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Abstract

We study the problem of estimating the semi-generalized
pose of a partially calibrated camera, i.e., the pose of a
perspective camera with unknown focal length w.r.t. a gen-
eralized camera, from a hybrid set of 2D-2D and 2D-3D
point correspondences. We study all possible camera con-
figurations within the generalized camera system. To derive
practical solvers to previously unsolved challenging config-
urations, we test different parameterizations as well as dif-
ferent solving strategies based on state-of-the-art methods
for generating efficient polynomial solvers. We evaluate the
three most promising solvers, i.e., the H51f solver with five
2D-2D correspondences and one 2D-3D match viewed by
the same camera inside the generalized camera, the H32f
solver with three 2D-2D and two 2D-3D correspondences,
and the H13f solver with one 2D-2D and three 2D-3D
matches, on synthetic and real data. We show that in the
presence of noise in the 3D points these solvers provide bet-
ter estimates than the corresponding absolute pose solvers.

1. Introduction

Estimating camera geometry, i.e., absolute or relative pose
and internal camera calibration, is a fundamental problem
in computer vision with many applications, e.g., in camera
calibration [35, 47], structure-from-motion (SfM) [34, 36,
41, 45], localization [3, 31, 32], visual odometry [25, 26],
and image retrieval [29, 44].

Camera geometry solvers are usually used inside
RANSAC-style hypothesis-and-test frameworks [10]. For
efficiency, it is therefore important to employ minimal
solvers that generate the solution from a minimal number
of point correspondences. Minimal relative and absolute
pose problems have been extensively studied for decades
with many solutions for calibrated cameras [10, 27, 28],

Figure 1. We consider the problem of estimating the pose of a per-
spective camera (red) with unknown focal length w.r.t. a general-
ized camera composed from multiple individual cameras (green)
from both 2D-3D (blue) and 2D-2D (orange) matches.

partially calibrated cameras with unknown focal length
[4, 19, 20, 22, 38], cameras with unknown radial distortion
[6, 17, 18, 22], and solutions assuming known gravity di-
rection [9, 16, 33]. The minimal solvers to these problems
are based on different parameterizations and different solu-
tion methods. E.g., the absolute pose problem for a camera
with unknown focal length has been solved based on ratio
of distances [4], the 3.5pt formulations from [22, 46], and
a solution based on the Cayley parameterization of rotation
that is solved using the extremely efficient 3Q3 solver [19].
Generalized camera: All above-mentioned algorithms as-
sume the central perspective projection model (potentially
with radial distortion). Recently, several minimal solutions
for generalized cameras were proposed. A generalized cam-
era [30] can be represented by a arbitrary set of rays with,
in general, different projection centers. This camera model
has many applications, e.g., in SfM [48] and visual localiza-
tion [37, 43], where we either work with multi-camera sys-
tems or we have to register a new camera (a query image)
to a set of cameras with known poses modeled as a general-
ized camera composed of the known perspective ones. The
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latter case is called the semi-generalized pose estimation
problem. In many situations, estimating the camera pose
w.r.t. the generalized camera leads to more accurate poses
compared to estimates from pair-wise epipolar geometries,
especially thanks to a larger field-of-view of the general-
ized camera [40]. Moreover, in contrast to pinhole epipolar
geometry, the scale of the translation can be recovered.

While the problem of estimating the absolute pose of a
generalized camera can be solved very efficiently using the
3Q3 solver [19] (the final solver runs in a few µs), the prob-
lem of estimating the relative pose of two generalized cam-
eras is significantly more complex [39]. This problem re-
sults in a complex system of 15 polynomial equations with
64 solutions and with a Gröbner basis solver [39] that is
infeasible for real-time applications. Recently, several solu-
tions to different semi-generalized relative pose problems
were proposed. In [48], the authors considered a semi-
generalized epipolar geometry problem, i.e., the problem
of estimating the relative pose together with the scale of
the translation between one perspective and one generalized
camera from 2D-2D correspondences. Due to the complex
geometry of the problem, minimal solutions to only four
different configurations were presented, i.e., the E5+1 and
E4+2 solvers for calibrated pinhole cameras, and the Ef6+1

