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Abstract

End-to-end Automatic Speech Recognition (ASR) sys-
tems based on neural networks have seen large improve-
ments in recent years. The availability of large scale hand-
labeled datasets and sufficient computing resources made it
possible to train powerful deep neural networks, reaching
very low Word Error Rate (WER) on academic benchmarks.
However, despite impressive performance on clean audio
samples, a drop of performance is often observed on noisy
speech. In this work, we propose to improve the noise ro-
bustness of the recently proposed Efficient Conformer Con-
nectionist Temporal Classification (CTC)-based architec-
ture by processing both audio and visual modalities. We im-
prove previous lip reading methods using an Efficient Con-
former back-end on top of a ResNet-18 visual front-end and
by adding intermediate CTC losses between blocks. We con-
dition intermediate block features on early predictions us-
ing Inter CTC residual modules to relax the conditional in-
dependence assumption of CTC-based models. We also re-
place the Efficient Conformer grouped attention by a more
efficient and simpler attention mechanism that we call patch
attention. We experiment with publicly available Lip Read-
ing Sentences 2 (LRS2) and Lip Reading Sentences 3 (LRS3)
datasets. Our experiments show that using audio and visual
modalities allows to better recognize speech in the presence
of environmental noise and significantly accelerate training,
reaching lower WER with 4 times less training steps. Our
Audio-Visual Efficient Conformer (AVEC) model achieves
state-of-the-art performance, reaching WER of 2.3% and
1.8% on LRS2 and LRS3 test sets. Code and pretrained
models are available at https://github.com/burchim/AVEC.

1. Introduction
End-to-end Automatic Speech Recognition based on

deep neural networks has become the standard of state-of-
the-art approaches in recent years [25, 47, 18, 16, 17, 31, 7].
The availability of large scale hand-labeled datasets and suf-
ficient computing resources made it possible to train power-
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Figure 1: Audio-Visual Efficient Conformer architec-
ture. The model is trained end-to-end using CTC loss and
takes raw audio waveforms and lip movements from the
speaker as inputs.

ful deep neural networks for ASR, reaching very low WER
on academic benchmarks like LibriSpeech [34]. Neural ar-
chitectures like Recurrent Neural Networks (RNN) [15, 19],
Convolution Neural Networks (CNN) [10, 28] and Trans-
formers [12, 23] have successfully been trained from raw
audio waveforms and mel-spectrograms audio features to
transcribe speech to text. Recently, Gulati et al. [16]
proposed a convolution-augmented transformer architec-
ture (Conformer) to model both local and global dependen-
cies using convolution and attention to reach better speech
recognition performance. Concurrently, Nozaki et al. [33]
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improved CTC-based speech recognition by conditioning
intermediate encoder block features on early predictions us-
ing intermediate CTC losses [14]. Burchi et al. [7] also pro-
posed an Efficient Conformer architecture using grouped
attention for speech recognition, lowering the amount of
computation while achieving better performance. Inspired
from computer vision backbones, the Efficient Conformer
encoder is composed of multiple stages where each stage
comprises a number of Conformer blocks to progressively
downsample and project the audio sequence to wider fea-
ture dimensions.

Yet, even if these audio-only approaches are breaking
the state-of-the-art, one major pitfall for using them in the
real-world is the rapid deterioration of performance in the
presence of ambient noise. In parallel to that, Audio Visual
Speech Recognition (AVSR) has recently attracted a lot of
research attention due to its ability to use image process-
ing techniques to aid speech recognition systems. Preced-
ing works have shown that including the visual modality of
lip movements could improve the robustness of ASR sys-
tems with respect to noise while reaching better recognition
performance [41, 42, 36, 1, 45, 29]. Xu et al. [45] pro-
posed a two-stage approach to first separate the target voice
from background noise using the speakers lip movements
and then transcribe the filtered audio signal with the help of
lip movements. Petridis et al. [36] uses a hybrid architec-
ture, training an LSTM-based sequence-to-sequence (S2S)
model with an auxiliary CTC loss using an early fusion
strategy to reach better performance. Ma et al. [29] uses
Conformer back-end networks with ResNet-18 [20] front-
end networks to improve recognition performance.

