or (iii) every third frame. we also randomly
select an offset to ensure all frames are used for training.

This augmentation gives significant improvement in test
accuracy when using temporal context of -4, -2, 0, 2 for
frame feature extraction, with or without subsampling in
test time. Table 8 shows the test results for the 4 differ-
ent subsampling rates, when training with random temporal
subsampling, and when training w/o random temporal sub-
sampling.

On the other hand, when using an RNN classifier w/o
temporal context for feature extraction, i.e. temporal con-
text 0, speed invariance is better maintained even when
training without random temporal subsampling, due to the
fact that frame features are independent of speed. Results
can be also seen in Table 8.

2.4. Camera Angle

We test our system’s robustness to changes in cam-
era angle. We show quantitative results for the users Be.
and Am.: Each of the users typed the same text several
times, with various camera angles: 0◦, 360◦/32=11.25◦,
360◦/16=22.5◦, and 360◦/8=45◦, each angle used both from
the left and from the right (7 angles). The different angles
can be seen in Figure 3. The lengths of these sessions are
1:45-2:10 minutes. For each angle, we computed the mean
text accuracy over the two users. We ran two different sys-
tems on these sessions: one was trained with random warp-
ing applied on the training data, and one was trained w/o
random warping. Results can be seen in Tables 9 (with ran-
dom warping) and 10 (w/o). As can clearly be seen, ran-
dom warping during training provides much better robust-
ness to changes in angle. We tested the system that was
trained with random warping on the 10 test sessions used
in the main paper, and appearing in Table 5, and received
comparable mean accuracy of 92.9, vs. 93.5 w/o random
warping. From the experiments we conclude, as can be ex-

Context Raw C W LSTM C W
RNN 0 A 87.2 53.6 91.8 75.2
RNN 0 B 88.0 56.4 90.3 69.6
RNN 0 Subsampling A 83.5 47.3 80.9 48.0
RNN -4, -2, 0, 2 A 88.5 58.6 90.9 68.7
RNN -4, -2, 0, 2 B 88.5 58.1 91.6 72.8
RNN -4, -2, 0, 2 Subsampling A 91.4 68.7 93.5 78.7
RNN -4, -2, 0, 2 Subsampling B 89.0 57.4 91.2 71.4
RNN -2, -1, 0, 1 A 87.5 57.2 90.7 70.7
RNN -4, -3, -2, -1, ..., 2 A 87.1 55.1 89.1 65.0
Linear -4, -2, 0, 2 A 87.1 55.6 88.9 71.8
Linear -4, -2, 0, 2 Subsampling A 85.0 49.6 88.8 70.6
Linear 0 B 69.8 35.0 67.9 53.8

Table 7. Temporal context experiments: character- and word-level accuracy for raw output (columns 2-3) and after beam search with LSTM
model (columns 4-5). RNN denotes a system with a GRU-based classifier, and Linear denotes a system with a linear classifier, w/o an
RNN. Number sequences (e.g., -4, -2, 0, -2) denote temporal context used for frame feature extraction. Subsampling denotes a system
trained with random temporal subsampling (see Section 2.3). A denotes a system trained on keyboard data and fine-tuned on combined
surface and keyboard data. B denotes a system trained from scratch on combined surface and keyboard data.

Speed Raw C W LSTM C W
1.0, Context -4, -2, 0, 2, Subsampling 91.5 68.7 93.5 78.7
1.0, Context -4, -2, 0, 2 88.7 58.2 91.8 72.8
1.0, Context 0 87.1 53.7 92.0 75.6
1.33, Context -4, -2, 0, 2, Subsampling 90.3 64.4 91.1 75.7
1.33, Context -4, -2, 0, 2 84.8 48.4 88.5 67.6
1.33, Context 0 85.2 47.8 89.9 70.0
1.5, Context -4, -2, 0, 2, Subsampling 89.5 62.4 85.4 67.1
1.5, Context -4, -2, 0, 2 82.0 41.7 83.3 56.4
1.5, Context 0 83.6 44.2 87.5 66.6
2.0, Context -4, -2, 0, 2, Subsampling 86.0 52.0 67.0 41.5
2.0, Context -4, -2, 0, 2 67.8 20.9 65.8 32.4
2.0, Context 0 78.9 34.7 77.8 43.8

Table 8. Effect of increasing video speed in test time when training with and w/o random temporal subsampling, with temporal context of
-4, -2, 0, 2, and w/o random temporal subsampling, using temporal context 0.