and Ef5+2 solvers for pinhole cameras with unknown focal
length. Here, a generalized camera consists of multiple per-
spective ones. 4+2 denotes a configuration where four point
correspondences come from one of these perspective cam-
eras and the remaining two correspondences come from one
or two other perspective cameras. The proposed E4+2 and
Ef5+2 solvers were impractical for real-time applications
since they perform eliminations of huge matrices and have
running times of 1.2ms and 13.6ms, respectively. Recently,
[2] showed that for planar scenes, the semi-generalized rel-
ative pose problem can be, after using suitable parameter-
izations and after eliminating some unknowns, solved effi-
ciently by finding the roots of a single-variable polynomial.
The authors proposed such efficient minimal solutions for
calibrated and partially-calibrated semi-generalized homog-
raphy estimation and all different configurations of 2D-2D
correspondences in a generalized camera.
Hybrid correspondences: In [13], the authors suggested to
use combinations of 2D-2D and 2D-3D correspondences,
i.e., hybrid matches, for visual localization. Using hybrid
correspondences has several advantages. While a 2D-2D
correspondence provides only one constraint on the cam-
era geometry, a 2D-3D correspondence provides two con-
straints and therefore decreases the number of matches
needed for pose estimation. On the other hand, 3D points
may not be available for many 2D detections in the query
image, i.e., it is not possible to triangulate these points, or
these 3D points can be noisy. Thus, a combination of 2D-
2D and 2D-3D correspondences may bring a benefit from

both and, as shown in [7], can result in better pose esti-
mates. [13] listed all possible minimal configurations of hy-
brid point correspondences for semi-generalized pose esti-
mation for calibrated, partially calibrated (unknown focal
length), and uncalibrated perspective cameras w.r.t. a gen-
eralized camera. While the authors estimated the number of
solutions for all cases, they proposed solvers for only sev-
eral simple configurations, including configurations where
all 2D points are observed by one camera inside the gen-
eralized camera or the calibrated case with two 2D-2D and
two 2D-3D correspondences. They also suggested a solu-
tion to the case of uncalibrated cameras with one 2D-2D
correspondences and five 2D-3D correspondences.

Recently, [7] proposed minimal solutions to several
problems of estimating the pose of calibrated cameras, and
cameras with known vertical direction, from hybrid point
correspondences. These solutions assume that both cam-
eras are generalized, i.e., a fully generalized case. The final
solvers were mostly obtained using the automatic genera-
tor based on Gröbner bases [15]. Together with the pro-
posed minimal solvers for calibrated cameras, a RANSAC-
based approach that is automatically selecting the “best”
type of solver for each RANSAC iteration was presented.
The solver to be used in the next iteration is selected in a
data-driven way using a probability-guided sampling strat-
egy, allowing it to adapt to the quality of the provided corre-
spondences. The paper showed that properly combining dif-
ferent types of correspondences and different camera pose
solvers for such correspondences can significantly improve
RANSAC’s performance. Even though some of the pro-
posed solvers are efficient, even for calibrated cameras there
already are configurations that result in large solvers, e.g.,
the solver that uses four 2D-2D and one 2D-3D correspon-
dence has to perform elimination of a 244× 277 matrix.

In this paper, we study challenging unsolved problems
for estimating the semi-generalized pose of a partially cal-
ibrated camera, i.e., the pose of a perspective camera with
unknown focal length w.r.t. a generalized camera, from a
hybrid set of 2D-2D and 2D-3D point correspondences (c.f .
Fig. 1). The proposed solvers fill the gaps that still remain in
the arsenal of minimal solvers and provide new alternatives
for pose estimation of a camera with unknown focal length1

that can be efficiently used inside the hybrid RANSAC
framework [7]. We assume a semi-generalized case, com-
pared to the fully generalized case considered in [7], since
this scenario appears more often in applications, e.g., in vi-
sual localization, and results in simpler and faster solvers.
The main contributions of the paper are:

1. We propose solutions to all possible minimal point
configurations for semi-generalized pose estimation of

1Note that in many applications, the only intrinsic parameter of a fully
uncalibrated camera that needs to be estimated is the unknown focal length.
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a partially calibrated camera from a hybrid set of 2D-
2D and 2D-3D point correspondences. The proposed
solvers include (i) the H51f solvers with five 2D-2D
correspondences and one 2D-3D correspondence, (ii)
the H32f solvers with three 2D-2D and two 2D-3D
correspondences, and (iii) the H13f solvers with one
2D-2D correspondence and three 2D-3D correspon-
dences. In all three cases we consider all possible cam-
era configurations within the generalized camera.

2. Finding a feasible formulation that leads to a practical
solution, and deriving an efficient and stable solver to
the resulting polynomial system usually requires many
non-trivial “tricks” and a good knowledge of both cam-
era and algebraic geometry. To derive efficient and
stable solvers for all challenging configurations, we
test different parameterizations of the problem e.g., us-
ing the essential matrix, homographies, quaternions,
and the Cayley parameterization of rotation, as well
as different solution strategies based on state-of-the-art
methods for generating efficient polynomial solvers,
e.g., the elimination ideal method [20], the heuristic-
based basis sampling approach [23], and resultants [1].

3. We test the most practical solvers on synthetic as well
as real data. We show that in the presence of noise in
the 3D points and for special types of motions, e.g.,
forward motion, these solvers provide better estimates
than corresponding absolute pose solvers.