Other works focus on Visual Speech Recognition (VSR),
only using lip movements to transcribe spoken language
into text [4, 9, 48, 3, 49, 37, 30]. An important line of
research is the use of cross-modal distillation. Afouras et
al. [3] and Zhao et al. [49] proposed to improve the lip read-
ing performance by distilling from an ASR model trained
on a large-scale audio-only corpus while Ma et al. [30]
uses prediction-based auxiliary tasks. Prajwal et al. [37]
also proposed to use sub-words units instead of characters
to transcribe sequences, greatly reducing running time and
memory requirements. Also providing a language prior, re-
ducing the language modelling burden of the model.

In this work we focus on the design of a noise robust
speech recognition architecture processing both audio and
visual modalities. We use the recently proposed CTC-
based Efficient Conformer architecture [7] and show that
including the visual modality of lip movements can suc-
cessfully improve noise robustness while significantly ac-
celerating training. Our Audio-Visual Efficient Conformer
(AVEC) reaches lower WER using 4 times less training
steps than its audio-only counterpart. Moreover, we are
the first work to apply intermediate CTC losses between

blocks [27, 33] to improve visual speech recognition perfor-
mance. We show that conditioning intermediate features on
early predictions using Inter CTC residual modules allows
to close the gap in WER between autoregressive and non-
autoregressive AVSR systems based on S2S. This also helps
to counter a common failure case which is that audio-visual
models tend to ignore the visual modality. In this way, we
force pre-fusion layers to learn spatiotemporal features. Fi-
nally, we replace the Efficient Conformer grouped attention
by a more efficient and simpler attention mechanism that
we call patch attention. Patch attention reaches similar per-
formance to grouped attention while having a lower com-
plexity. The contributions of this work are as follows:

• We improve the noise robustness of the recently pro-
posed Efficient Conformer architecture by processing
both audio and visual modalities.

• We condition intermediate Conformer block features
on early predictions using Inter CTC residual modules
to relax the conditional independence assumption of
CTC models. This allows us to close the gap in WER
between autoregressive and non-autoregressive meth-
ods based on S2S.

• We propose to replace the Efficient Conformer
grouped attention by a more efficient and simpler at-
tention mechanism that we call patch attention. Patch
attention reaches similar performance to grouped at-
tention with a lower complexity.

• We experiment on publicly available LRS2 and LRS3
datasets and reach state-of-the-art results using audio
and visual modalities.

2. Method
In this section, we describe our proposed Audio-Visual

Efficient Conformer network. The model is composed of
4 main components: An audio encoder, a visual encoder,
an audio-visual fusion module and an audio-visual encoder.
The audio and visual encoder are separated into modality
specific front-end networks to transform each input modal-
ity into temporal sequences. Efficient Conformer back-end
networks are used to model local and global temporal rela-
tionships. The full model is trained end-to-end using inter-
mediate CTC losses between Conformer blocks in addition
of the output CTC layer. The complete architecture of the
model is shown in Figure 1.

2.1. Model Architecture

Audio front-end. The audio front-end network first
transforms raw audio wave-forms into mel-spectrograms
using a short-time Fourier transform computed over win-
dows of 20ms with a step size of 10ms. 80-dimensional
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mel-scale log filter banks are applied to the resulting fre-
quency features. The mel-spectrograms are processed by
a 2D convolution stem to extract local temporal-frequency
features, resulting in a 20ms frame rate signal. The audio
front-end architecture is shown in Table 1.

Table 1: Audio Front-end architecture, 1.2 Millions param-
eters. Ta denotes the input audio sample length.

Stage Layers Output Shape

Fourier
Transf

STFT: 400 window length
160 hop length, 512 ffts (257, Ta//160 + 1)

Mel
Scale Mel Scale: 80 mels (80, Ta//160 + 1)

Stem Conv2d: 32, 180 filters, 22 stride (180, 40, Ta//320 + 1)

Proj Linear, 180 units (Ta//320 + 1, 180)

Visual front-end. The visual front-end network [29]
transforms input video frames into temporal sequences. A
3D convolution stem with kernel size 5 × 7 × 7 is first ap-
plied to the video. Each video frame is then processed inde-
pendently using a 2D ResNet-18 [20] with an output spatial
average pooling. Temporal features are then projected to
the back-end network input dimension using a linear layer.
The visual front-end architecture is shown in Table 2.

Table 2: Visual Front-end architecture, 11.3 Millions pa-
rameters. Tv denotes the number of input video frames.

