
SeaDronesSee: A Maritime Benchmark for Detecting Humans in Open Water –

Supplementary Material

Leon Amadeus Varga∗, Benjamin Kiefer∗, Martin Messmer∗, Andreas Zell

Cognitive Systems Group

University of Tuebingen

Tuebingen, Germany

Email: leon.varga@uni-tuebingen.de, benjamin.kiefer@uni-tuebingen.de,

martin.messmer@uni-tuebingen.de, andreas.zell@uni-tuebingen.de

1. Further Statistics

In this section, we provide statistics that may provide

further insights into SeaDronesSee.

1.1. Object Detection

Figure 1 shows the distribution of instance diameters in

the object detection task. Most of the object are slightly

below 50 pixels in size.

To assess the variability in sizes of instances, we com-

pare to other data sets by following the convention in [14]

and [13] which measure the size of an object by its hor-

izontal bounding box length. Furthermore, we also form

three groups of instances according to their size: 0-50 px,

50-300 px, and >300 px. Table 1 shows the distribution

over these different groups. As also noted in [13], PAS-

CAL VOC, NWPU VHR-10 and Munich Vehicle are domi-

nated by medium-sized and small-sized objects. In contrast,

DOTA and SeaDronesSee offer a more balanced distribu-

tion between small sized and middle sized objects. This fa-

vors models benchmarked on our data set that perform well

on all object sizes. For instance, a model should detect the

largest object, having 900 pixels of width, and the smallest

object, having 5 pixels of width, which is 180 times smaller.

We note that these values are not normalized to the im-

age sizes. Furthermore, the thresholds are taken from [14].

Different thresholds may yield different numbers. We chose

these for comparability.

1.2. Object Tracking

To assess the distribution of frames for the object track-

ing task, we plot the angle-altitude distribution in a 2D-

histogram in Figure 2. For most of the altitude-angle-

domains, there are more than 1,000 frames. For higher

∗These authors contributed equally to this work. The order of names is

determined by coin flipping.

0 50 100 150 200 250 300
Pixel diameter[px]

0

200

400

600

800

1000

1200

1400

1600

Nu
m

be
r o

f i
ns

ta
nc

es

Figure 1. Distribution of instance diameters in the object detection

task. Bounding boxes larger than 300 pixels are not shown for

visualization purposes.

Dataset 10-50px 50-300px >300px

PASCAL VOC [11] 0.14 0.61 0.25

NWPU VHR-10 [10] 0.15 0.83 0.02

Munich Vehicle [5] 0.93 0.07 0

DOTA [13] 0.57 0.41 0.02

SeaDronesSee 0.42 0.54 0.04

Table 1. Percentages of instances in respective groups which are

divided according to size.

altitudes, the angles become more acute since the objects

would become too small otherwise (triangular shape). On

the contrary, for lower altitudes footage at all angles are uni-

formly captured.

The class distribution and instance diameter distribution

is very similar to the one for object detection which is why

we omit it here. How images are distributed on different

cameras is shown in Figure 3. Note that the RedEdge-MX

and UMC-R10C are not shown since they only produced

still images.

20 40 60 80 100 120 140
Altitude[m]

0

20

40

60

80

An
gl
e[
de

gr
ee

s]

0

200

400

600

800

1000

Figure 2. Number of images for specific altitude and angle do-

mains in the tracking data set.

 Camera Type
0

5000

10000

15000

20000

25000

Nu
m

be
r o

f i
m

ag
es

L1
D-

20
c

Ze
nm

us
e

X5

Ze
nm

us
e

XT
2

Figure 3. Number of images for specific altitude and angle do-

mains in the tracking data set.

2. Data Set Collection - Further Information

The data acquisition mission was undertaken consider-

ing safety measurements regarding the safety during swim-

ming and the Covid-19 regulations. In particular, the safety

during swimming aspect was taken seriously as swimmers

were swimming in open and deep water. All swimmers (and

floaters) were overseen at all times. Additionally, a life-

guard monitored the scene at all times.

Furthermore, safety regulations regarding flying UAVs

had to be taken seriously. Official permissions were needed

to fly. Furthermore, as multiple UAVs were flying at the

same time, a strict flight plan had to be followed. Especially,

the vertical division into different flight zones helped safely

fly multiple UAVs simultaneously.

