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Abstract

We present an automatic method for annotating images
of indoor scenes with the CAD models of the objects by re-
lying on RGB-D scans. Through a visual evaluation by 3D
experts, we show that our method retrieves annotations that
are at least as accurate as manual annotations, and can
thus be used as ground truth without the burden of manu-
ally annotating 3D data. We do this using an analysis-by-
synthesis approach, which compares renderings of the CAD
models with the captured scene. We introduce a ’cloning
procedure’ that identifies objects that have the same geom-
etry, to annotate these objects with the same CAD models.
This allows us to obtain complete annotations for the Scan-
Net dataset and the recent ARKitScenes dataset. We will
release these annotations publicly, as we believe they will
be very useful for the computer vision community.

1. Introduction

3D scene understanding is one of the most challeng-
ing problems in computer vision. For indoor scenes, sev-
eral datasets are already available including SceneNN [12],
ScanNet [7], Matterport3D [4], and ARKitScenes [3].
However, with the exception of ScanNet for which some
of the objects are annotated thanks to the Scan2CAD
dataset [1], they do not provide annotations for the shapes
of the objects. This is because 3D manual annotations of the
shapes are particularly cumbersome to create, as one has to
jointly estimate a good 6D pose and retrieve a well suitable
CAD model for each object. The Pix3D dataset [20] is also
annotated with CAD models. However, it is made of single-
object images, without partial occlusions, which facilitates
the annotations but is also likely to bias training and evalu-
ation.

Using synthetic images for training is another option,
however generating realistic virtual 3D scenes also has a
high financial cost, both in terms of creation and render-
ing [19]. Moreover, testing should still be done on real im-
ages.

(ours) 2D reprojection (ours)

Figure 1: Given an RGB-D video sequence of a scene
and 3D oriented bounding boxes or 3D semantic instance
segmentation, our method retrieves CAD models from
ShapeNet that fit the objects well. Left: Scan2CAD does
not provide CAD models for all the objects; The CAD mod-
els in red are the models we retrieve for the objects not
annotated by Scan2CAD. Right: Our cloning procedure
retrieves the same CAD model for the objects sharing a
common shape, such as the chairs in this example. Bottom
right: The CAD models and the poses we retrieve repro-
ject well in the images, and can therefore be used for train-
ing and testing fast inference methods, for example methods
that predict the geometry of the objects from single images.
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In this paper, we report our work on how to automati-
cally retrieve good CAD models for objects in a scene cap-
tured by a moving RGB-D camera. Figure 1 shows the
CAD models we retrieved for one scene from ScanNet and
one scene from ARKitScenes. Visual evaluation by ex-
perts in the domain of computer vision demonstrated that
our CAD models are often as good or better than the man-
ual annotations from Scan2CAD, while they are obtained
automatically. We thus see our method as a tool that auto-
matically generates annotations, which can then be used to
train supervised methods for fast inference. On average, our
non-optimized implementation takes approximately 11.00
minutes per scene using two NVidia GeForce RTX 2080
Ti graphics cards, compared to Scan2CAD human anno-
tations that take 20.52 minutes per scene [1], while being
completely automated.

Our method is not based on learning and thus does not
require registered 3D models for training. Instead, we use
as input 3D oriented bounding boxes or instance segmen-
tation for the objects: These annotations are much simpler
than CAD model fitting and they are in fact available for
the main existing datasets as detailed in Table 1. Because
we also adjust the bounding boxes anyway, these boxes do
not have to be particularly accurate. To find a suitable CAD
model, we sequentially replace the target object with one of
the 3D models from the ShapeNet database [5]. By follow-
ing an analysis-by-synthesis approach, we select the best
CAD model by comparing depth renderings to the captured
depth maps while adjusting the 9D pose and scale of the
CAD models. As Figure 1 also shows, by relying on depth
data to select and register the CAD models, the CAD mod-
els we retrieve are not only well located in 3D but also re-
project well in the images of the RGB-D scans.