Stage Layers Output Shape

Stem Conv3d: 5 × 72, 64 filters, 1 × 22 stride
MaxPoo3d: 1 × 32, 1 × 22 stride

(64, Tv, 22, 22)

Res 1 2 ×
[

Conv2d: 32, 64 filters
Conv2d: 32, 64 filters

]
(Tv, 64, 22, 22)

Res 2 2 ×
[

Conv2d: 32, 128 filters
Conv2d: 32, 128 filters

]
(Tv, 128, 11, 11)

Res 3 2 ×
[

Conv2d: 32, 256 filters
Conv2d: 32, 256 filters

]
(Tv, 256, 6, 6)

Res 4 2 ×
[

Conv2d: 32, 512 filters
Conv2d: 32, 512 filters

]
(Tv, 512, 3, 3)

Pool Global Average Pooling (Tv, 512)

Proj Linear, 256 units (Tv, 256)

Back-end networks. The back-end networks use an Ef-
ficient Conformer architecture. The Efficient Conformer
encoder was proposed in [7], it is composed of several
stages where each stage comprises a number of Conformer
blocks [16] using grouped attention with relative positional
encodings. The temporal sequence is progressively down-
sampled using strided convolutions and projected to wider
feature dimensions, lowering the amount of computation
while achieving better performance. We use 3 stages in the
audio back-end network to downsample the audio signal to
a 80 milliseconds frame rate. Only 2 stages are necessary
to downsample the visual signal to the same frame rate. Ta-
ble 6 shows the hyper-parameter of each back-end network.

Table 3: Back-end networks hyper-parameters. InterCTC
blocks indicates Conformer blocks having a post Inter CTC
residual module.

Network Visual
Back-end

Audio
Back-end

Audio-Visual
Encoder

Num Params (M) 13.6 17.9 15.9
Num Stages 2 3 1

Blocks per Stage 6, 1 5, 6, 1 5
Total Num Blocks 7 12 5
Stage Feature Dim 256, 360 180, 256, 360 360
Conv Kernel Size 15 15 15
Stage Patch Size 1, 1 3, 1, 1 1
InterCTC Blocks 3, 6 8, 11 2

Audio-visual fusion module. Similar to [36, 29], we
use an early fusion strategy to learn audio-visual features
and reduce model complexity. The acoustic and visual fea-
tures from the back-end networks are concatenated and fed
into a joint feed-forward network. The concatenated fea-
tures of size 2 × dmodel are first expanded using a linear
layer with output size dff = 4 × dmodel, passed through
a Swish activation function [38] and projected back to the
original feature dimension dmodel.

Audio-visual encoder. The audio-visual encoder is a
single stage back-end network composed of 5 Conformer
blocks without downsampling. The encoder outputs are
then projected to a CTC layer to maximize the sum of prob-
abilities of correct target alignments.

2.2. Patch Attention.

The Efficient Conformer [7] proposed to replace Multi-
Head Self-Attention (MHSA) [44] in earlier encoder lay-
ers with grouped attention. Grouped MHSA reduce atten-
tion complexity by grouping neighbouring temporal ele-
ments along the feature dimension before applying scaled
dot-product attention. Attention having a quadratic com-
putational complexity with respect to the sequence length,
this caused the network to have an asymmetric complexity
with earlier attention layers requiring more flops than latter
layers with shorter sequence length. In this work, we pro-
pose to replace grouped attention with a simpler and more
efficient attention mechanism that we call patch attention
(Figure 2). Similar to the pooling attention proposed by the
Multiscale Vision Transformer (MViT) [13] for video and
image recognition, the patch attention proceed to an average

Table 4: Attention variants complexities including query,
key, value and output linear projections. n and d are the
sequence length and feature dimension respectively.

Attention
Variant

Hyper
Parameter

Full Attention
Complexity

Regular - O(n · d2 + n2 · d)
Grouped Group Size (g) O(n · d2 + (n/g)2 · d · g)

Patch Patch Size (k) O(n/k · d2 + (n/k)2 · d)
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Figure 2: Patch Multi-Head Self-Attention. The input sequence is downsampled using an average pooling before applying
multi-head self-attention. The output sequence is then upsampled via nearest neighbor upsampling, reducing attention com-
plexity from O(n2 · d) to O((n/k)2 · d) where k defines the pooling / upsampling kernel size. Patch attention is equivalent
to regular attention when k = 1.

pooling on the input sequence before projection the query,
key and values.

