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Flgure 1
of interactions as the i-th priority. (a) visualizes masked regions which our model guides at the i-th step. Given a region as
(a), users select its representative color, and the region is filled with the selected color. (c) shows intermediate colorization
results for given accumulated color hints as (b).

Abstract

Existing deep interactive colorization models have fo-
cused on ways to utilize various types of interactions, such
as point-wise color hints, scribbles, or natural-language
texts, as methods to reflect a user’s intent at runtime. How-
ever, another approach, which actively informs the user
of the most effective regions to give hints for sketch im-
age colorization, has been under-explored. This paper pro-
poses a novel model-guided deep interactive colorization
framework that reduces the required amount of user inter-
actions, by prioritizing the regions in a colorization model.
Our method, called GuidingPainter, prioritizes these re-
gions where the model most needs a color hint, rather than
Jjust relying on the user’s manual decision on where to give
a color hint. In our extensive experiments, we show that
our approach outperforms existing interactive colorization
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Results of our proposed model on human faces and comics datasets. Each column of (a)-(c) indicates the order

methods in terms of the conventional metrics, such as PSNR
and FID, and reduces required amount of interactions.

1. Introduction

The colorization task in computer vision has received
considerable attention recently, since it can be widely ap-
plied in content creation. Most content creation starts with
drawn or sketch images, and these can be accomplished
within a reasonable amount of time, but fully colorizing
them is a labor-intensive task. For this reason, the ability to
automatically colorize sketch images has significant poten-
tial values. However, automatic sketch image colorization
is still challenging for the following reasons. (i) The infor-
mation provided by an input sketch image is extremely lim-
ited compared to colored images or even gray-scale ones,
and (ii) there can be multiple possible outcomes for a given
sketch image without any conditional input, which tends to
degrade the model performance and introduce bias toward



the dominant colors in the dataset.

To alleviate these issues, conditional image colorization
methods take partial hints in addition to the input image, and
attempt to generate a realistic output image that reflects the
context of the given hints. Several studies have leveraged
user-guided interactions as a form of user-given conditions
to the model, assuming that the users would provide a de-
sired color value for a region as a type of point-wise color
hint [36] or a scribble [24, 3]. Although these approaches
have made remarkable progress, there still exist nontrivial
limitations. First, existing approaches do not address the is-
sue of estimating semantic regions which indicate how far
the user-given color hints should be spread, and thus the col-
orization model tends to require lots of user hints to produce
adesirable output. Second, for every interaction at test time,
the users are still expected to provide a local-position infor-
mation of color hint by pointing out the region of interest
(Rol), which increases the user’s effort and time commit-
ment. Lastly, since existing approaches typically obtain the
color hints on randomized locations at training time, the dis-
crepancies among intervention mechanisms for the training
and the test phases need to be addressed.

In this work, we propose a novel model-guided frame-
work for the interactive colorization of a sketch image,
called GuidingPainter. A key idea behind our work is to
make a model actively seek for regions where color hints
would be provided, which can significantly improve the
efficiency of interactive colorization process. To this end,
GuidingPainter consists of two modules: active-guidance
module and colorization module. Although colorization
module works similar to previous methods, our main con-
tribution is a hint generation mechanism in active-guidance
module. The active-guidance module (Section 3.2-3.3) (i)
divides the input image into multiple semantic regions and
(i1) ranks them in decreasing order of estimated model gains
when the region is colorized (Fig. 1(a)).

Since it is extremely expensive to obtain groundtruth for
segmentation labels or even their prioritization, we explore
a simple yet effective approach that identifies the meaning-
ful regions in an order of their priority without any man-
ually annotated labels. In our active guidance mechanism
(Section 3.3), GuidingPainter can learn such regions by in-
tentionally differentiating the frequency of usage for each
channel obtained from the segmentation network. Also, we
conduct a toy experiment (Section 4.5) to understand the
mechanism, and to verify the validity of our approach. We
propose several loss terms, e.g. smoothness loss and total
variance loss, to improve colorization quality in our frame-
work (Section 3.5), and analyze its effectiveness for both
quantitatively and qualitatively (Section 4.6). Note that the
only action required of users in our framework is to select
one representative color for each region the model provides
based on the estimated priorities (Fig. 1(b)). Afterwards, the
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colorization network (Section 3.4) generates a high-quality
colorized output by taking the given sketch image and the
color hints (Fig. 1(c)).