Angle Raw C W LSTM C W
0◦ 93.1 72.2 96.6 87.2

11.25◦ left 92.2 69.9 95.9 86.8
11.25◦ right 82.6 44.4 86.2 58.3

22.5◦ left 84.7 51.1 89.1 71.8
22.5◦ right 71.8 29.7 76.9 44.0

45◦ left 10.6 0.8 0.7 0.4
45◦ right 9.1 0.0 0.3 0.4

Table 9. Accuracy on sessions captured from different angles (see
Figure 3), with a system trained with random warping.

pected, that enriching the dataset with more captured angles
would probably increase the robustness and accuracy of the
method even further.

Angle Raw C W LSTM C W
0◦ 92.6 70.7 95.4 86.1

11.25◦ left 89.6 64.3 91.3 75.2
11.25◦ right 78.8 36.8 83.4 58.6

22.5◦ left 81.8 43.2 87.0 67.7
22.5◦ right 52.0 16.5 52.3 30.5

45◦ left 6.1 0.8 4.8 1.9
45◦ right 3.3 0.0 0.2 0.4

Table 10. Accuracy on sessions captured from different angles
(see Figure 3), with a system trained w/o random warping.

3. Architecture

We rely on a standard backbone such as Resnet to ex-
tract features. We use Resnet18, which provides real time
performance, as the system is required to work on a mo-

Figure 3. Different angels used for testing robustness to changing angle. Top: 0◦, 11.25◦, 22.5◦, 45◦ from the left. Bottom: 0◦, 11.25◦,
22.5◦, 45◦ from the right.

bile phone at a 30FPS frame rate. The output feature size
is 512. As explained in the paper, to extract features for
a given frame we concatenate neighboring frames to it as
additional channels (all frames are converted to grayscale).
The input size is (4, 150, 200) (4 channels, as the frame is
concatenated to 3 neighboring frames). As a classifier we
use a 2-layer Gated Recurrent Unit, with input size 512 and
hidden size 512, followed by a (512, C) linear layer where
C is the number of classes, and a Sigmoid activation.

The output is a vector of probabilities, where each en-
try is a number in the interval [0, 1], representing the confi-
dence that the corresponding class is active. Multiple active
classes are possible, hence the Sigmoid activation.

The classes we used for training are: a-z, space, comma,
period, semicolon, quote, enter, backspace, left shift, right
shift, and slash - 36 classes. The classes we used for test-
ing are: a-z, space, comma, period, and semicolon (i.e., 30
classes of the 36).

In addition, we have the following redundancies: a class
for each finger, where each index finger has two classes for
its two possible keyboard columns (e.g., r and t belong to
different classes, but g and t are of the same one). Also, for
each hand and each row (front, middle and back) a class.
Lastly, the none class, that is active if no key is active. Al-
together, 36 + 10 + 6 + 1 = 53 classes.

4. Training

We minimize the Binary Cross Entropy Loss averaged on
all classes. We use an Adam optimizer, with initial learning
rate of 10−4, reducing it by a factor of 0.5 upon 5 epochs
without improvement in the training loss. We use weight
decay of 10−6, and Dropout of 0.5 on the inner layer of the
GRU.

Training The RNN We train our network using batch size
of 24 and a sequence length of 48. We train the network us-
ing a sticky hidden state, i.e., the first hidden states are all 0,
and in each of the following training iterations, the sequence
of each batch receives as input the last hidden state of the
corresponding batch form the previous iteration. Therefore,

we implement the training scheme as a concatenation of the
video sessions: We divide the training set into 24 sequen-
tial batches. For example, if the training set holds 24000
frames in total, the first 1000 frames after concatenating ev-
erything are the first batch, the next 1000 are the second
batch etc.. The first training iteration contains frames 0-47
that belong to the first batch, frames 1000-1047 that belong
to the second batch, etc.. The second training iteration con-
tains frames 48-95 from the first batch, frames 1048-1095
from the second batch etc..