2. Problem formulation
Let us consider a camera setup as depicted in Fig. 1. We
denote the pinhole query camera as P and the generalized
camera as G. The generalized camera G is assumed to be
fully calibrated, and it consists of a set of pinhole cameras
denoted as {G1,G2, . . . ,Gk}. In this paper, we consider P
to be partially calibrated. Its calibration matrix is of the
form K = diag(f, f, 1) with unknown focal length f . We
use the upper index to denote a coordinate system. We con-
sider two different coordinate systems for the generalized
camera G: the local coordinate system of the generalized
camera G as a single entity, and the local coordinate sys-
tems of each of the pinhole cameras, Gi. Let RGi

, tGi
denote

the rotation and translation required to align the local co-
ordinate system of Gi to the local coordinate system of the
generalized camera G. Let RG, tG denote the rotation and
translation required to align the local coordinate system of
G to the local coordinate system of P: Let XP ∈ R3 and
XG ∈ R3 be the coordinates of the point X in the local co-
ordinate system of P and the local coordinate system of G,
respectively. It holds that XP = RGX

G + tG.
For such a camera setup, our goal is to estimate the rota-

tion RG ∈ SO(3) and the translation tG ∈ R3 between the
generalized camera G and the perspective camera P , i.e., to

align the local coordinate system of G with the local coor-
dinate system of P . Additionally we also need to estimate
the focal length f of the camera P . For the sake of brevity,
we replace RG with R and tG with t.

Let us assume a 3D point Xj observed by the per-
spective camera P and the camera Gi, i.e., the i-th con-
stituent perspective camera from the generalized camera G.
Let us denote the image points detected in P and Gi as
pj = [xj , yj , 1]

> and gij = [xGi
j , y

Gi
j , 1]

>, respectively.
With this notation, the coordinates of the 3D point Xj in
the local coordinate system of P are

XP
j = αjK

−1pj , (1)

where K is the calibration matrix of the camera P and αj

represents the depth of the point Xj in P . A similar rela-
tionship holds for the coordinates of the 3D point Xj in the
local coordinate system of Gi as

XGi
j = βijK

−1
Gi

gij , (2)

where KGi is the calibration matrix of the camera Gi and
βij represents the depth of the point Xj in Gi. To obtain
the relationship between XP

j and XGi
j we have to transform

them into the same coordinate system, i.e., in this case the
local coordinate system of P . This gives us

R(βijRGi
K−1Gi

gij + tGi
) + t = αjK

−1pj . (3)

Note that here we use the fact that R = RG and t = tG. Since
in our case RGi

, tGi
and KGi

are known, for better readability
we substitute qij = RGi

K−1Gi
gij and obtain

R(βijqij + tGi) + t = αjK
−1pj . (4)

This denotes the constraint imposed by a 2D-2D correspon-
dence pj ↔ (qij , tGi). Similarly, if we have a 2D-3D cor-
respondence between a 2D point pj and a 3D point XG

j in
the local coordinate system of the generalized camera G,
then the resulting constraint is

RXG
j + t = αjK

−1pj . (5)

3. Minimal solvers
The problem of semi-generalized pose from hybrid point
correspondences has seven degrees of freedom (d.o.f.),
three each for R and t, and one for f . From the constraint (4)
induced by each 2D-2D point correspondence, we can elim-
inate the depths αj and βij to obtain

(pj)
> [KRqij ]× (KRtGi

+ Kt) = 0 , (6)

where the notation [a]× indicates the skew-symmetric ma-
trix of the vector a ∈ R3. Thus, each 2D-2D point corre-
spondence gives us one equation. Similarly, from the con-
straint (5) induced by each 2D-3D point correspondence,
we can eliminate the depth αj to obtain

[pj ]× (KRXG
j + Kt) = 0 , (7)
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which gives us two linearly independent equations.
A hybrid point configuration (m,n) consists of m 2D-

2D and n 2D-3D point correspondences. It results in a total
ofm+2n linearly independent equations. Since in this case
we have 7 d.o.f., for any hybrid point configuration (m,n)
to lead to a minimal problem, we require that m+ 2n = 7.
We denote the solver for such a hybrid point configuration
(m,n) as Hmnf in this paper.

A given hybrid point configuration (m,n) can have dif-
ferent configurations of the generalized camera G, based on
the largest number k ≤ m of 2D-2D correspondences de-
tected by the same pinhole camera Gi within the generalized
camera G. For brevity we denote such a case as [k].
Parameterizations: For all configurations we generated
solvers using three different types of parameterizations:

• Rotation & translation (R&t): This parameterization
correspond to Eqs. (6) and (7). Here we tested Cayley
and quaternion-based parameterizations of the rotation
matrix R. For the quaternion representation, inspired
by [49], we use a four variable reparameterization of
the product KR. This is important for removing sym-
metries and halving the number of solutions. We de-
note the initial polynomial system as E.