In man-made environments, it often happens that multi-
ple objects have the same shape, such as the chairs around
the table for the ARKitScenes example in Figure 1. How-
ever, independently searching for the CAD models of these
multiple instances is likely to yield different 3D models. To
exploit the high-level knowledge that several objects tend to
have the same shape, we cluster the CAD models retrieved
after an independent search based on the similarity of their
shapes. We then perform a joint retrieval, looking for the
same CAD model for all the objects in the cluster. This
way, we can exploit more information from the depth maps
to retrieve a better CAD model: For example, if we found
that two chairs share the same shape, but the top of the first
chair and the bottom of the second chair are not visible in
the RGB-D scan, we can still recover a correct CAD model
for the two chairs.

We did not find any previous method that attempted to
solve the same problem as us. Note that the Scan2CAD
method from [1] (not to be confused with the Scan2CAD
annotations) does retrieve CAD models for ScanNet, but

Dataset #scans 3D GT CA.D Model
Labels Alignment
SceneNN [12] 100 OBB, Inst.Seg. X
ScanNet [7] 1513 Inst.Seg. Scan2CAD [1] (%)
Matterport3D [4] 2056 Inst.Seg. X
ARKitScenes [3] 5047 OBB X

Table 1: Overview of the most popular real RGB-D
datasets for indoor scene understanding. 'OBB’ and
"Inst.Seg.’” indicate that 3D oriented bounding boxes or
3D object instance segmentation are available as ground
truth, respectively. None of the datasets directly provide
full ground truth with CAD models, except for ScanNet
thanks to the Scan2CAD dataset. (*) Note however that the
Scan2CAD dataset only provides CAD models for about 2
thirds of the objects.

from a very small pool created for benchmarking the pro-
posed method: The size of the pool is taken to be equal to
the number of objects in the scene, i.e., in a range of 5 to
30 CAD models selected from the ShapeNet dataset. It is
also designed to contain the ground truth models. [1] shows
an experiment with more CAD models (400), it is however
only a qualitative result. By contrast, we search through the
entire set of CAD models for the target object class. For
example, we consider the 8437 CAD Tables models and the
6779 CAD Chairs models in ShapeNet.

To the best of our knowledge, our method is thus the first
one to achieve ground-truth-like CAD model retrieval and
alignment. Overall, we make the following contributions:

1. We introduce a fully-automatic method for CAD
model retrieval and alignment that results in a fine
alignment between the images and the reprojected
CAD models.

2. We show how to identify the objects that share the
same geometry, and retrieve a common CAD model
for these objects—we call this procedure ’cloning’.

3. We show that the quality of our results is comparable
or better than human annotations.

4. As no supervision is needed, our method can be di-
rectly used on various datasets for indoor scene un-
derstanding, and we show this by using two popular
datasets, namely ScanNet [7] and ARKitScenes [3].

5. Our method can be seen as a tool to automatically an-
notate images with CAD models and poses for the ob-
jects in the images, and we will make our annotations
for the ScanNet scenes and for ARKitScenes publicly
available.
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Figure 2: Overview of our method. We use as input the RGB-D scan of an indoor scene, and either 3D box annotations
or 3D object instance segmentation to accurately retrieve and align CAD models from ShapeNet. We also retrieve the same
CAD model for objects with the same shape: 3D models renderings with the same color correspond to the same CAD model.

2. Related Work

We focus our discussion on methods for CAD model re-
trieval in 3D scans.

2.1. Using Object Representations

A popular approach for CAD model retrieval is to repre-
sent the objects using embeddings. More exactly, it is possi-
ble to learn a representation for point clouds of objects, and
a representation for CAD models in the same embedding
space [1, 2, 6, 8, 10].