X = AvgPooling1d(Xin) (1)

with Q,K, V = XWQ, XWK , XWV (2)

Where WQ, WK , WV ∈ Rd×d are query, key and value
linear projections parameter matrices. MHSA with relative
sinusoidal positional encoding is then performed at lower
resolution as:

MHSA(X) = Concat (O1, ..., OH)WO (3)

with Oh = softmax

(
QhK

T
h + Srel

h√
dh

)
Vh (4)

Where Srel ∈ Rn×n is a relative position score matrix that
satisfy Srel[i, j] = QiE

T
j−i. E is the linear projection of

a standard sinusoidal positional encoding matrix with posi-
tions ranging from −(nmax − 1) to (nmax − 1). The atten-
tion output sequence is then projected and up-sampled back
to the initial resolution using nearest neighbor up-sampling.

Xout = UpsampleNearest1d(MHSA(X)) (5)

In consequence, each temporal element of the same patch
produce the same attention output. Local temporal relation-
ships are only modeled in the convolution modules while
global relationships are modeled by patch attention. We
use 1-dimensional patches in this work but patch attention
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Figure 3: Audio-only back-end modules FLOPs (Billion).

could also be generalized to image and video data using
2D and 3D patches. We leave this to future works. The
computational complexity of each attention variant is shown
in Table 4. Path attention further reduce complexity com-
pared to grouped attention by decreasing the amount of
computation needed by Query, Key, Value and Output fully
connected layers while keeping the feature dimension un-
changed. Similar to previous work [7], we only use patch
attention in the first audio back-end stage to reduce com-
plexity while maintaining model recognition performance.
Figure 3 shows the amount of FLOPs for each attention
module variant with respect to encoded sequence length n
and model feature dimension d. Using patch or grouped at-
tention variants instead of regular MHSA greatly reduce the
amount of FLOPs in the first audio back-end stage.

2.3. Intermediate CTC Predictions.

Inspired by [27] and [33] who proposed to add interme-
diate CTC losses between encoder blocks to improve CTC-
based speech recognition performance, we add Inter CTC
residual modules (Figure 4) in encoder networks. We con-
dition intermediate block features of both audio, visual and
audio-visual encoders on early predictions to relax the con-
ditional independence assumption of CTC models. During
both training and inference, each intermediate prediction is
summed to the input of the next layer to help recognition.
We use the same method proposed in [33] except that we do
not share layer parameters between losses. The lth block
output Xout

l is passed through a feed-forward network with
residual connection and a softmax activation function:

Zl = Softmax(Linear(Xout
l )) (6)

Xin
l+1 = Xout

l + Linear(Zl) (7)

Where Zl ∈ RT×V is a probability distribution over the
output vocabulary. The intermediate CTC loss is then com-
puted using the target sequence y as:

Linter
l = −log(P (y|Zl)) (8)

with P (y|Zl) =
∑

π∈B−1
CTC(y)

T∏
t=1

Zt,πt
(9)
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Figure 4: Inter CTC residual module. Intermediate pre-
dictions are summed to the input of the next Conformer
block to condition the prediction of the final block on it.
Intermediate CTC losses are added to the output CTC loss
for the computation of the final loss.

Where π ∈ V T are paths of tokens and BCTC is a many-to-
one map that simply removes all blanks and repeated labels
from the paths. The total training objective is defined as
follows:

L = (1− λ)LCTC + λLinter (10)

with Linter =
1

K

∑
k∈interblocks

Linter
k (11)

Where interblocks is the set of blocks having a post Inter
CTC residual module (Figure 4). Similar to [33], we use
Inter CTC residual modules every 3 Conformer blocks with
λ set to 0.5 in every experiments.

3. Experiments
3.1. Datasets

We use 3 publicly available AVSR datasets in this
work. The Lip Reading in the Wild (LRW) [8] dataset is
used for visual pre-training and the Lip Reading Sentences
2 (LRS2) [1] and Lip Reading Sentences 3 (LRS3) [2]
datasets are used for training and evaluation.

LRW dataset. LRW is an audio-visual word recogni-
tion dataset consisting of short video segments containing a
single word out of a vocabulary of 500. The dataset com-
prise 488,766 training samples with at least 800 utterances
per class and a validation and test sets of 25,000 samples
containing 50 utterances per class.