• Homography (H): We tested this parameterization for
all configurations with at least three 2D-2D correspon-
dences coming from the same camera Gi. In this case,
we can project 3D points to the camera Gi to obtain
the fourth 2D-2D point correspondence needed for ho-
mography estimation. Similarly, three 2D-3D corre-
spondences define a plane and thus a 3 × 3 homogra-
phy matrix H induced by this plane. Three correspon-
dences give us six linear equations in the elements of
H and thus can be used to parameterize H using a three
dimensional null space. Here, the initial system E is
defined by this parameterization, together with equa-
tions coming from the decomposition of the homog-
raphy matrix H and the equations from the remaining
correspondences. Note that the homography-based pa-
rameterization is not applicable to the H51f [1] case.

• Fundamental matrix (F): We tested this parameteri-
zation for configurations where we have five or six
2D-2D correspondences coming from the same cam-
era Gi2. Since each such correspondence gives us a
linear constraint on the fundamental matrix F, we can
parameterize it using a four resp. three dimensional
null space. Here, the initial system E is defined by this
parameterization, together with the equations coming
from the decomposition of F and those induced by the
remaining point correspondences.

To simplify the initial system of equationsE in each config-
uration and parameterization, we tried to eliminate different

2We again use 3D points to obtain a 2D-2D point correspondences.

variables using the elimination ideal method [20]. We also
tried out different transformations of the coordinate sys-
tems for the generalized camera G and the pinhole camera
P . To solve the resulting system of polynomial equations,
we used two state-of-the-art algebraic methods for gener-
ating efficient polynomial solvers, i.e., the Gröbner basis
method [21] including the basis sampling strategy [23] and
the hidden variable resultant-based method [1].

This results in a huge number of combinations of differ-
ent parameterizations, point configurations, solution strate-
gies, and solvers that we generated. In the paper, we present
the fastest solvers among all generated solvers for each hy-
brid point configuration (m,n) and all possible generalized
camera configurations [k]. These solvers are summarized in
Tab. 1. Note that we have not studied the (7, 0) case because
our goal in this paper is to study hybrid point configurations
with at least one 2D-3D point correspondence. The first
two columns in this table report the solver/problem name
and the number of solutions3 of the given configuration and
its particular formulation, the third column lists the feasi-
ble configurations of cameras in a generalized camera that
can be solved using the particular solver, the fourth and the
fifth columns list the size of the smallest/fastest solver, gen-
erated using the basis sampling strategy [23] (elimination
template matrix size), resp. the resultant-based method [1]
(Generalized Eigenvalue Problem size), the sixth column is
the parameterization of the problem that leads to this solver,
and the last two columns depict the hybrid point configura-
tion. Next, we describe the fastest solvers for each studied
hybrid point configuration, i.e., H13f , H32f , and H51f .

3.1. H13f

In this case we have one 2D-2D point correspondence
p1 ↔ (q11, tG1) and three 2D-3D point correspondences
pj ↔ XG

j , j = 2, . . . , 4, and therefore only one hy-
brid point configuration, i.e., the configuration [1]. For this
configuration, the parameterization that led to the smallest
solver is the Homography parameterization.

In this case, the three 3D points XG
j , j = 2, . . . , 4, define

a plane in the local coordinate system of the generalized
camera G. Let us denote this plane as π and its vector as
N, encoding both the direction of the plane normal and the
distance from the origin. We thus have

XG
j ∈ π =⇒ N>XG

j + 1 = 0 , j = 2, . . . , 4 . (8)

Coordinate system transform: W.l.o.g., we can rotate
and translate the coordinate system of G such that N =

3Note that for some problems, the reported number of solutions does
not correspond to the number of solutions presented in [13]. The reason for
this is two-fold: first, [13] did not consider possible symmetries, and sec-
ond, for some problems the authors computed solutions to the case where
both the perspective and the generalized camera have a common unknown
focal length. However, this scenario is impractical.
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Problem #sols Gen. cam. GB [23] Res. [1] Param. 2D-2D 2D-3D

H13f 12 [1] 70× 82 91× 91 H 1 3
H32f 26 [1],[2],[3] 289× 315 − R&t 3 2
H51f 56 [1] 506× 562 537× 537 R&t 5 1
H51f 50 [2],[3] 511× 561 374× 374 R&t 5 1
H51f 38 [4] 390× 428 243× 243 R&t 5 1
H51f 9 [5] 9× 18 10× 10 F 5 1

Table 1. Partially calibrated semi-generalized pose solvers for hybrid point correspondences. Hmnf denotes a case with m 2D-2D and n
2D-3D matches. [k] denotes a case where no more than k 2D-2D matches are detected by a camera Gi within the generalized camera G.[
0 0 d

]>
, d 6= 0 and tG1 =

[
0 0 0

]>
. W.l.o.g., we

can also rotate the coordinate system of the pinhole camera
P such that q11 =

[
1 0 1

]>
. As shown below, these

transformations simplify the initial system of equations.