This approach allows for fast retrieval: The embedding
space can be learned so that it can be used by efficient meth-
ods such as hashing for nearest neighbor search. However,
annotated data is required to learn the embeddings. In our
case, we are interested in an offline method; computation
time is thus not critical while accuracy is much more impor-
tant. We thus consider an exhaustive search and a geometric
criterion to evaluate how much a CAD model corresponds
to the 3D scan. This is a safer approach than relying on the
similarity between implicit embeddings.

2.2. [Semi-]Manual Retrieval

A few datasets already exist for evaluating deep learning
approaches for CAD model retrieval.

The authors of Pix3D [20] crawled web images to find
images of objects from the IKEA object catalogue that were
later verified by Amazon Mechanical Turk workers. To sim-
plify the 3D annotation procedure, they also kept only im-
ages without occlusions. Then, human annotators would
manually select keypoint correspondences between each in-
put image and the 3D model manually selected for the im-
age. Using PnP and refinement, it is then possible to de-
termine the 6D object pose. Similarly, for creating the
Scan2CAD dataset [1], human annotators were asked for

each object to first, find the corresponding model in the
ShapeNet dataset [5] for the object within a bounding box
and, then, click on correspondences between the 3D model
and the point cloud to obtain the alignment. Manually an-
notating 3D scans is however a heavy burden: Not all ob-
jects are annotated in Scan2CAD and ARKitScenes is not
annotated with CAD models yet. We thus believe that our
approach is very useful and scales better to large datasets.

Using synthetic images for training is also an attractive
option, as the 3D annotations come then free. However, cre-
ating the 3D content and rendering it has also a high cost.
For example, [19] reports a cost of $57K to create Hyper-
sim, a dataset of about 71’000 synthetic images for scene
creation + image rendering, and a period of 2.4 years of
wall-clock time on a large compute node.

2.3. Analysis-by-Synthesis Approaches

Analysis-by-synthesis in not a new concept in computer
vision [21, 14, 11, 13]. Some methods combine analysis-
by-synthesis with learning [16, 17] but others, like us, do
not [9, 22, 10]. In particular, the recent [10] is probably
the closest work to us. However, [10] focuses on retrieving
arrangements of objects that explain the point clouds overall
and not on accuracy. In our case, we exploit the existing 3D
bounding box annotations as our goal is to provide accurate
annotations. We perform an exhaustive search on the CAD
models while [10] relies on embeddings. We also provide
the annotations we retrieved.

3. Method

For each scene, we have an RGB-D scan of IV regis-
tered RGB images and depth maps, as well as a 3D mesh
reconstructed from the scan. Our aim is to find for each
object in the scene the most similar CAD model within the
ShapeNet dataset, along with the corresponding pose as a
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9-DoF transformation 7}, made of a 3D translation, 3D ro-
tation, and scale along the 3 axes.

We only consider target objects that have either object
box annotations or semantic instance segmentation avail-
able as supervision. Note that this kind of supervision is
relatively easy to generate (and often already available as
ground truth in public 3D indoor scene datasets, as seen
in Table 1) compared to CAD model retrieval annotation,
which requires the annotator to manually search a suitable
CAD model from a large database.

An overview of our method is shown in Figure 2. It
first performs CAD model retrieval, by sequentially replac-
ing the target object in the scene with all available CAD
models from the same object category. After replacing the
object, we render the modified scene to generate observa-
tions corresponding to the selected CAD model. By do-
ing this for all CAD models, we exhaustively search for the
most perceptually similar model, according to the observa-
tions. After finding initial CAD models for each target ob-
ject, our method focuses on retrieving geometrically similar
CAD models for geometrically similar target objects in the
scene. Finally, we perform differentiable object alignment
to optimize the 9-DoF pose of each CAD model, taking into
account the top-k retrievals for alignment-aware object re-
trieval. We describe each component of our CAD model
retrieval pipeline in detail below.