LRS2 & LRS3 datasets. The LRS2 dataset is composed
of 224.1 hours with 144,482 videos clips from the BBC tele-
vision whereas the LRS3 dataset consists of 438.9 hours
with 151,819 video clips extracted from TED and TEDx
talks. Both datasets include corresponding subtitles with
word alignment boundaries and are composed of a pre-train
split, train-val split and test split. LRS2 has 96,318 utter-
ances for pre-training (195 hours), 45,839 for training (28

hours), 1,082 for validation (0.6 hours), and 1,243 for test-
ing (0.5 hours). Whereas LRS3 has 118,516 utterances in
the pre-training set (408 hours), 31,982 utterances in the
training-validation set (30 hours) and 1,321 utterances in
the test set (0.9 hours). All videos contain a single speaker,
have a 224 × 224 pixels resolution and are sampled at 25
fps with 16kHz audio.

3.2. Implementation Details

Pre-processing Similar to [29], we remove differences
related to rotation and scale by cropping the lip regions us-
ing bounding boxes of 96 × 96 pixels to facilitate recog-
nition. The RetinaFace [11] face detector and Face Align-
ment Network (FAN) [6] are used to detect 68 facial land-
marks. The cropped images are then converted to gray-scale
and normalised between −1 and 1. Facial landmarks of the
LRW, LRS2 and LRS3 datasets are obtained from previous
work [30] and reused for pre-processing to get a clean com-
parison of the methods. A byte-pair encoding tokenizer is
built from LRS2&3 pre-train and trainval splits transcripts
using sentencepiece [26]. We use a vocabulary size of 256
including the CTC blank token following preceding works
on CTC-based speech recognition [31, 7].

Data augmentation Spec-Augment [35] is applied on
the audio mel-spectrograms during training to prevent over-
fitting with two frequency masks with mask size parameter
F = 27 and five time masks with adaptive size pS = 0.05.
Similarly to [30], we mask videos on the time axis using one
mask per second with the maximum mask duration set to 0.4
seconds. Random cropping with size 88×88 and horizontal
flipping are also performed for each video during training.
We also follow Prajwal et al. [37] using central crop with
horizontal flipping at test time for visual-only experiments.

Training Setup We first pre-train the visual encoder on
the LRW dataset [8] using cross-entropy loss to recognize
words being spoken. The visual encoder is pre-trained for
30 epochs and front-end weights are then used as initializa-
tion for training. Audio and visual encoders are trained on
the LRS2&3 datasets using a Noam schedule [44] with 10k
warmup steps and a peak learning rate of 1e-3. We use the
Adam optimizer [24] with β1 = 0.9, β2 = 0.98. L2 regular-
ization with a 1e-6 weight is also added to all the trainable
weights of the model. We train all models with a global
batch size of 256 on 4 GPUs, using a batch size of 16 per
GPU with 4 accumulated steps. Nvidia A100 40GB GPUs
are used for visual-only and audio-visual experiments while
RTX 2080 Ti are used for audio-only experiments. The
audio-only models are trained for 200 epochs while visual-
only and audio-visual models are trained for 100 and 70
epochs respectively. Note that we only keep videos shorter
than 400 frames (16 seconds) during training. Finally, we
average models weights over the last 10 epoch checkpoints
using Stochastic Weight Averaging [22] before evaluation.
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Table 5: Comparison of WER (%) on LRS2 / LRS3 test sets with recently published methods using publicly and non-publicly
available datasets for Audio-Only (AO), Visual-Only (VO) and Audio-Visual (AV) models.

Method Model
Criterion

Training
Datasets

Total
Hours

test WER
AO VO AV

(↓) Using Publicly Available Datasets (↓)
Petridis et al. [36] CTC+S2S LRW, LRS2 381 8.3 / - 63.5 / - 7.0 / -
Zhang et al. [48] S2S LRW, LRS2&3 788 / 790 - 51.7 / 60.1 -
Afouras et al. [3] CTC VoxCeleb2clean, LRS2&3 1,032 / 808 - 51.3 / 59.8 -

Xu et al. [45] S2S LRW, LRS3 595 - / 7.2 - / 57.8 - / 6.8
Yu et al.[46] LF-MMI LRS2 224 6.7 / - 48.9 / - 5.9 / -
Ma et al. [29] CTC+S2S LRW, LRS2&3 381 / 595 3.9 / 2.3 37.9 / 43.3 3.7 / 2.3

Prajwal et al. [37] S2S LRS2&3 698 - 28.9 / 40.6 -
Ma et al. [30] CTC+S2S LRW, LRS2&3 818 - 27.3 / 34.7 -