Null-space parameterization of HK: Let us define the ho-
mography induced by the three 2D-3D point correspon-
dences between the coordinate systems of G andP via point
transfer through the plane π. Denoting the homography ma-
trix as H ∈ R3×3 we can write

H = R− tN> . (9)

The constraints imposed by a 2D-3D point correspondence,
of the form (5), become

HXG
j = αjK

−1pj , j = 2, . . . 4 . (10)

Let us write tK = Kt and HK = KH. Then Eqs. (9) and (10)
can be rewritten as

HK = K(R− tN>) = KR− tKN
> , (11)

HKX
G
j = αjpj , j = 2, . . . 4 . (12)

Eq. (12) gives us six linear equations in the nine elements of
HK. From these equations we can obtain a three-dimensional
nullspace parameterization of the matrix HK. Thus, we can
express HK as a function of three unknown variables, γ1, γ2
and γ3. In fact, we can express HK as

HK = γ1L1 + γ2L2 + γ3L3 , (13)

where L1, L2 and L3 are the matrix forms of the basis vectors
of the null space.

Constraint on HK: Now we derive constraints on the matrix
HK. We can rewrite Eq. (11) as

R = K−1(HK + tKN
>) . (14)

Since R ∈ SO(3), we have RR> = R>R = I. Thus, we
have the following set of constraints from Eq. (14):

K−1
(
HK + tKN

>) (HK + tKN
>)> K−> = I ,

(HK + tKN
>)>K−>K−1(HK + tKN

>) = I . (15)

Due to the proposed coordinate system transform, the con-
straint (6) for the 2D-2D point correspondence becomes

p>1 [KRq11]× Kt = 0 . (16)

Substituting R from Eq. (14) into Eq. (16), we have

((HK + tKN
>)q11)

> [tK]× p1 = 0 . (17)

The equations in (15) and (17) are the constraints on the un-
known quantities, HK, tK, and K, and the known quantities,
N =

[
0 0 d

]>
and p1 =

[
x1 y1 1

]>
. Let us de-

fine the ideal generated by these equations as I ⊂ C [ε] [8],
where ε contains the nine unknowns from HK, three from tK,
the inverse of the focal length w = 1

f , and d, x1, and y1.
Note that x1, y1, and d are known and here we treat them as
known symbolic variables. Now, we can use the elimination
ideal technique [20] to eliminate tK and w from this ideal.
I.e., we compute an elimination ideal I1 that contains poly-
nomials only in nine unknown variables from HK and three
known variables, d, x1, and y1. Note, that this elimination
ideal can be computed offline using some algebraic geom-
etry software like Macaulay 2 [11]. We found that such an
elimination ideal is generated by eight polynomials (two of
degree 3, one of degree 4, and five of degree 8) in 12 vari-
ables (nine unknown and three known). For more details on
elimination ideals see [8, 20].

Substituting the three-variable parameterization of HK
from Eq. (13) into the generators of the ideal I1, we ob-
tain a system of eight equations in three unknowns. Us-
ing Macaulay 2 [11], we verified that this system has up to
12 solutions. This system defines the minimal formulation
for the H13f case. We used two state-of-the-art algebraic
methods, i.e., the Gröbner basis-based automatic genera-
tor [21] including the basis sampling strategy [23] as well
as the resultant-based generator [1], to generate solvers for
this system of eight equations in three unknowns. We found
that smaller solvers can be obtained if, instead of using all
eight equations, we use only six equations (two of degree 3,
one of degree 4, and three of degree 8). Using the Gröbner
basis method with the basis sampling strategy [23], the gen-
erated solver was of size 77 × 89, while the one generated
using the resultant-based method [1] was of size 91 × 91.
We report these solver sizes in Tab. 1.

Extracting the pose from H: Once we have computed the
solutions to HK, we can estimate the value of w = 1/f from
the Eq. (15) through variable elimination and substitution.
From w, we can then compute the calibration matrix K and
subsequently the homography matrix H = K−1HK. An im-
portant step here is to efficiently extract the relative pose,
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i.e., the rotation matrix R and the translation vector t from
H. Our coordinate system transformation plays a crucial role
here. Substituting N =

[
0 0 d

]>
in Eq. (9), we have

R = H+ t
[
0 0 d

]
. (18)

Writing H =
[
h1 h2 h3

]
, the rotation matrix R can be

computed as R =
[
h1 h2 [h1]× h2

]
. Again, from Eq.