The flight plans for the Quantum Systems Trinity F90+

were done in the flight planning software Qbase. With a

flight time of around 90 minutes, several altitudes and x-

y-coordinates could be reached autonomously. The quad-

copters were initially steered using the flight plans made in

Litchi. However, as the current was strong swimmer would

drift away and the initial plans were useless. It turned out

that it was too hard to incorporate the current as it changed

quickly. We switched to manual photographs after that.

One major point to consider were environmental regula-

tions. Surrounding wildlife areas were considered and not

crossed with boat and UAV.

The meta data that was captured during the flights was

evaluated using Airdata [1].

3. Annotation Guidelines

When annotating SeaDronesSee, we defined some

guidelines on how to do it:

• Every bounding box should be as small as possible

while still fitting the entire instance.

• No instance may be left out in an image unless the size

of it is less than three pixels on either side.

• If there are ambiguous other objects (such as boats or

other objects on land, unknown objects in water), they

should be annotated as ignored region or blackened

out.

• Objects across images should always be annotated in

the same way to achieve consistency.

In the case of SeaDronesSee, we have seven classes in-

cluding ignored regions. Swimmers and Swimmers with

life jacket (all humans in water) were labeled such that the

bounding box includes the whole body, including arms and

legs, if they are visible in the water (compare to the draw-

ing Vitruvian Man). If they are not visible but could easily

be inferred, they are not labeled. Boats are annotated such

that only the hull of the boat is labeled if there is no over-

lap between the roof and the hull. If there is an overlap,

then annotate the whole boat including roof. Humans are

annotated similarly as swimmers but without limbs spread-

ing out too far. See the end of this document for examples

of annotations.

4. Uploading Formats

As mentioned in the evaluation section of the main body

of this work, we provide an evaluation server to prevent re-

searchers from overfitting on our benchmark and for fair

comparisons on our leaderboards. The file formats vary for

different tasks which are described in detail here. Note,

however, that this is subject to change and will be an-

nounced on the webserver.

4.1. Object Detection

The results on the test set of the object detection task

need to be submitted as a json-file containing the predictions

on the test images. The json-file is a list of dictionaries,

where each list item is dictionary of the following form

imgid
Number of corresponding test

set image (integer).

bbox x
x-coordinate of the top-left corner

of the predicted bounding box (float).

bbox y
y-coordinate of the top-left corner

of the predicted bounding box (float).

bbox w
the width (in pixels) of the predicted

bounding box (float).

bbox h
the height (in pixels) of the predicted

bounding box (float).

conf.

The confidence value for the bounding

box. Can be a value between 0 and 1.

Please see the AP metric for details on

the influence of this value on the final

metric value (float).

cat.

Category id; any of the following integers:

1 (swimmer), 2 (floater), 3 (boat),

4 (swimmer†), 5 (floater†),

6 (life jacket) (integer).

Table 2. Format for the predictions to upload.

{"image_id": imgid, "category_id": cat,

"bbox": [bbox_x, bbox_y,

bbox_w, bbox_h],

"score": conf}

The value descriptions and its data format are shown in

Table 2.

In particular, background bounding boxes and ignored

regions shall not be uploaded or predicted.

4.2. Single­Object Tracking

In this case, for every video clip a single text file needs

to be uploaded within a zip-file. The text-files should be

named after the corresponding video clip without the file

extension. Each line of a respective text file contains the

location and size of the target in that specific frame such

that each text file has as many rows as its corresponding

video has frames. With the notation from before any row is

formatted as follows:

bbox_x, bbox_y, bbox_w, bbox_h

4.3. Multi­Object Tracking

Each text file stores the results for its corresponding

video clip. The text file should have the same name as its

corresponding video clip without the file extensions. Each

line of any text file is formatted as follows

#, id, bboxleft, bboxtop, bboxwidth, bboxheight, conf., cat. (1)

where entries are as above in addition to

Frame index in video

id The target id

4.4. Evaluation Webpage

We built an evaluation webpage, where researchers

can upload their predictions on the respective task’s test

set. They will be compared against the ground truth

labels by computing the respective metric in real-time

on the webserver. Researchers can then opt to pub-

lish their result on a central leaderboard. The leader-

board is accessible via https://seadronessee.cs.

uni-tuebingen.de. The number of submissions per

task per day is limited such that overfitting is largely

avoided.

5. Multi-Object Tracking Evaluation Details

The MOTA metric combines the FP, FN and ID sw. The

IDF1 score depicts the ratio of correctly classified detec-

tions over the average number of ground-truth and com-

puted detection. The MOTP value is the average dissimilar-

ity between all true positives and the corresponding ground-

truths. ID sw. describes the total number of times that the id

of an instance is switched incorrectly. Further information

can be found in [9].