Full training takes ∼ 2 weeks (∼ 150 epochs) of Nvidia
GeForce RTX 2080 Ti GPU time. Real-time inference on a
laptop with a webcam was done with a Quadro P3200 Max-
Q GPU.

4.1. Dynamic Time Warping

In order to label surface footage, where we know the en-
tered text but not the per-frame alignment, we find the op-
timal alignment between the text and the video sequence,
using dynamic time warping. In order to also find the be-
ginnings and endings of key presses, we pad the text with
the none class between consecutive characters, e.g., if we
denote the none class by N, then ’one two’ is padded to
’NoNnNeN NtNwNoN’. As a local cost function between
a given video frame and a given character we measure the
Euclidean distance between the frame’s predicted vector of
probabilities, and the one-hot representation of the charac-
ter.

The DTW algorithm yields a monotonic mapping for the
optimal alignment - each frame is mapped to a certain char-
acter and vice versa. We discard singular points, that is,
frames that are mapped to more than one character. These
are due to user typing errors. Typically, a key is pressed for
3-5 frames. For each non-singular frame, we define its label
to be the single character it is mapped to.

This process provides a single class per frame, while our
problem is multi-label. In order to obtain multi-labels, for
each character, we extend it to its corresponding frames’
neighbors, if the neighbors’ predicted probability vectors
meet certain conditions (none class below 0.5, the given
character above 0.01, and total key activation length does

Method Raw C W LSTM C W
Pseudo-Labels 86.2 49.8 91.2 72.0

Ours 91.4 68.7 93.5 78.7

Table 11. Comparison to Pseudo-labelling.

FaX Raw C W LSTM C W
w/o 85.7 48.2 88.0 61.3
w/ 91.4 68.7 93.5 78.7

Table 12. Effect of using a Focus and Expand (FaX) training
scheme. Row 1 - w/o using Fax, row 2 - using Fax.

not exceed 5). This results in frame-level multi-labels.
The network is then trained on keyboard data combined

with surface data, until convergence on a validation set.

4.2. Pseudo-Labelling

Pseudo-labelling is a technique for training on combined
labelled and unlabelled data, where the network’s predic-
tions on the unlabelled data are used as labels for train-
ing [4, 2, 5]. We performed an ablation study to compare
our proposed self-refinement to Pseudo-labelling, as pro-
posed by Lee [2]: In the second training phase, instead of
labelling the surface sessions using self-refinement, we use
the network’s predictions on the surface sessions as labels
(on-the-fly). The loss from unlabelled data is weighted by a
factor of 0.1. Results can be seen in Table 11.

4.3. Background Handling

In order to ignore the background, and in particular ig-
nore the keyboard prior present in the keyboard data, we
perform hand segmentation as preprocessing and then dur-
ing training place the hands on random backgrounds, in ran-
dom locations, on the fly. We follow the Focus and Expand
(FaX) training scheme suggested by Arar et al. [1] in order
to guide the network to focus on the hands rather than the
background: For epochs i = 0, 1, . . . 9, the intensity of the
background in epoch i is sampled randomly from the uni-
form distribution on [0, i/10]. For epochs i = 10, 11, 12,
the background intensity is sampled from the uniform dis-
tribution on [0, 1]. For epochs i > 12, the background in-
tensity is 1 with probability 0.5, and with probability 0.5 it
is sampled from the uniform distribution of the range [0, 1].
This training scheme made a significant contribution, as can
be seen in Table 12.

4.4. Spatial Dropout

We performed an ablation study to test the effect on the
accuracy of undetected hand parts, to examine errors that
might have occurred in the hand segmentation step during
training. For this, we applied spatial dropout during infer-
ence (Table 13) and during training (Table 14): We choose a
factor α ∈ {0.25, 0.1, 0.05, 0.025, 0.0}. For each of the two

Figure 4. Example of spatial dropout with α = 0.25

Spatial Dropout Raw C W LSTM C W
0.25 81.9 39.1 82.9 48.2
0.1 88.4 57.1 89.7 66.0

0.05 90.5 65.6 92.7 76.5
0.025 91.3 68.1 93.4 78.7
0.0 91.4 68.7 93.5 78.7

Table 13. Spatial Dropout during inference, when training w/o spa-
tial dropout. Left column - factor of hand bounding box that is
randomly zeroed.