In summary, our contributions are threefold:

* We propose a novel model-guided deep image col-
orization framework, which prioritizes regions of a
sketch image in the order of the interest of the coloriza-
tion model.

GuidingPainter can learn to discover meaningful re-
gions for colorization and arrange them in their priority
just by using the groundtruth colorized image, without
additional manual supervision.

We demonstrate that our framework can be applied to
a variety of datasets by comparing it against previous
interactive colorization approaches in terms of various
metrics, including our proposed evaluation protocol.

2. Related Work
2.1. Deep Image Colorization

Existing deep image colorization methods, which uti-
lize deep neural networks for colorization, can be divided
into automatic and conditional approaches, depending on
whether conditions are involved or not. Automatic image
colorization models [35, 25, 32, 1] take a gray-scale or
sketch image as an input and generate a colorized image.
CIC [35] proposed a fully automatic colorization model
using convolutional neural networks (CNNs), and Su et
al. [25] further improved the model by extracting the fea-
tures of objects in the input image. Despite the substantial
performances of automatic colorization models, a nontrivial
amount of user intervention is still required in practice.

Conditional image colorization models attempt to re-
solve these limitations by taking reference images [14] or
user interactions [36, 3, 34, 30, 33] as additional input. For
example, Zhang et al. [36] allowed the users to input the
point-wise color hint in real time, and AlacGAN [3] uti-
lized stroke-based user hints by extracting semantic feature
maps. Although these studies consider the results are im-
proved by user hints, they generally require a large amount
of user interactions.

2.2. Interactive Image Generation

Beyond the colorization task, user interaction is uti-
lized in numerous computer vision tasks, such as image
generation, and image segmentation. In image genera-
tion, research has been actively conducted to utilize vari-
ous user interactions as additional input to GANs. A va-
riety of GAN models employ image-related features from
users to generate user-driven images [6, 15] and face im-
ages [22, 11, 27, 13, 26]. Several models generate and edit
images via natural-language text [31, 20, 37, 2]. In image
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Figure 2: Hint generation process of our proposed GuidingPainter model. The segmentation network and the hint
generation function renders colored hints (C') and condition masks (M). Based on the guidance results, our colorization
network colorizes the sketch image. The example illustrates the hint generation process in the training phase where Nj, = 3
and N, = 4. First, the groundtruth image is copied as N, times to consider each color segment at each interaction step.
After element-wise multiplication with guided regions, (a) averages the color to decide representative colors for each guided
region. To restrict the number of hints, we mask out the segments whose iteration step is larger than N, The masked results
are (b). Based on (a) and (b), our module generates the colored condition for each segment as (c). In (d), we combine them
into one partially-colorized image C. (e) operates as the same manner with (d) and generates the condition mask M.

segmentation, to improve the details of segmentation re-
sults, recent models have utilized dots [23, 18] and texts [8]
from users. Although we surveyed a wide scope of inter-
active deep learning models beyond sketch image coloriza-
tion, there is no directly related work with our approach,
to the best of our knowledge. Therefore, the use of a deep
learning-based guidance system for interactive process can
be viewed as a promising but under-explored approach.

3. Proposed Approach
3.1. Problem Setting

The goal of the interactive colorization task is to train
networks to generate a colored image Y € R3*H*W py
taking as input a sketch image X € R XW along with
user-provided partial hints U, where H and W indicate the
height and width of the target image, respectively. The user-
provided partial hints are defined as a pair U = (C, M)
where C' € R3*H*W ig 3 sparse tensor with RGB values,
and M € {0,1}PH*W g a binary mask indicating the
region in which the color hints are provided. Our training
framework consists of two networks and one function: seg-
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mentation network f (Section 3.2), colorization network g
(Section 3.4), and a hint generation function called h (Sec-
tion 3.3), which are trained in an end-to-end manner.

3.2. Segmentation Network

The purpose of segmentation network f(-) is to divide
the sketch input X into several semantic regions which are
expected to be painted in a single color, i.e.,

S =f£(X;0y), (1)

where S = (51, 92, ..., Sn, ) € {0, 1}NexHXW G s the i-
th guided region, and N, denotes the maximum number of
hints. Specifically, f contains an encoder-decoder network
with skip connections, based on U-Net [9] architecture, to
preserve the spatial details of given objects.