3.1. Data Preprocessing

We use the 3D oriented object box as initialization for
position, scale and orientation of the target object, whereas
3D semantic instance segmentation is used as geometrical
information to replace the target object in the scene with the
CAD models. We use either the 3D bounding box informa-
tion or the instance segmentation provided by the dataset,
which allows us to calculate an approximation for the other
missing part. We refer to the supplementary material for a
detailed description on how we infer 3D instance segmen-
tation from oriented bounding boxes and vice versa. We se-
lect a number Np of frames from all frames of the RGB-D
scan, by selecting the frames where the target object is in the
field of view according to its 3D bounding box and then reg-
ularly sample these frames. We also use the provided class
label from each target object to identify the corresponding
ShapeNet category.

3.2. Initial CAD Model Retrieval

We sequentially replace the target object in the input
scene with each ShapeNet CAD model from the corre-
sponding class category. Figure 3 illustrates this replace-
ment procedure: We use the 3D semantic instance segmen-
tation to remove all 3D points in the scene which are part of
the target object 0;. Then, we use the initial 3D scale, po-
sition and orientation extracted from the 3D oriented object

CAD Model Database

Target
/ o

Modified scene with

Initial scene with all boxes inserted CAD model

'‘Background' scene
Figure 3: Object replacement by removing the 3D points
belonging to the real object and inserting one possible
CAD model. The modified scene is then used to generate
observations used for our objective function.

bounding box to calculate an initial transformation which
enables us to directly insert the CAD model m; at the posi-
tion of the target object o;.

Our method follows an analysis-by-synthesis approach
to evaluate how well a CAD model corresponds to a real
object. Such an approach is important to obtain a fine align-
ment of the reprojected CAD models with the input images.
To measure quantitatively how well a CAD model fits a real
object, we introduce a simple objective function that mainly
compares observed depth data and the depth of the CAD
model. This objective function does not require any train-
ing, and thus does not require any annotation.

3.2.1 Depth Matching Term Ly

The main terms of our objective function compare the depth
maps for the CAD model and the 3D scene mesh after re-
placement with the observed depth maps.

We noticed that with ScanNet, it is possible to gener-
ate a depth map of the scene that is better than the cap-
tured depth map by rendering the mesh, as seen in Figure 4.
For ARKitScenes, the scene meshes currently available are
pretty noisy, and it is often better to consider the captured
depth map than the rendered mesh. We therefore use a lin-
ear combination of the two possible comparisons:

1 A (2t ¢ ¢
Lap = Ny Z:<%|Mm “(Dead — D)1 +
\ (D

71|M§ : (Dgad - Dins)‘l) 5

where the sum is over the Nt selected frames of the RGB-
D scan for the specific target object. Depth maps DY,
D! . and D! are respectively the depth map rendered
from the CAD model and the 3D scene mesh after replace-
ment, the depth map rendered from the scene mesh, and the
captured depth map for frame ¢. M}, and M! denote the
valid pixel maps for the depth maps D!, and D, respec-

tively. We use the L1 norm to compare the depth maps and
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Figure 4: Examples of the different depth maps (Top)
and masks (Bottom) used in our objective function. See
Sections 3.2.1 and 3.2.2.

normalize the norms by the numbers of valid pixels V!, and
Vst. Weights A, and A, can be adapted to the dataset, de-
pending on the quality of the captured depth maps and the
3D mesh.

Examples for D!, DL, and D are shown in Fig-
ure 4. Rendering a depth map DY, is computed once per
target object, whereas D!, has to be computed for each
CAD model that comes into consideration. However, this
can be done efficiently by rendering the ’background’ scene
once, and then rendering each CAD model independently

and fusing the results.

3.2.2 Additional Terms Lg; and Lcp

During our experiments, we noticed that in some specific
cases, the term Lg, introduced above is not sufficient to ob-
tain optimal CAD model retrieval. For example, the term
Lcp introduced below proved to be decisive when the se-
lection of frames does not cover the whole target object,
whereas the term Lg; provide strong information about de-
tails of the object’s shape.