(18) and the computed values of H, the translation vector t
can be computed as

t =
1

d
([h1]× h2 − h3) . (19)

3.2. H32f

In the second configuration, we have three 2D-2D point cor-
respondences pj ↔ (qij , tGi) and two 2D-3D point cor-
respondences pj ↔ XG

j . Thus, there are three possible
generalized camera configurations, i.e., [1], [2] and [3]. For
all three camera configurations, we obtained the smallest
solvers using the Rotation & translation parameterization.
Such a parameterization for H32f was already proposed
in [13], where the authors suggested to use a coordinate
transformation resulting in a system of five equations in five
variables with 52 solutions. This system is, however, com-
plex and it leads to a huge solver. This solver was not pre-
sented in [13] and only the parameterization was discussed.
In order to generate a feasible solver with fewer solutions,
we reparameterized the product KR. Next, we review the co-
ordinate transformation and the parameterization proposed
in [13] and then describe our proposed solver. We obtain
the same solver for all three configurations [1], [2] and [3].
Coordinate system transform: W.l.o.g., we can translate
and rotate the coordinate system of G such that XG

4 =[
0 0 1

]>
and XG

5 =
[
0 0 0

]>
. Moreover, we can

rotate the coordinate system of the pinhole camera P such
that p5 =

[
1 0 1

]>
. By this coordinate system trans-

form, the constraint (5) for the fifth point correspondence
p5 ↔ XG

5 leads to

R

00
0

+ t = α5K
−1

10
1

 =⇒ Kt = α5

10
1

 . (20)

Substituting the above expression of Kt into the constraints
for the 2D-2D point correspondences and the fourth 2D-3D
point correspondence, we obtain

(KRpj)
> [qij ]× (KRtgi + α5

10
1

) = 0 , (21)

[q4]× (KRX4 + α5

10
1

) = 0 , (22)

where i ∈ {1, 2, 3} and j = 1, . . . , 3. The constraints (21)
and (22) together give us a set of five equations in the quan-
tities K, R, and α5. We parameterized the rotation matrix

R using quaternions. We have five unknowns, one for the
calibration matrix K, three for the rotation matrix R and one
for α5. Using the automatic generator [21,23], we obtained
a large solver of size 1866× 1918 and with 52 solutions.

Our approach: To simplify this solver, we reparameter-
ize the product KR as a function of four new variables,
r1, r2, r3 and r4. This reparameterization is described in
the supplementary material (SM). With this reparameteri-
zation, the constraints (21) and (22) give us a set of five
equations in five variables r1, r2, r3, r4, and α5. The two
linearly independent equations from (22) are linear in r1
and r2. Hence both these variables can be expressed as
functions of the other three variables, r3, r4, and α5. Sub-
stituting these expressions of r1 and r2 in Eq. (21), we ob-
tain a system of three equations in three variables r3, r4,
and α5, each of degree eight. Let us denote the polyno-
mial set as E = {e1, e2, e3}. The ideal I ∈ C [r3, r4, α5]
generated by E is not zero-dimensional [8]. Specifically, if
α5 = 0 & r23 + r

2
4 − 1 = 0, or r23 + r

2
4 = 0, we have a set of

trivial solutions to E = 0. These possible degeneracies can
be avoided by a random rotation of the camera P .

In order to generate a solver from E, we have to remove
those solutions of E = 0 where α5 = 0 & r23 + r24 − 1 = 0
or r23 + r

2
4 = 0. This can be achieved by saturating the ideal

I w.r.t. α5 and r23+r
2
4 [8]. This saturation results to a solver

of size 475× 501 generated using the generator [21, 24].
To generate a smaller solver, we want to avoid saturating

w.r.t. α5 and also avoid adding an extra variable. Thus, we
augmentE with extra polynomials which vanish on all non-
trivial solutions to E = 0 but not if α5 = 0 & r23+r

2
4−1 =

0. We next show how to generate such polynomials. The
form of the i-th polynomial in E is

ei = (r23 + r24 − 1)φi + α5ψi , (23)

where φi and ψi are polynomials in r3, r4, α5. Then, the set
of equations E = 0 can be written in matrix form as

Mb =

φ1 ψ1

φ2 ψ2

φ3 ψ3


3×2

[
r23 + r24 − 1

α5

]
2×1

= 03×1 . (24)

The determinant of each 2 × 2 submatrix of M vanishes
only for those solutions of E = 0 such that α5 6= 0 or
r23 + r24 − 1 6= 0. We have a total of three such determi-
nant expressions, each a polynomial of degree ten in the
variables r3, r4, and α5, out of which two are linearly in-
dependent. Let us denote the augmented system consist-
ing of E and two of these polynomials as Ea. This sys-
tem has 26 solutions and does not contain solutions where
α5 = 0 & r23 + r24 − 1 = 0. The ideal Ia generated by Ea

now has trivial solutions only if r23 + r
2
4 = 0. Therefore, we

saturate Ia w.r.t. r23 + r24 and use the Gröbner basis-based
method with heuristic sampling [23] to obtain a solver of
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size 289 × 315. We failed to generate a solver using the
resultant-based approach [1].