Since each guided region will be painted with a single
color, we have to segment the output of U-Net in a dis-
crete form while taking advantages of end-to-end learn-
ing. To this end, after obtaining an output tensor Sjogir €
RNexHXW of U-Net, we discretize Sjogi¢ by applying
straight-through (ST) gumbel estimator [10, 17] across
channel dimensions to obtain S as a differentiable approxi-
mation. The result S satisfies Zivzl Si(7) = 1 where S;(5)



indicates the ¢-th scalar value of the j-th position vector, i.e.,
every pixel is contained in only one guided region. Here,
Si(j) = 1 indicates that the j-th pixel is contained in the
i-th guided region while S;(j) = 0 indicates that the pixel
is not contained in the guided region.

3.3. Hint Generation

The hint generation function h(-) is a non-parametric
function that plays the role of simulating U based on S,
a colored image Y, and the number of hints Ny, i.e.,

U =h(S,Y,Ny,). )

To this end, we first randomly sample N;, from a bounded
distribution which is similar to a geometric distribution for-
mulated as

(1-p)p 1

(1—p)~e

where p < 1 is a hyperparameter indicating the probability
that the user stops adding a hint on each trial. We set N, =
30 and p = 0.125 for the following experiments.

Step1: building masked segments S. Given N}, we con-
struct a mask vector m € {0, 1} having each element
with the following rule:

x

where m; indicates the i-th scalar value of the vector m.
Afterwards, we obtain a masked segment S € RNe*HxW
by element-wise multiplying the i-th element of m with the
i-th channel of S as

ifi=0,1,..
ifi = N,

7Nc_

gmm—n—{ 3

1 ifi <Ny
0 otherwise,

“

S; =m;S;, )

where S;, S; € R1*H>XW denote the i-th channel of S and
S, respectively.

Step2: building hint maps C. The goal of this step is to
find the representative color value of the activated region in
each segment S;, and then to fill the corresponding region
with this color. To this end, we calculate a mean RGB color

G € R3 as

.

where N, = >, Si(j) indicates the number of activated
pixels of the i-th segment, © denotes an element-wise mul-
tiplication, i.e., the Hadamard product, after each element of
S; is broadcast to the RGB channels of Y, and both S;(5)
and Y'(j) indicate the j-th position vector of each map. Fi-
nally, we obtain hint maps C' € R3*7xW a5

1

NP
0

() OY(E) f1<N,

otherwise,

s ©

=z

¢S,
1

c )

i
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where ¢; is repeated to the spatial axis as the form of
S; € RVUXW gimilar to Eq. (5) and S; is broadcast to
the channel axis as the form of ¢ € R? as in Eq. (6). In
order to indicate the region of given hints, we simply obtain
a condition mask M € RM*H*W a5

2

t

M

®)

<.

=1

Ce M e
where @ indicates a channel-wise concatenation.
Fig. 2 illustrates overall scheme of the hint generation pro-
cess. At the inference time, we can create U similar to the
hint generation process, but without an explicit groundtruth
image. Note that a sketch image is all we need to produce S
at the inference time. We can obtain C' and M by assigning
acolor to each S; fori = 1,2, ..., Ny.

Eventually, the output of this module U
R4><H xW

To understand how the hint generation module works,
recall that IV}, is randomly sampled from the bounded geo-
metric distribution G (Eq. (3)) per mini-batch at the training
time. Since the probability that ¢ < N}, is higher than the
probability that j < N}, for ¢ < j, S; is more frequently
activated than S; during training the model. Hence, we
can expect the following effects via this module: i) IV}, af-
fects in determining how many segments starting from the
first channel of S as computed in Eq. (4-5); therefore, this
mechanism encourages the segmentation network f (-) to lo-
cate relatively important and uncertain regions at the for-
ward indexes of S. Section 4.5 shows this module behaves
as our expectation. ii) We can provide more abundant in-
formation for the following colorization networks g(+) than
previous approaches without requiring additional labels at
training time or even interactions at test time, helping to
generate better results even with fewer hints than baselines
(Section 4.3).