For Ls;, we consider the Intersection-over-Union be-
tween the silhouettes of the real object and of the CAD
model:

1
Lsiy = Ny > (1= ToU(Shahr Staa)) » 2

t

where St and S!,, are the rendered object masks for the
real object and a possible CAD model, respectively, for
frame ¢. Examples of S’ and S’ ; are shown in Figure 4.

Additionally, we use the (one-way) Chamfer distance

from the points on the real object to the CAD model:
Lep = 5 3 minlp - gl 3)
CD — |P| 1€0 p q|| ,
peP

where P is the point cloud for the real object as identi-
fied using the bounding box and/or the segmentation as ex-
plained in Section 3.1 and @ is a set of 3D points sampled
on the CAD model.

3.2.3 Objective Function

Our objective function can now be defined as
L = Lap + AsitLsit + AcpLep , “4)

where \g; and A\cp are weights. We compute this objective
function for each CAD model in ShapeNet that matches the
class label of the current target object.

3.3. CAD Model Cloning

Given a 3D scene such as the one shown in Figure 5 for
ScanNet, a human annotator will recognize that several ob-
jects in the scene share the same geometry. However, this
behaviour is not guaranteed with our per-object predictions
for CAD model retrieval. To solve this issue, we add a sim-
ple yet effective method to identify objects that share their
shapes and to retrieve an appropriate CAD model for all the
identified objects.

We first cluster the CAD models retrieved independently
for each object by the method described in Section 3.2. We
use a bottom-up clustering based on the pair-wise Chamfer
distance between the CAD models. More precisely, for each
pair of retrieved CAD models, we first calculate their sym-
metric Chamfer distance. Then, we iteratively go through
all object pairs from lowest to highest Chamfer distance and
perform one of the following steps if their Chamfer distance
is below a threshold 7 (we use 7 = 3.10~2 in practice): (a)
If none of the two objects is already part of a cluster, a new
cluster with these two objects is created. (b) If one of the
objects is already part of a cluster, and the other one is not
assigned to a cluster yet, it is added to the same cluster. (c) If
both objects are already assigned to different clusters, these
clusters are merged.

Then, for each cluster with more than one object, we
look for a common CAD model that minimizes the sum of
the objective functions £ from Eq. (4) over all the objects in
the cluster, when replacing every object by the CAD model.
Figure 5 shows an example for our CAD model clustering
and cloning.

3.4. Differentiable Pose Refinement

Once we found a CAD model for an object, possibly by
the cloning procedure explained above, we refine its 9-DoF
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Figure 5: CAD model cloning. We first look for a CAD
model for each object independently. We then cluster the
CAD models based on their shape similarity. Clusters with
more than one CAD model indicate objects that share the
same shape. We then assign to all the objects in the clus-
ter the CAD model that minimizes the sum of the objective
functions over all the objects.

pose T', i.e., its scale, position, and orientation to fit the
depth observations better. We initialize its pose using the
3D bounding box that is either part of the dataset as ground
truth, or calculated during our preprocessing step. To do
this, we minimize the objective function of Eq. (4) over the
9 pose parameters in 7' using the differentiable rendering
pipeline of [18] and the Adam optimizer [15].

4. Evaluation and Experiments

To evaluate the performance of our method, we consid-
ered the popular ScanNet dataset and the more recent ARK-
itScenes dataset. We asked computer vision experts to con-
duct a visual evaluation on ScanNet to compare our auto-
matically retrieved annotations with the annotations pro-
vided by Scan2CAD, to evaluate if our method can pro-
vide ground truth annotations with comparable quality to
manual annotations. We then conduct a visual inspection of
the results on ScanNet, and additionally provide qualitative
results on the ARKitScenes dataset. We refer to the sup-
plementary material for for additional visualizations for our
results for all upcoming experiments.