3.3. H51f

Here, we have five 2D-2D point correspondences pj ↔
(qij , tGi) and one 2D-3D point correspondence p6 ↔ XG

6,
which together give us a set F of 7 equations. For this case
we have 5 possible generalized camera configurations, i.e.,
[1], . . . , [5]. We first study the first 4 configurations. To
solve these configurations we again tested 3 different groups
of parameterizations, i.e., R&t, H, and F together with dif-
ferent simplification, reparameterizations, eliminations and
solution strategies. It turns out that the configurations [1],
. . . , [4] are the most challenging configurations among all
those studied in this work. For these problems the small-
est solvers were generated using the Rotation & translation
parameterization. However, even after different reparame-
terizations and simplifications these solvers are huge. The
sizes of the elimination template matrices for the smallest
obtained solvers for these 4 camera configurations of H51f
are listed in Tab. 1. More details about these solvers and
parameterizations can be found in the SM.

H51f [5]: In contrast to configurations [1], . . . , [4], if all 5
correspondences are detected by the same camera pair, we
have the simplest scenario. In this case, the problem is re-
duced to that of estimating the relative pose between two
pinhole cameras from six 2D-2D point correspondences,
where the sixth correspondence is obtained by projecting
the 3D point into the camera Gi. This is followed by the
scale estimation from the remaining constraint given by the
2D-3D point correspondence. Such a solution was already
proposed in [12]. However, there the authors suggested to
use the 6pt solver [38] for a two-sided common focal length
and therefore they reported 15 solutions. This configuration
is not practical, as G is usually calibrated and moreover,
it usually does not have the same focal length as the query
camera. In [12], the authors did not test the proposed solver.

In this paper, we consider a more practical scenario
where G is calibrated. This results in estimating the es-
sential matrix and the focal length of P from six 2D-2D
correspondences, known as the one-sided focal length prob-
lem [5]. This problem has 9 solutions. To solve it we use the
Gröbner basis-based solver proposed in [20], which elimi-
nates the unknown focal length using the elimination ideal
method. It results in a smaller elimination template matrix
of size 9 × 18 compared to [5]. Using the resultant-based
generator [1], we obtained a solver of size 10× 10.

4. Synthetic experiments
For our synthetic scene tests, we generated 5K 3D scenes
with known ground truth parameters. In each scene, the
3D points were randomly distributed within a cube of size

10 × 10 × 10. Each 3D point was projected into up to
six cameras with realistic focal lengths. Five of these cam-
eras represented the generalized camera G and one camera
was considered as the pinhole camera P . The orientations
and positions of the cameras were selected at random such
that they looked towards the origin from a random distance,
varying from 15 to 25, from the scene. Images had the res-
olution of 1000 × 1000 px. We added Gaussian noise to
the positions of the 3D points with the standard deviation
σ varying as a percentage of their depths to simulate the
different quality of keypoints used for the triangulation of
these 3D points. To simulate the noise in 2D-2D correspon-
dences, we added 2 px image noise. More experiments, e.g.,
for increasing image noise and fixed 3D point noise are in
the SM. We evaluated the stability of the proposed H13f ,
H32f , and the H51f [5] solvers w.r.t. the SOTA absolute
pose solver P4Pf [19].

The graphs for synthetic experiments with increasing
noise in the 3D points are provided in Fig. 2. We con-
sidered three different camera motions in our tests, i.e., ran-
dom, forward and sideways. For each motion, we measured
the error in the estimated rotation R, translation t (in SM),
and the focal length f (in SM), by varying the amount of
noise in the 3D points. Note that we tested two derivations
of our proposed H13f solver, the one based on the Gröbner
basis [23] and one based on resultants [1]. Both solvers have
different numerical properties and sizes. Note from Fig. 2,
that in the presence of increasing 3D point noise, for all
three motions, the Gröbner basis-based H51f [5] solver and
the proposed H32f and H13f solvers (both Gröbner basis-
based and resultant-based) have much better stability than
the SOTA P4Pf absolute pose solver, with the H51f [5]
solver slightly outperforming the H32f and H13f solvers.
The reason for this behavior is that our hybrid solvers are
not only using 2D-3D correspondences, unlike the P4Pf
solver. We also observe that the resultant-based solver for
H13f has similar or slightly better stability compared to
that of the Gröbner basis-based solver for H13f .