3.4. Colorization Network

The colorization network g(+) aims to generate a colored
image Y by taking all the information obtained from the
previous steps, i.e., a sketch image X, guided regions S,
and partial hints U, as

Y =g(X,S,U;b,). ©)
The reason for using the segments as input is to provide in-
formation about the color relationship, which the segmen-
tation network infers. In order to capture the context of the
input and to preserve the spatial information of the sketch
image, our colorization networks also adopt the U-Net ar-
chitecture, the same as in the segmentation network. We
then apply a hyperbolic tangent activation function to nor-
malize the output tensor of the U-Net.



3.5. Objective Functions

As shown in Fig. 2, our networks are trained using the

combined following objective functions. For simplicity, G
denotes the generator of our approach which contains all the
procedures, i.e., f, h, g, mentioned above while D denotes
training datasets.
Smoothness loss. Although adjacent pixels in an image
have similar RGB values, our segment guidance networks
do not have an explicit mechanism to generate segments
containing those locally continuous pixels. To improve
the users’ ability to interpret the segments, we introduce
smoothness loss, as

HW
['smth =E Z Z ||Slogits(i) - SlogitS(j)”l 5 (10)

i JEN;

where /N; denotes a set of eight nearest neighbor pixels adja-
cent to the i-th pixel, and Sj4i¢(?) indicates the i-th position
vector of Syt

Total variance loss. In our framework, the quality of seg-
ments from f is important because the hints U are built
based on guided regions S = f(X). Although the f can
be indirectly trained by the colorization signal, we intro-
duce a total variance loss in order to facilitate this objective
directly, i.e.,

N
Liv=FExy~p |Y_ Y =)0 SiE|, (D)
i=1
where || - || denotes a Frobenius norm. That is, £y, at-

tempts to minimize the color variance across pixels in each
segment, which helps pixels of similar color form into the
same segment.

Reconstruction loss. Since both a sketch image X and its
corresponding partial hint U are built from a groundtruth
image Y in the training phase, we can directly supervise our
networks G so that it can generate an output image close to
the groundtruth Y. Following the previous work, we select
the L, distance function as our reconstruction loss, i.e.,

Lree =Ex yap,Ny~g [||G(X, Np, Y) = Y1) (12)
Adversarial loss. As shown in the image generation work,
we adopt an adversarial training [4] strategy, in which our
generator G produces a natural output image enough to fool
a discriminator D, while D attempts to classify whether the
image is real or fake. During the image colorization task,
the original contents of a sketch input should be preserved
as much as possible. Therefore, we leverage the conditional
adversarial [19] loss, written as

Ladw = Ex y~p [logD(Y, X)]

13
+IEX,Y~D,Nh~G [10g(17D(G(X,Nh7Y)7X))]. (13)
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Finally, our objective function is defined as

minmax £ = )\t’UEt’U + Asmthﬁsmth
G D (14)
+)\T€C£7’8C + )\adv['adm

where each A indicates the weighting factor for each loss
term. We describe the implementation details in the supple-
mentary material.

4. Experiments
4.1. Sketch Image Datasets

Yumi’s Cells [21] is composed of 10K images from 509
episodes of a web cartoon, named Yumi’s Cells, where a
small number of characters appear repeatedly. Because it
was published in a commercial industry, this dataset in-
cludes not only character objects but also non-character ob-
jects, e.g., text bubbles, letters, and background gradation.
Therefore, we chose this dataset to evaluate the practical
effectiveness of our model.

Tag2pix [12] consists of over 60K filtered large-scale anime
illustrations from the Danbooru dataset [5]. While this
dataset consists of images of a single character and a simply
colored background, the diversity of each character in terms
of pose and scale makes it challenging to generate plausible
colored outputs. We chose this dataset to verify that our
model reflects various user hints well.

CelebA [16] is a representative dataset which contains
203K human face images from diverse races. We chose it to
evaluate our model on real-world images rather than artifi-
cial ones. We randomly divided each dataset into a training,
a validation, and a test set with the ratio of 81:9:10 and re-
size all images to 256 x 256. Referring to the recipe of Lee
et al. (2020) [14], the sketch images were extracted using
the XDoG [29] algorithm.

4.2. Evaluation Metrics

Peak signal to noise ratio (PSNR) has been broadly used
as a pixel-level evaluation metric for measuring the dis-
tortion degree of the generated image in the colorization
tasks [35, 9]. The metric is computed as the logarithmic
quantity of the maximum possible pixel value of the image
divided by the root mean squared error between a generated
image and its groundtruth.