4.1. Evaluation using Scan2CAD

To evaluate the performance of our proposed method, we
conducted a visual evaluation by asking 3D experts to com-
pare our results to Scan2CAD, which provides ground truth
for CAD model retrieval and alignment for ScanNet. We
perform this evaluation on the ScanNet validation set, which
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Figure 6: Deviations of our results compared to Scan2CAD
ground truth for each criterion on the entire ScanNet evalu-
ation dataset. The majority of CAD retrievals are very close
to their Scan2CAD counterpart, indicating the high quality
of our results.

consists of 312 indoor scenes. To ensure fair comparison,
we use the initial 3D bounding boxes from Scan2CAD.

Implementation details. We set the weights in Egs. (1)
and (4) t0 Apsh = 0.75,Ans = 0.9, Asii = 0.3 and
Acp = 2.0. To compute the Chamfer distance in Lcp, we
uniformly sample N = 10k points from the surface mesh of
each CAD model. For the CAD models that were not substi-
tuted by our cloning method, we first retrieve the top-3 best
CAD models, perform pose refinement for each 3 of them,
and keep the one with the lowest objective function value.
For the CAD models issued by the cloning procedure, we
perform the pose refinement with the common CAD model.

4.1.1 Quantitative Comparison

As proposed in the Scan2CAD paper [1], CAD retrieval and
alignment can be evaluated in terms of translation, rotation,
and scale error. Additionally, we argue that shape difference
is also a important criterion. For each target object in the
validation set, we compare our results with the correspond-
ing Scan2CAD ground truth, by calculating the difference
of rotation, translation, scale and shape.

Figure 6 shows the deviation of our results compared to
the Scan2CAD annotations. As one can see, the majority
of our predicted CAD model retrievals do have a very small
difference compared to ground truth for all criteria, which
already indicates the high quality of our results.
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Figure 7: Left: One example from our visual evaluation
of the 165 objects with the largest deviations from the
Scan2CAD annotations. The experts were shown two
images, created by reprojecting CAD models in the same
view from the RGB-D scan. We use the CAD models and
their poses as provided by Scan2CAD for one image, and
the models and poses retrieved by our method for the other
image. The experts were not told which method was used
and images were shuffled so that our method appeared 50%
of the time in the top image and 50% of the time in the
bottom image. For each pair of images, the experts were
asked to answer the question: “Do the reprojections in the
top image look better, worse, or similar to the reprojection
in the bottom image?” Right: Histograms of the answers.
On average for these 165 objects with the largest deviation,
our method provides similar or better CAD models, while
being automatic.

4.1.2 Visual Evaluation by Experts

The quantitative comparison with the Scan2CAD annota-
tions provided above gives the deviation with respect to
these annotations, however it does not tell what these dif-
ferences mean in terms of overall quality, and which anno-
tations are better—or if they are equivalent.

To answer these questions, we conducted a visual evalu-
ation by computer vision experts on the 165 objects with the
largest deviation from the Scan2CAD annotations. To keep
the comparison simple, we generated pairs of images where
we reprojected the CAD models provided by Scan2CAD
and the CAD models retrieved by our method. Figure 7
shows an example of such a pair of images. Such repro-
jections were easier to interpret for the subjects than a 3D
scene, but to make sure that the poses of the CAD mod-
els were also evaluated correctly and not just their reprojec-
tions, we used multiple views of the same scenes.

The experts were not told which method was used and
images were shuffled so that our method appeared 50% of
the time in the top image and 50% of the time in the bot-
tom image, to prevent the subjects to be biased towards one
of the two sides or methods. For each pair of images, the
experts were asked to answer the question: “Do the repro-
jections in the top image look better, worse, or similar to
the reprojection in the bottom image?” As this question
requires some domain expertise, we had to restrict the sub-

Annotations

Scan2CAD  Annotations  Annotations by our method
annotations by our method have similar are similar
Criterion are better are better quality or better
Translation 10 7 33 40
Rotation 12 10 28 38
Scale 12 7 31 38
Shape 20 8 22 30

Table 2: Results of the visual inspection of the 50 objects
with the largest deviation from the Scan2CAD annotations.
A clear majority of annotations are at least equal in quality.

jects to PhD students working on computer vision and com-
puter graphics. In total, 9 experts participated to this study.