Tr. Spatial Drop. Raw C W LSTM C W
0.25 87.1 54.6 87.6 59.3

inference 0.25 83.4 42.8 81.1 41.2
0.1 88.4 60.2 88.5 65.9

inference 0.1 87.4 56.6 86.1 57.7
0.0 91.4 68.7 93.5 78.7

Table 14. Spatial Dropout during training, w/o dropout during in-
ference (rows 1, 3) and with dropout also during inference (rows
2, 4).

hands, we randomly zero out a box from the hand’s origi-
nal bounding box, with size ratio of α w.r.t. the original
bounding box (see Figure 4). As can be seen in Table 13,
α of size 0.025-0.05 have a relatively small effect on ac-
curacy. Training with spatial dropout does not improve test
accuracy, whether or not applying spatial dropout during in-
ference (Table 14).

5. Beam Search Implementation

Threshold for Candidate Keys Since this is a multi-
label problem, a possible approach for performing the Beam
Search would be to consider all combinations of classes in
each frame as possible candidates. This, however, is not
feasible. Therefore, during inference each sequence holds
one class per frame. Moreover, we select as possible can-
didates only keys whose vision probability exceeded a low
threshold, which reduces the amount of computations per
frame significantly. The threshold we used was 0.005.

Compression LSTM C W
1 91.6 71.9
2 93.5 78.7
3 89.7 73.0

Table 15. Effect of using super frames for beam search with LSTM
based language model. Row 1 - beam search operates on original
frames. Row 2 - probabilities of every 2 consecutive frames are
merged using mean. Row 3 - probabilities of every 3 consecutive
frames are merged using mean.

Max Sequence Length As mentioned in the main paper,
we assign scores to candidate prediction sequences accord-
ing to suffixes of limited length, which is the max sequence
length. The vision component of the score is the geometric
mean of the suffix predictions’ probabilities. To compute
the language component of the score, we generate the string
suffix corresponding to the sequence suffix, and prepend the
5 keys that appeared before the string suffix in the entire
string corresponding to the sequence. Regarding limited
length suffixes rather than the entire sequences serves two
purposes: (i) Maintaining sensitivity to new keys. Comput-
ing means over the entire sequences would make a single
key insignificant for long sequences. (ii) Performance. The
max sequence length we used in our experiments was 256.

Weighted Sum of Vision and Language The score for
each sequence is a weighted score of its vision and lan-
guage scores. The vision weight we used was 1.0. The
language weight varied between different settings: For the
LSTM based language model we used weight 1.0 for pre-
recorded videos, and 2.0 for real-time usage. For the Trans-
former based model, we used weight 0.5.

Super Frames When using the LSTM language model, in
order to further reduce the computational load, we merged
consecutive frames into super frames. The super frame
probability vector is the mean of the probability vectors
of the consecutive original frames. Thus, if e.g. the video
stream is 30 FPS and we merge every 3 consecutive frames,
the beam search only has to operate on 10 FPS (while the
vision model still operates on 30 FPS).

In addition to reducing the computational load, this also
significantly improves text accuracy for the LSTM based
language model, probably because of the smoothing effect
and the reduced search space. Performing the beam search
on the original per-frame probabilities gives average text ac-
curacy of 91.4%, while merging each 2 consecutive frames
gives average text accuracy of 93.5. Merging every 3 con-
secutive probability vectors reduces accuracy: Mean was
89.7%. Note though that merging every 3 frames gave
higher word-level accuracy than using the original proba-
bilities (73.0% vs. 71.9%).

Adjusted Probabilities LSTM C W
w/o 93.1 76.7
w/ 93.5 78.7

Table 16. Effect of increasing probabilities for same-finger keys.