Frechét inception distance (FID). We used FID [7] as an
evaluation metric for measuring the model performance by
calculating the Wasserstein-2 distance of feature space rep-
resentations between the generated outputs and the real im-
ages. A low FID score means that the generated image is
close to the real image distribution.

Number of required interactions (NRI). We propose a
new evaluation metric to measure how many user interac-
tions are required for the model to produce an image of a



PSNR; FID; NRI;

Methods Cond. | Yumi Tag2pix CelebA | Yumi Tag2pix CelebA | Yumi Tag2pix CelebA
CIC X 15.17  13.99 17.01 | 137.35 167.88 79.05 -

Pix2Pix X 15.11  14.68 16.22 7193 11145 54.86 -

AlacGAN X 15.02 14.12 15.73 30.72 46.24 23.52 -

RTUG X 19.05 1444 17.23 35.52 92.69 52.67 -

Ours X 18.63  15.19 16.53 34.07 55.31 42.46 -

AlacGAN 4 15.68  14.53 16.52 29.74 46.52 22.83 | 31.00  31.00 31.00
RTUG v 20.10  16.36 19.16 30.26 63.58 4445 | 13.82  14.79 11.64
Ours v 20.88 17.55 20.24 24.46 43.18 16.43 | 11.08 11.39 6.98

Table 1: Quantitative comparisons in terms of PSNR, FID, and NRI (Section 4.2). For conditional cases, we compute the
expected values of PSNR and FID when the number of synthesized hints follows G.

Sketch RTUG Original

AlacGAN

¥

o

Figure 3: Comparison to baselines on diverse datasets.
We compare our model with two conditional coloriza-
tion baselines, AlacGAN and RTUG. From top to bottom,
conditional results on CelebA, Tag2pix, and Yumi’s Cells
datasets are presented.
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certain quality. To this end, we count the number of hints
needed by the model to reach a benchmark of PSNR. If the
model cannot reach a certain level of accuracy even with
the maximum number of hints, we compute the count as the
maximum number of hints plus one. The benchmark can
be set according to the user’s tolerance or the purpose of a
framework. We set 20.5, 17.5, and 19.5 as the benchmarks
for Yumi, Tag2pix, and CelebA datasets, respectively.

4.3. Comparisons against Colorization Baselines

We compare our GuidingPainter against diverse baseline
models for the deep colorization tasks, including an im-
age translation model Pix2Pix [9], an automatic coloriza-
tion model CIC [35], a point-based interactive colorization
model RTUG [36], and a scribble-based interactive col-
orization model AlacGAN [3]. Since our main focus is
interactive colorization, we primarily analyze the perfor-
mance of GuidingPainter using conditional cases. In order
to analyze the colorization efficiency of conditional mod-
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els, we compute NRI and the expected values of PSNR and
FID when the number of color hints follows the distribu-
tion G. The color hints are synthesized by their own method
used for training, i.e., RTUG and AlacGAN provide hints
in random location while our model provides color hints to
the regions obtained by the active-guidance module, in or-
der from the front channel (51, S5, ...). Table 1 presents the
quantitative results of our model and other baselines on each
dataset. Our model outperforms all of conditional baselines
on all three metrics. This reveals that our model can gener-
ate various realistic images, reflecting the given conditions
while reducing the interactions. Although our framework is
mainly designed to colorize sketch images when conditions
are given, our model shows the comparable performances
across the automatic colorization setting. We also analyze
the effectiveness of our guidance mechanism in situations
where real users give hints in Section 4.4.

As shown in Fig. 3, our model colorizes each color
within each segment by successfully reflecting both the lo-
cation and the color of hints. The results show that ours
is better than other conditional baselines. For a fair qual-
itative comparison, we equalize the number of hints given
to each method and make the locations of the color hints
for AlacGAN and RTUG similar to ours, by sampling the
points in the regions that our segmentation network pro-
duces. The marks in the sketch image in Fig. 3 indicate
where the hints are provided for RTUG. Compared with the
conditional baselines on the animation dataset, our model
reduces the color bleeding artifact, e.g., the second row in
Fig. 3, and generates the continuous colors for each seg-
ment, e.g., hair in the first row, the sky and the ground in
the third row in Fig. 3. This reveals that our model can dis-
tinguish the semantic regions of character and background
and reflect the color hints into the corresponding regions.
Especially, for the last two rows of Fig. 3, our model is supe-
rior to colorize the background region, while other baselines
colorize the background across the edges or only part of the
object. Technically, our approach can be applied to col-
orize not only a sketch image but also a gray-scale image.