Ours CTC LRW, LRS2&3 818 2.8 / 2.1 32.6 / 39.2 2.5 / 1.9
+ Neural LM CTC LRW, LRS2&3 818 2.4 / 2.0 29.8 / 37.5 2.3 / 1.8

(↓) Using Non-Publicly Available Datasets (↓)
Afouras et al. [1] S2S MVLRS, LRS2&3 1,395 9.7 / 8.3 48.3 / 58.9 8.5 / 7.2
Zhao et al. [49] S2S MVLRS, LRS2 954 - 65.3 / - -

Shillingford et al. [40] CTC LRVSR 3,886 - - / 55.1 -
Makino et al. [32] Transducer YouTube-31k 31,000 - / 4.8 - / 33.6 - / 4.5
Serdyuk et al. [39] Transducer YouTube-90k 91,000 - - / 25.9 - / 2.3
Prajwal et al. [37] S2S MVLRS, TEDxext, LRS2&3 2,676 - 22.6 / 30.7 -

Ma et al. [30] CTC+S2S LRW, AVSpeech, LRS2&3 1,459 - 25.5 / 31.5 -

Language Models. Similarly to [28], we experiment
with a N-gram [21] statistical language model (LM) and a
Transformer neural language model. A 6-gram LM is used
to generate a list of hypotheses using beam search and an
external Transformer LM is used to rescore the final list.
The 6-gram LM is trained on the LRS2&3 pre-train and
train-val transcriptions. Concerning the neural LM, we pre-
train a 12 layer GPT-3 Small [5] on the LibriSpeech LM
corpus for 0.5M steps using a batch size of 0.1M tokens
and finetune it for 10 epochs on the LRS2&3 transcriptions.

3.3. Results

Table 5 compares WERs of our Audio-Visual Effi-
cient Conformer with state-of-the-art methods on the LRS2
and LRS3 test sets. Our Audio-Visual Efficient Con-
former achieves state-of-the-art performances with WER of
2.3%/1.8%. On the visual-only track, our CTC model com-
petes with most recent autoregressive methods using S2S
criterion. We were able to recover similar results but still
lack behind Ma et al. [30] which uses auxiliary losses with
pre-trained audio-only and visual-only networks. We found
our audio-visual network to converge faster than audio-only
experiments, reaching better performance using 4 times less
training steps. The intermediate CTC losses of the visual
encoder could reach lower levels than in visual-only experi-
ments showing that optimizing audio-visual layers can help
pre-fusion layers to learn better representations.

3.4. Ablation Studies

We propose a detailed ablation study to better understand
the improvements in terms of complexity and WER brought
by each architectural modification. We report the number
of operations measured in FLOPs (number of multiply-and-
add operations) for the network to process a ten second au-
dio/video clip. Inverse Real Time Factor (Inv RTF) is also
measured on the LRS3 test set by decoding with a batch
size 1 on a single Intel Core i7-12700 CPU thread. All abla-
tions were performed by training audio-only models for 200
epochs and visual-only / audio-visual models for 50 epochs.

Efficient Conformer Visual Back-end. We improve the
recently proposed visual Conformer encoder [29] using an
Efficient Conformer back-end network. The use of byte pair
encodings for tokenization instead of characters allows us to
further downsample temporal sequences without impacting
the computation of CTC loss. Table 6 shows that using an
Efficient Conformer back-end network for our visual-only
model leads to better performances while reducing model
complexity and training time. The number of model param-
eters is also slightly decreased.

Table 6: Ablation study on visual back-end network.

Visual
Back-end

#Params
(Million)

LRS2
test

LRS3
test

#FLOPs
(Billion)

Inv
RTF

Conformer 43.0 39.53 47.14 87.94 5.17
Eff Conf 40.4 37.39 44.96 84.52 5.26

2263



Reference
the authors looked at papers written over a 10 year period and hundreds had to be thrown out

Outputs
Block   3: the otho looing pa people we over s any your per and conndries that aboutent threghow
Block   6: the autthherss looking paperss we overai year paiod and hundreds that about thrououtow
Block   9: the authors looked at papers witen over ainght year period and hundreds that to been throw out
Block 12: the authors looked at papers written over 10 year period and hundreds had to be thrown out

Figure 5: Output example of our Visual-only model using greedy search decoding on the LRS3 test set with intermediate
CTC prediction every 3 blocks. The sentence is almost correctly transcribed except for the missing ’a’ before ’10 year’.