6. Hyperparameter and Training Configura-

tions

All networks are implemented and trained using the Py-

Torch [8] framework. For all models and experiments, we

used a single Nvidia RTX 2080 Ti for training and evalu-

ation. For the EfficientDet-D0 we also tested its real-time

applicability on a Nvidia Xavier. We make use of several

popular freely and openly accessible repositories, which we

will list in the following.

6.1. Object Detection

The Faster R-CNN models with ResNeXt-101-FPN and

ResNet-50-FPN backbones were implemented on top of [6].

The model and training configurations and hyperparame-

ters were adapted to provide state-of-the-art results on the

VisDrone benchmark. Namely, the following changes are

made to the default configurations (which can be seen in

the repository): The anchor sizes and strides are decreased

to (16, 32, 64, 128, 256) and (4, 8, 16, 32, 64) to allow for

small object detection. The region of interest bounding

box head pooler resolution is decreased to 7 and the pooler

scales are adapted to (0.25, 0.125, 0.0625, 0.03125). Train-

ing was done with SGD with learning rate 0.001 and weight

decay 0.0001 for 20 epochs and another ten epochs with

learning rate 0.0001.

Figure 4. Example page (leaderboard for object detection) of evaluation webpage.

We used a detectron2-based CenterNet implemen-

tation (https://github.com/FateScript/

CenterNet-better). CenterNet was trained on an

image-width of 1024 pixels. For the ResNet backbones,

the initial learning rate was 1 · 10−4. The learning rate was

reduced by the factor of 0.1 when the validation loss didn’t

improve in the last 3 epochs. Further, The Hourglass-

backbone was trained with the best configuration on the

VisDrone-dataset of [7].

We used a detectron2-based CenterNet implementation

[12]. CenterNet was trained on an image-width of 1024

pixels. For the ResNet backbones, the initial learning rate

was 1 · 10−4. The learning rate was reduced by the factor

of 0.1 when the validation loss didn’t improve in the last 3

epochs. Further, The Hourglass-backbone was trained with

the best configuration on the VisDrone-dataset of [7].

We conducted our experiments involving EfficientDet

with the implementation from [4]. Instead of using
(

1, 21/3, 22/3
)

as the standard anchor-scales, we chose

(0.3, 0.6, 0.9) to account for the small objects in the data set.

For the same reason we scaled every image so that its longer

edge is 1280 px long (keeping the aspect ratios) instead of

the usual 512 px for EfficientDet−D0. The IoU-thresholds,

which discriminate between positive and negative training

samples, were 0.15 and 0.25 instead of 0.4 and 0.5.

6.2. Single­Object Tracking

We make use of PyTracking [2] with the default con-

figurations of Atom, DiMP50, DiMP18, PrDiMP50 and

PrDiMP18.

6.3. Multi­Object Tracking

For the Tracktor++, we used the official implementation

[3] with the default configuration. Only the parameters of

the reid-part were reduced (P = 6 and K = 4). For our ex-

periments involving FairMOT, we used the implementation

from [15] without any alterations.

References

[1] Airdata for UAV. https://app.airdata.com/. Ac-

cessed: 2021-03-01. 2

[2] Pytracking - python framework for visual object tracking.

https://github.com/visionml/pytracking.

Accessed: 2020-11-01. 4

[3] Philipp Bergmann, Tim Meinhardt, and Laura Leal-Taixé.

Tracking without bells and whistles. In The IEEE Inter-

national Conference on Computer Vision (ICCV), October

2019. 4

[4] Signatrix GmbH. A pytorch implementation of efficientdet

object detection. https://github.com/signatrix/efficientdet,

2020. 4

[5] Kang Liu and Gellert Mattyus. Fast multiclass vehicle detec-

tion on aerial images. IEEE Geoscience and Remote Sensing

Letters, 12(9):1938–1942, 2015. 1

[6] Francisco Massa and Ross Girshick. maskrcnn-benchmark:

Fast, modular reference implementation of Instance Seg-

mentation and Object Detection algorithms in PyTorch.

https://github.com/facebookresearch/

maskrcnn-benchmark, 2018. Accessed: [2020-11-01].