5.1. Same Finger Keys Correlation

As mentioned before, one of our main challenges is
to disambiguate between keys pressed by the same finger,
where only the depth distinguishes between them, eg. ’t’
and ’g’. This becomes even more challenging when typ-
ing on a surface, since there’s no physical constraint in the
form of a keyboard to force the user to make distinguish-
able motions. We rely on the beam search method to help
disambiguate: The vision model supplies for each frame a
raw probability vector P . From this vector we create an en-
hanced probability vector PE , in the following manner: We
define a set of pairs of keys that are likely to be confused,
denote it by C. For completeness, we also add to the set the
identity pairs, i.e., (c, c) ∈ C ∀c — a key can trivially be
confused with itself. For each key c, we define its enhanced
probability PE(c) as:

PE(c) = max
(c′,c)∈C

(1− λ)P (c) + λP (c′) (1)

where λ is a hyper parameter. In practice, we decide the
value of λ according to a low threshold:

λ = λ(P (c)) =

{
0.5 P (c) >= 0.005

0.1 P (c) < 0.005
(2)

i.e., the probability enhancement is weak if the raw proba-
bility is weak. The actual probability vector we use in the
beam search for each frame is its corresponding enhanced
probability vector, PE . Intuitively, the enhancement means
that if a key has a high probability, then the probability of
similar keys will automatically increase.

We define the set C to be the set of all pairs of keys that
are pressed by the same finger and are in adjacent rows or
the same row, with the exception of the pairs

(r, g), (f, b), (f, t), (y, j), (h,m)

which are less likely to be confused. e.g.,

{(w,w), (t, g), (u, j), (u, h), (i, k), (a, z), (a, q)} ⊆ C
(3)

but
{(t, v), (e, c), (q, z)} ∩ C = ∅. (4)

We measured the effect of thus adjusting the probabilities,
and have seen an improvement of 2% in word-level accu-
racy, and 0.4% in character-level accuracy, as can be seen
in Table 16.

Figure 5. Test session of the user Gi.

References
[1] Moab Arar, Noa Fish, Dani Daniel, Evgeny Tenetov, Ariel

Shamir, and Amit Bermano. Focus-and-expand: Train-
ing guidance through gradual manipulation of input features.
CoRR, abs/2007.07723, 2020.

[2] Dong-Hyun Lee. Pseudo-label : The simple and efficient
semi-supervised learning method for deep neural networks.
ICML 2013 Workshop : Challenges in Representation Learn-
ing (WREPL), 07 2013.

[3] Mark Richardson, Matt Durasoff, and Robert Wang. Decod-
ing surface touch typing from hand-tracking. In Shamsi T.
Iqbal, Karon E. MacLean, Fanny Chevalier, and Stefanie
Mueller, editors, UIST ’20: The 33rd Annual ACM Sym-
posium on User Interface Software and Technology, Virtual
Event, USA, October 20-23, 2020, pages 686–696. ACM,
2020.

[4] Qizhe Xie, Minh-Thang Luong, Eduard H. Hovy, and Quoc V.
Le. Self-training with noisy student improves imagenet classi-
fication. In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June
13-19, 2020, pages 10684–10695. IEEE, 2020.

[5] I. Zeki Yalniz, Hervé Jégou, Kan Chen, Manohar Paluri, and
Dhruv Mahajan. Billion-scale semi-supervised learning for
image classification. CoRR, abs/1905.00546, 2019.

[6] Fan Zhang, Valentin Bazarevsky, Andrey Vakunov, Andrei
Tkachenka, George Sung, Chuo-Ling Chang, and Matthias
Grundmann. Mediapipe hands: On-device real-time hand
tracking. CoRR, abs/2006.10214, 2020.

Figure 6. Test session of the user Am.

Figure 7. Test session of the user Ni.

Figure 8. Test session of the user Joh.

Figure 9. Test session of the user Sh.

Figure 10. Test session of the user Be.

Figure 11. Test session of the user Ey.

Figure 12. Test session of the user Jor.

Figure 13. Test session of the user Ro.

Figure 14. Test session of the user Jo.