TPI, / QS, CSy

Yumi’s Cells | Tag2pix CelebA total

RTUG | 11.87/3.93 | 8.02/3.15 | 7.82/3.85 | 3.14
Ours 7.80/4.07 | 7.22/4.00 | 7.13/3.81 | 4.07

Table 2: User study results on three different datasets.
Time per interaction (TPI) is the average time (sec.) spent
by a user before moving on to next interaction. Qual-
ity score (QS) is the overall quality of a colorized image.
Convenience score (CS) denotes users’ convenience on the
overall workflow. QS and CS are measured from one to five,
and all scores were surveyed by users.

Figure 4: Dark snail example. A sketch image(top left)
and a groundtruth image (top right) on dark snail. (a) are
prioritization results of GuidingPainter, and (b) are when
we fix N, = N, of our model during the training time.

Sketch

ﬂ*

Additional results for qualitative comparison and grayscale
colorization are in the supplementary materials.

4.4. User Study on Interactive Colorization Process

To validate the practical interactive process of our active-
guidance mechanism, we develop a straightforward user in-
terface (UI) that control peripheral variables except for our
main algorithm. We conduct an in-depth user evaluation, in
which users directly participate in the process of our frame-
work. We then record various metrics to assess the practical
usefulness of our method. We choose RTUG as our baseline
interactive method since its interactive process is directly
comparable to ours. As shown in Table 2, our model shows
better time-per-interaction (TPI) scores with less qualita-
tive degradation than RTUG model, confirming the superior
time efficiency of our model. The total colorization time is
decreased by 14.2% on average compared to RTUG. Fur-
thermore, the improvement in the convenience score (CS)
reveals that our approach clearly reduces the users’ work-
load. For more details, e.g., our UI design, see the supple-
mentary material.

4.5. Effectiveness of Active-Guidance Mechanism

To understand the effects of our active-guidance mech-
anism described in Section 3.2-3.3, we design two sub-
experiments as follows.

Dark Snail. The first one is a simulation to show that the
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m Yumi’s Cells
A Tag2Pix
® CelebA

Decrease of the PSNR (dB)

Figure 5: PSNR scores of GuidingPainter decrease when
masking out all segment information except for the i-th hint.

proposed mechanism works as we expected by using the
toy example named Dark Snail. As shown in the first row
of Fig. 4, squares and rectangles are sequentially placed
in a clockwise direction, and a groundtruth is generated
at every mini-batch by having randomly sampled colors of
red, green, and blue. In this setting, it is impossible for a
model to estimate the exact color of each object unless each
color hint is provided. Because the size of each rectangle is
halved compared to the previous one, querying the largest
region first is an optimal choice in terms of the information
gain. In other words, this toy experiment is designed to con-
firm whether our model can (i) divide the semantic regions
with the same color and (ii) ask for the color hints of objects
in a descending order by their size. Fig. 4 (a) shows the
guided regions obtained from a model that is trained by our
original mechanism, GuidingPainter. Surprisingly, the orig-
inal model tends to build the semantic segments, which are
i) bounded by only one object and ii) placed in decreasing
order based on the segment’s size, except for the 4-th case.
Alternately, Fig. 4 (b) is retrieved from a modified version
of our model that is trained by fixing N, = N, during the
training time, i.e., we simply turn off the most critical role
of hint generation function. Fig. 4 (b) demonstrates that the
modified model totally loses its guiding function, implying
that the active-guidance mechanism plays a critical role in
our framework.
Importance of highly ranked segments. For every dataset
described in Section 4.1, we test how each segment pro-
vided by the active-guidance module affects the perfor-
mance of colorization. To assess the importance of the i-th
segment, we put the map of the ¢-th channel in front of re-
maining channels of S and then give a hint only at the first
segment. Fig. 5 shows the tendency that the PSNR score
decreases as a hint is given from the rear-ranked segment,
which shows that the active-guidance module encourages to
locate the important regions in the front channels of .S.
While following the colorization order suggested by the
model is an efficient way to reduce loss at training time, it
is also possible to change the colorization order with ad-
ditional learning. Detailed discussions on our approach,
including the learning method for changing the order and
limitations, are provided in the supplementary materials.
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Figure 6: Qualitative results of ablation study for the losses (a) L, cc, (0) Lree + Ladvs (€) Lree + Ladw + Ly, and (d)
Lree + Ladgw + Lty + Lsmen- Each column of images indicates the priority of guided regions. The first row shows regions
guided by the model in order of their priority, and the second row represents the intermediate colorization results.