The results are shown in Figure 7: For 43.7% of all the
shown pairs, the subjects prefer the CAD models and poses
from Scan2CAD, for 24.5%, they prefer the CAD models
and poses retrieved by our method, and for the 31.8% left,
they found the two sources were similar. This validates that
our method can be used in place of human annotations, as it
produces annotations of similar or better quality on average.

4.1.3 Fine-grain Evaluation

To get a better understanding of how our automatic anno-
tations compare to the manual ones, we visualized the 50
objects with the highest deviation for each criterion con-
sidered in Section 4.1.1 (translation, rotation, scale, shape)
and evaluated the geometry and alignment through visual
inspection. Table 2 shows the results. For the majority of
these objects, the overall quality of geometric shape and
alignment is equal or better than the annotations from the
Scan2CAD dataset. Figure 8 shows examples for objects
with large differences for different criteria. We refer to the
supp. material for extensive visualization of examples.

4.1.4 Additional Annotations for ScanNet

Figure 9 shows a comparison of results for full scene CAD
retrieval by our method with Scan2CAD: As already men-
tioned, the Scan2CAD dataset does not provide annotations
for all the objects. About one third of the objects of stan-
dard classes (1130 objects for the 312 scenes in the ScanNet
validation set) are not labeled with a CAD model nor pose,
but since our method is automated, we were able to retrieve
a CAD model and pose for all these objects. This represents
on average 3.6 additional objects per scene, and about 37%
more retrieved objects than in the Scan2CAD annotations.

4.2. Results on the ARKitScenes Dataset

To show the generalization ability of our method, we
also ran our method on the recently published ARKitScenes
dataset. This dataset consists of 5047 RGB-D scans of in-
door scenes, and provides 3D oriented bounding boxes as
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Figure 8: Visualization of some objects with the largest
difference between the Scan2CAD annotations and the an-
notations created by our method. We show the RGB-D scan,
the 3D overlay of the Scan2CAD object (in green) and the
3D overlay of the CAD model retrieved with our method (in
blue), and below, the 2d reprojections of the CAD models.
First example: Rotation difference of 6.33°, Assessment:
our method is more accurate. Second example: Translation
difference of 8.5cm, Assessment: equal quality. Third ex-
ample: Chamfer distance of 0.42, Assessment: Scan2CAD
annotation is more accurate.

ground-truth annotations. Note that there are no CAD mod-
els provided as ground truth for this dataset.

Implementation details. The quality of the sensor data
for this dataset is significantly better compared to ScanNet,
and the depth maps provided by ARKitScenes are much bet-
ter. However, the quality of the 3D scene meshes provided
by ARKitScenes is still significantly lower than the ones
available for ScanNet. Therefore, we adjusted the weight
parameters to A\; = 1.3, A, = 0.3, Asii = 0.4, Acp = 1.5.

Retrieved annotations. Figure 10 shows examples of the
CAD models and their poses retrieved by our method. The
advantage of our cloning procedure is also clearly visible.

Figure 9: Comparison with Scan2CAD annotations.
Left: RGB-D scan. Middle: Scan2CAD annotations. Right:
Our results, where red CAD models are for objects not an-
notated in Scan2CAD.

Figure 10: Qualitative results on the ARKitScenes
dataset. Left: RGB-D scan. Middle: Our results before
cloning. Right: After cloning. CAD models with the same
color have the same geometry: In the top row, our cloning
procedure correctly retrieves the same models for the chairs
and the two armchairs at the bottom. More examples are
shown in the supplementary material.

5. Conclusion

We presented a method to retrieve CAD models for ob-
jects in 3D scans and their poses that have similar quality
as manual annotations. The CAD models reproject well on
the images used to capture the scans. We thus hope that
our results can be used for 3D scene understanding from
single images. We will make available the annotations we
retrieved for the ScanNet and ARKitScenes datasets.
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