Inter CTC residual modules. Similar to [33], we exper-
iment adding Inter CTC residual modules between blocks
to relax the conditional independence assumption of CTC.
Table 7 shows that using intermediate CTC losses every 3
Conformer blocks greatly helps to reduce WER, except for
the audio-only setting where this do not improve perfor-
mance. Figure 5 gives an example of intermediate block
predictions decoded using greedy search without an exter-
nal language model on the test set of LRS3. We can see
that the output is being refined in the encoder layers by con-
ditioning on the intermediate predictions of previous lay-
ers. Since our model refines the output over the frame-level
predictions, it can correct insertion and deletion errors in
addition to substitution errors. We further study the im-
pact of Inter CTC on multi-modal learning by measuring
the performance of our audio-visual model when one of
the two modalities is masked. As pointed out by preced-
ing works [8, 1, 32], networks with multi-modal inputs can
often be dominated by one of the modes. In our case speech
recognition is a significantly easier problem than lip reading
which can cause the model to ignore visual information. Ta-
ble 8 shows that Inter CTC can help to counter this problem
by forcing pre-fusion layers to transcribe the input signal.

Table 7: Ablation study on Inter CTC residual modules.

Model
Back-end

#Params
(Million)

LRS2
test

LRS3
test

#FLOPs
(Billion)

Inv
RTF

Audio-only (↓)
Eff Conf 31.5 2.83 2.13 7.54 51.98

+ Inter CTC 32.1 2.84 2.11 7.67 50.30

Visual-only (↓)
Eff Conf 40.4 37.39 44.96 84.52 5.26

+ Inter CTC 40.9 33.82 40.63 84.60 5.26

Audio-visual (↓)
Eff Conf 60.9 2.87 2.54 90.53 4.84

+ Inter CTC 61.7 2.58 1.99 90.66 4.82

Table 8: Impact of Inter CTC on audio-visual model WER
(%) for LRS2 / LRS3 test sets in a masked modality setting.

Inter CTC Audio-Visual Eval Mode
masked video masked audio no mask

No 4.48 / 3.22 52.77 / 59.10 2.87 / 2.54
Yes 3.39 / 2.38 37.62 / 46.55 2.58 / 1.99

Patch multi-head self-attention. We experiment re-
placing grouped attention by patch attention in the first
audio encoder stage. Our objective being to increase the
model efficiency and simplicity without arming perfor-
mance. Grouped attention was proposed in [7] to reduce
attention complexity for long sequences in the first encoder
stage. Table 9 shows the impact of each attention variant
on our audio-only model performance and complexity. We
start with an Efficient Conformer (M) [7] and replace the
attention mechanism. We find that grouped attention can be
replaced by patch attention without a loss of performance
using a patch size of 3 in the first back-end stage.

Table 9: Ablation study on audio back-end attention.

Attention
Type

Group /
Patch Size

LRS2
test

LRS3
test

#FLOPs
(Billion)

Inv
RTF

Regular - 2.85 2.12 8.66 49.86
Grouped 3, 1, 1 2.82 2.13 8.06 50.27

Patch 3, 1, 1 2.83 2.13 7.54 51.98

3.5. Noise Robustness

We measure model noise robustness using various types
of noise and compare our Audio-Visual Efficient Conformer
with recently published methods. Figure 6 shows the WER
evolution of audio-only (AO), visual-only (VO) and audio-
visual (AV) models with respect to multiple Signal to Noise
Ratio (SNR) using white noise and babble noise from the
NoiseX corpus [43]. We find that processing both audio and
visual modalities can help to significantly improve speech
recognition robustness with respect to babble noise. More-
over, we also experiment adding babble noise during train-
ing as done in previous works [36, 29] and find that it can
further improve noise robustness at test time.

Robustness to various types of noise. We gather var-
ious types of recorded audio noise including sounds and
music. In Table 10, we observe that the Audio-Visual Ef-
ficient Conformer consistently achieves better performance
than its audio-only counterpart in the presence of various
noise types. This confirm our hypothesis that the audio-
visual model is able to use the visual modality to aid speech
recognition when audio noise is present in the input.
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Figure 6: LRS2 and LRS3 test WER (%) as a function
of SNR (dB). * indicates experiments being trained with
babble noise. We measure noise robustness by evaluating
our models in the presence of babble and white noise.

Table 10: LRS3 test WER (%) as a function of SNR (dB).