PSNR / FID / NRI
Lree  Laaw Lo Lomin Yumi’s Cells Tag2pix CelebA
(a) v 21.04/28.30/9.95 18.11/66.21/8.86 | 20.76 /39.73 /5.58
(b) v v 20.84/2790/11.05 | 17.55/48.37/11.30 | 20.41/17.15/6.13
(©) v v v 20.72/27.81/10.39 | 17.58/47.32/10.48 | 20.19/16.54/7.20
(d) v v v v 20.88/24.46/11.08 | 17.55/43.18/11.39 | 20.24/16.43/6.98

Table 3: Quantitative results of the ablation study for the losses (a) Lcc, () Lree + Ladvs (€) Lree + Ladw + Liv, and (d)
Erec + ﬁad’u + Etv + £s7nth-

4.6. Effectiveness of Loss Functions between the PSNR-based and FID metrics.

This section analyzes the effects of each loss function 5. Conclusions
using both quantitative measurements and qualitative re-

sults. In this ablation study, we found a trade-off between This work presents a novel interactive deep colorization
the pixel-distance-based metric, i.e., PSNR, and the feature- framework, which enables the model to learn the priority
distribution-based metric, i.e., FID, according to the combi- regions of a sketch image that are most in need of color
nation of loss functions. Since L,... exactly matches up to hints. Experimental results show that our framework im-
the PSNR, Table 3 (a) shows the best score of the PSNR- proves the image quality of interactive colorization models,
related measurement. However, it does not perform well in successfully reflecting the color hints with our active guid-
terms of FID especially in the Tag2pix and CelebA datasets. ance mechanism. Importantly, our work demonstrates that
This phenomenon can also be found in Fig. 6 (a). The char- GuidingPainter, without any manual supervision at all, can
acter in the first colorization result tends to be painted with learn the ability to divide the semantic regions and rank
grayish color, and overall colorization results loss sharp- them in decreasing order of priority by utilizing the col-
ness. After L£,q4, is added, the FID scores in Table 3 (b) orization signal in an end-to-end manner. We expect that
dramatically improve, along with the qualitative results in our approach can be used to synthesize hints for training
Fig. 6 (b), but PSNR-based scores slightly decrease. As other interactive colorization models. Developing a sophis-
discussed in a previous work [28], we guess that the PSNR ticated UI which integrates our region prioritization algo-
score is not sufficient to measure how naturally a model rithm with diverse techniques, such as region refinement,
can generate if only partial conditions are given. Although remains as our future work.

Fig. 6 (b) shows plausible images, the hair in all the output Acknowledgments This work was supported by the Insti-
images are slightly stained. By adding L;,,, these stains are tute of Information & communications Technology Plan-
removed, and the colors become clear, as shown in Fig. 6 ning & Evaluation (IITP) grant funded by the Korean gov-
(c). After adding L4, the guided regions become signif- ernment (MSIT) (No. 2019-0-00075, Artificial Intelli-
icantly less sparse than before, and the strange colors on the gence Graduate School Program (KAIST) and No. 2021-
sleeve of Fig. 6 (c)’s character disappear, as shown in Fig. 6 0-01778, Development of human image synthesis and dis-
(d). Table 3 shows the FID score improves after adding crimination technology below the perceptual threshold) and
Ladvs Ltv, and Lg,ep one by one from L, on all datasets. the National Research Foundation of Korea (NRF) grant
Despite the trade-off, we select (d) as our total loss function, funded by the Korean government (MSIT) (No. NRF-

considering the qualitative improvements and the balance 2022R1A2B5B02001913).
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