3

[7] Dheeraj Reddy Pailla, Varghese Kollerathu, and Sai Saketh

Chennamsetty. Object detection on aerial imagery using

CenterNet. 2019. 4

[8] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-

ban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in pytorch. 2017. 3

[9] Ergys Ristani, Francesco Solera, Roger Zou, Rita Cucchiara,

and Carlo Tomasi. Performance measures and a data set for

multi-target, multi-camera tracking. In European conference

on computer vision, pages 17–35. Springer, 2016. 3

[10] Hao Su, Shunjun Wei, Min Yan, Chen Wang, Jun Shi, and

Xiaoling Zhang. Object detection and instance segmentation

in remote sensing imagery based on precise mask r-cnn. In

IGARSS 2019-2019 IEEE International Geoscience and Re-

mote Sensing Symposium, pages 1454–1457. IEEE, 2019. 1

[11] Sara Vicente, Joao Carreira, Lourdes Agapito, and Jorge

Batista. Reconstructing pascal voc. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 41–48, 2014. 1

[12] Feng Wang. Centernet-better. https://github.com/

FateScript/CenterNet-better, 2020. 4

[13] Gui-Song Xia, Xiang Bai, Jian Ding, Zhen Zhu, Serge Be-

longie, Jiebo Luo, Mihai Datcu, Marcello Pelillo, and Liang-

pei Zhang. Dota: A large-scale dataset for object detection

in aerial images. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 3974–

3983, 2018. 1

[14] Shuo Yang, Ping Luo, Chen-Change Loy, and Xiaoou Tang.

Wider face: A face detection benchmark. In Proceedings of

the IEEE conference on computer vision and pattern recog-

nition, pages 5525–5533, 2016. 1

[15] Yifu Zhang, Chunyu Wang, Xinggang Wang, Wenjun Zeng,

and Wenyu Liu. Fairmot: On the fairness of detection and

re-identification in multiple object tracking. arXiv preprint

arXiv:2004.01888, 2020. 4

Image samples from SeaDronesSee

Altitude: 57 m; Angle: 90◦; Camera: RedEdge-MX (RGB channels)

Altitude: 50 m; Angle: 20◦; Camera: L1D-20C

Altitude: 23 m; Angle: 90◦; Camera: Zenmuse XT2

Altitude: 229 m; Angle: 90◦; Camera: UMC-R10C

Altitude: 41 m; Angle: 87◦; Camera: Zenmuse X5

Altitude: 9 m; Angle: 45◦; Camera: L1D-20C

Altitude: 20 m; Angle: 16◦; Camera: L1D-20C

Altitude: 128 m; Angle: 90◦; Camera: UMC-R10C

Altitude: 128 m; Angle: 90◦; Camera: UMC-R10C

Altitude: 58 m; Angle: 90◦; Camera: UMC-R10C

Altitude: 219 m; Angle: 90◦; Camera: UMC-R10C

Altitude: 10 m; Angle: 24◦; Camera: L1D-20C

Altitude: 237 m; Angle: 90◦; Camera: UMC-R10C

Altitude: 40 m; Angle: 34◦; Camera: L1D-20C

Altitude: 48 m; Angle: 36◦; Camera: L1D-20C

Altitude: 127 m; Angle: 77◦; Camera: L1D-20C

Altitude: 10 m; Angle: 11◦; Camera: L1D-20C

Altitude: 118 m; Angle: 90◦; Camera: UMC-R10C

Altitude: 38 m; Angle: 39◦; Camera: L1D-20C

Altitude: 226 m; Angle: 90◦; Camera: RedEdge-MX (RGB channels)

Altitude: 40 m; Angle: 37◦; Camera: L1D-20C

Altitude: 30 m; Angle: 31◦; Camera: L1D-20C

Altitude: 61 m; Angle: 41◦; Camera: Zenmuse XT2

Altitude: 170 m; Angle: 90◦; Camera: UMC-R10C

Multispectral image with the channels: blue (475 nm), green (560 nm), red (668 nm), red-edge (717 nm) and near-infrared

(842 nm). [Altitude: 238 m; Angle: 90◦; Time: 12:59:39]

Multispectral image with the channels: blue (475 nm), green (560 nm), red (668 nm), red-edge (717 nm) and near-infrared

(842 nm). [Altitude: 54 m; Angle: 90◦; Time: 12:48:15]

Multispectral image with the channels: blue (475 nm), green (560 nm), red (668 nm), red-edge (717 nm) and near-infrared

(842 nm). [Altitude: 238 m; Angle: 90◦; Time: 12:57:55]