Noise Mode SNR (dB)
-5 0 5 10 15 20

babble
AO 75.9 32.4 9.3 4.1 2.7 2.3
AV 33.5 14.8 5.4 3.0 2.3 2.0

AV* 11.2 4.9 3.1 2.5 2.2 2.0

white
AO 77.6 34.0 15.5 7.3 4.1 2.8
AV 28.9 14.7 5.5 3.0 2.3 2.0

AV* 17.4 8.9 3.6 2.8 2.3 2.0

birds
AO 51.8 23.9 10.9 5.9 3.7 2.8
AV 21.6 11.5 6.2 4.1 2.9 2.4

AV* 15.9 8.3 4.9 3.4 2.7 2.4

chainsaw
AO 82.9 41.2 14.8 5.5 3.7 2.7
AV 37.8 17.3 7.6 3.9 2.6 2.3

AV* 25.8 10.8 5.0 3.2 2.4 2.3

jazz
AO 25.3 9.7 4.1 3.1 2.6 2.3
AV 13.9 6.0 3.2 2.4 2.3 2.0

AV* 10.6 4.2 2.8 2.4 2.2 2.0

street
raining

AO 58.4 23.8 8.9 4.6 3.0 2.5
AV 27.12 10.8 5.7 3.1 2.7 2.3

AV* 15.9 6.9 3.8 2.7 2.3 2.2

washing
dishes

AO 47.8 24.5 11.5 6.0 3.7 2.8
AV 21.3 11.5 6.1 3.6 2.8 2.3

AV* 14.2 7.3 4.3 2.2 2.6 2.3

train
AO 51.3 18.6 7.0 4.0 2.9 2.5
AV 23.1 10.1 4.7 3.0 2.4 2.2

AV* 14.5 6.2 3.5 2.6 2.3 2.2

Comparison with other methods. We compare our
method with results provided by Ma et al. [29] and
Petridis et al. [36] on the LRS2 test set. Table 11 show that
our audio-visual model achieves lower WER in the pres-
ence of babble noise, reaching WER of 9.7% at -5 dB SNR
against 16.3% for Ma et al. [29].

Table 11: Comparison with Ma et al. [29]. LRS2 test WER
(%) as a function of SNR (dB) using babble noise.

Method Mode SNR (dB)
-5 0 5 10 15 20

Ma et al. [29]
VO 37.9 37.9 37.9 37.9 37.9 37.9
AO* 28.8 9.8 7 5.2 4.5 4.2
AV* 16.3 7.5 6.1 4.7 4.4 4.2

Ours

VO 32.6 32.6 32.6 32.6 32.6 32.6
AO 70.5 27 8.6 4.7 3.4 3.1
AV 25 11.2 5.1 3.2 2.8 2.6

AV* 9.7 5 3.4 2.9 2.8 2.6

Table 12: Comparison with Petridis et al. [36]. LRS2 test
WER (%) as a function of SNR (dB) using white noise.

Method Mode SNR (dB)
-5 0 5 10 15 20

Petridis et al. [36]
VO 63.5 63.5 63.5 63.5 63.5 63.5
AO* 85.0 45.4 19.6 11.7 9.4 8.4
AV* 55.0 26.1 13.2 9.4 8.0 7.3

Ours

VO 32.6 32.6 32.6 32.6 32.6 32.6
AO 73.1 32.3 14.3 7.2 4.4 3.5
AV 22.5 11.5 6.2 4.1 3.2 2.9
AV* 14.4 8.0 5.1 3.9 3.1 2.9

4. Conclusion
In this paper, we proposed to improve the noise robust-

ness of the recently proposed Efficient Conformer CTC-
based architecture by processing both audio and visual
modalities. We showed that incorporating multi-scale CTC
losses between blocks could help to improve recognition
performance, reaching comparable results to most recent
autoregressive lip reading methods. We also proposed patch
attention, a simpler and more efficient attention mechanism
to replace grouped attention in the first audio encoder stage.
Our Audio-Visual Efficient Conformer achieves state-of-
the-art performance of 2.3% and 1.8% on the LRS2 and
LRS3 test sets. In the future, we would like to explore
other techniques to further improve the noise robustness
of our model and close the gap between recent lip reading
methods. This includes adding various audio noises during
training and using cross-modal distillation with pre-trained
models. We also wish to reduce the visual front-end net-
work complexity without arming recognition performance
and experiment with the RNN-Transducer learning objec-
tive for streaming applications.
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