5. Real experiments
We evaluate our H13f and H51f [5] solvers in a hybrid
localization framework and consider four scenes from the
Cambridge Landmarks [14] dataset. We do not test our
proposed H32f solver as its template size makes it less
practical for real-time use, compared to the other proposed
solvers. For each query image, we establish tentative 2D-
2D correspondences to the top-20 retrieved map images
based on the DenseVLAD [42] image descriptor. From
transitive matching we take all triangulated points as 2D-
3D correspondences, and additionally add all 2D-2D cor-
respondences that are either not triangulated, or have a
track length less than 5 (as these are potentially less cer-
tain 3D points). We apply the solvers in the hybrid LO-
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KingsCollege OldHospital ShopFacade StMarysChurch

Solver +LO +LO +LO +LO Runtime

P4Pf 41.1 70.3 33.0 52.2 79.6 89.3 59.2 83.8 0.06
P3.5Pf 50.4 69.4 36.8 55.5 83.5 95.1 72.1 82.6 0.08
H13f 61.5 69.4 45.1 57.7 92.2 95.1 76.4 83.8 0.75
H51f [5] 42.9 70.8 36.3 46.7 82.5 89.3 62.3 82.8 0.19
P35Pf +H13f +H51f [5] 60.9 69.4 47.3 55.5 86.4 90.3 77.4 83.2 0.75

Table 2. Hybrid Localization on Cambridge Landmarks. The table shows the percentage of camera poses localized within 1◦ and 0.5m.
In the table we show the results of both vanilla RANSAC and LO-RANSAC. For a fair comparison the model scoring in RANSAC is
the same for all methods (taking into account both 2D-2D and 2D-3D correspondences). The best result is highlighted in bold, and the
second-best is underlined. Table also shows the median runtime for RANSAC in seconds.
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Figure 2. Error in rotation (Row 1) in the presence of increasing 3D point noise. Three camera motions considered: random motion (a,d),
forward motion (b,e), and sideways motion (c,f). Numerical stability of the solvers for noiseless data and random motion (Row 2).

RANSAC from [7], minimizing reprojection error (2D-3D)
and Sampson error (2D-2D). We compare with the point-
based solvers P4Pf [19] and P3.5Pf [21], as well as
employing all solvers together in the hybrid framework
from [7]. Tab. 2 shows the percentage of queries within
1◦ and 0.5m. To highlight the differences between the ac-
curacy of the solvers, we show the results with and without
local refinement in RANSAC. We see that our H13f solver
is least affected by noise, leading to most accurate solutions.

6. Conclusion
In this paper, we studied the challenging problem of esti-
mating the semi-generalized pose from hybrid point cor-
respondences for partially-calibrated cameras. By testing
different parameterizations, elimination techniques and so-
lution strategies, solvers to all minimal configurations of
2D-2D and 2D-3D correspondences, i.e., H13f , H32f and
H51f , and all possible camera configurations within the
generalized camera, are derived. The most practical solvers

are evaluated on synthetic and real scenes, showing the ben-
efits of hybrid estimation compared to classical 2D-3D ap-
proaches. Our solvers fill gaps in the arsenal of minimal
solvers and can be used inside hybrid RANSAC [7].
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[24] Viktor Larsson, Kalle Åström, and Magnus Oskarsson. Poly-
nomial solvers for saturated ideals. In 2017 IEEE Interna-
tional Conference on Computer Vision (ICCV), pages 2307–
2316, 2017.

[25] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D
Tardos. ORB-SLAM: a versatile and accurate monocular
SLAM system. IEEE transactions on robotics, 31(5):1147–
1163, 2015.

[26] Raul Mur-Artal and Juan D Tardós. ORB-SLAM2: An
open-source slam system for monocular, stereo, and RGB-D
cameras. IEEE Transactions on Robotics, 33(5):1255–1262,
2017.

[27] David Nistér. An efficient solution to the five-point relative
pose problem. IEEE transactions on pattern analysis and
machine intelligence, 26(6):756–770, 2004.

[28] Mikael Persson and Klas Nordberg. Lambda twist: An accu-
rate fast robust perspective three point (p3p) solver. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), September 2018.

[29] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman.
Object Retrieval with Large Vocabularies and Fast Spatial
Matching. In CVPR, 2007.

[30] Robert Pless. Camera cluster in motion: motion estimation
for generalized camera designs. IEEE Robotics & Automa-
tion Magazine, 11(4):39–44, 2004.

[31] Paul-Edouard Sarlin, Cesar Cadena, Roland Siegwart, and
Marcin Dymczyk. From Coarse to Fine: Robust Hierarchical
Localization at Large Scale. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2019.

2890



[32] T. Sattler, B. Leibe, and L. Kobbelt. Efficient & Effective
Prioritized Matching for Large-Scale Image-Based Localiza-
tion. PAMI, 39(9):1744–1756, 2017.

[33] Olivier Saurer, Pascal Vasseur, Rémi Boutteau, Cédric De-
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