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Figure 1: Results of our proposed model on human faces and comics datasets. Each column of (a)-(c) indicates the order

of interactions as the i-th priority. (a) visualizes masked regions which our model guides at the i-th step. Given a region as

(a), users select its representative color, and the region is filled with the selected color. (c) shows intermediate colorization

results for given accumulated color hints as (b).

Abstract

Existing deep interactive colorization models have fo-
cused on ways to utilize various types of interactions, such
as point-wise color hints, scribbles, or natural-language
texts, as methods to reflect a user’s intent at runtime. How-
ever, another approach, which actively informs the user
of the most effective regions to give hints for sketch im-
age colorization, has been under-explored. This paper pro-
poses a novel model-guided deep interactive colorization
framework that reduces the required amount of user inter-
actions, by prioritizing the regions in a colorization model.
Our method, called GuidingPainter, prioritizes these re-
gions where the model most needs a color hint, rather than
just relying on the user’s manual decision on where to give
a color hint. In our extensive experiments, we show that
our approach outperforms existing interactive colorization

*Equal contribution

methods in terms of the conventional metrics, such as PSNR
and FID, and reduces required amount of interactions.

1. Introduction

The colorization task in computer vision has received

considerable attention recently, since it can be widely ap-

plied in content creation. Most content creation starts with

drawn or sketch images, and these can be accomplished

within a reasonable amount of time, but fully colorizing

them is a labor-intensive task. For this reason, the ability to

automatically colorize sketch images has significant poten-

tial values. However, automatic sketch image colorization

is still challenging for the following reasons. (i) The infor-

mation provided by an input sketch image is extremely lim-

ited compared to colored images or even gray-scale ones,

and (ii) there can be multiple possible outcomes for a given

sketch image without any conditional input, which tends to

degrade the model performance and introduce bias toward
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the dominant colors in the dataset.

To alleviate these issues, conditional image colorization

methods take partial hints in addition to the input image, and

attempt to generate a realistic output image that reflects the

context of the given hints. Several studies have leveraged

user-guided interactions as a form of user-given conditions

to the model, assuming that the users would provide a de-

sired color value for a region as a type of point-wise color

hint [36] or a scribble [24, 3]. Although these approaches

have made remarkable progress, there still exist nontrivial

limitations. First, existing approaches do not address the is-

sue of estimating semantic regions which indicate how far

the user-given color hints should be spread, and thus the col-

orization model tends to require lots of user hints to produce

a desirable output. Second, for every interaction at test time,

the users are still expected to provide a local-position infor-

mation of color hint by pointing out the region of interest

(RoI), which increases the user’s effort and time commit-

ment. Lastly, since existing approaches typically obtain the

color hints on randomized locations at training time, the dis-

crepancies among intervention mechanisms for the training

and the test phases need to be addressed.

In this work, we propose a novel model-guided frame-

work for the interactive colorization of a sketch image,

called GuidingPainter. A key idea behind our work is to
make a model actively seek for regions where color hints
would be provided, which can significantly improve the

efficiency of interactive colorization process. To this end,

GuidingPainter consists of two modules: active-guidance

module and colorization module. Although colorization

module works similar to previous methods, our main con-

tribution is a hint generation mechanism in active-guidance

module. The active-guidance module (Section 3.2-3.3) (i)

divides the input image into multiple semantic regions and

(ii) ranks them in decreasing order of estimated model gains

when the region is colorized (Fig. 1(a)).

Since it is extremely expensive to obtain groundtruth for

segmentation labels or even their prioritization, we explore

a simple yet effective approach that identifies the meaning-

ful regions in an order of their priority without any man-
ually annotated labels. In our active guidance mechanism

(Section 3.3), GuidingPainter can learn such regions by in-

tentionally differentiating the frequency of usage for each

channel obtained from the segmentation network. Also, we

conduct a toy experiment (Section 4.5) to understand the

mechanism, and to verify the validity of our approach. We

propose several loss terms, e.g. smoothness loss and total

variance loss, to improve colorization quality in our frame-

work (Section 3.5), and analyze its effectiveness for both

quantitatively and qualitatively (Section 4.6). Note that the

only action required of users in our framework is to select

one representative color for each region the model provides

based on the estimated priorities (Fig. 1(b)). Afterwards, the

colorization network (Section 3.4) generates a high-quality

colorized output by taking the given sketch image and the

color hints (Fig. 1(c)).

In summary, our contributions are threefold:

• We propose a novel model-guided deep image col-

orization framework, which prioritizes regions of a

sketch image in the order of the interest of the coloriza-

tion model.

• GuidingPainter can learn to discover meaningful re-

gions for colorization and arrange them in their priority

just by using the groundtruth colorized image, without

additional manual supervision.

• We demonstrate that our framework can be applied to

a variety of datasets by comparing it against previous

interactive colorization approaches in terms of various

metrics, including our proposed evaluation protocol.

2. Related Work
2.1. Deep Image Colorization

Existing deep image colorization methods, which uti-

lize deep neural networks for colorization, can be divided

into automatic and conditional approaches, depending on

whether conditions are involved or not. Automatic image

colorization models [35, 25, 32, 1] take a gray-scale or

sketch image as an input and generate a colorized image.

CIC [35] proposed a fully automatic colorization model

using convolutional neural networks (CNNs), and Su et
al. [25] further improved the model by extracting the fea-

tures of objects in the input image. Despite the substantial

performances of automatic colorization models, a nontrivial

amount of user intervention is still required in practice.

Conditional image colorization models attempt to re-

solve these limitations by taking reference images [14] or

user interactions [36, 3, 34, 30, 33] as additional input. For

example, Zhang et al. [36] allowed the users to input the

point-wise color hint in real time, and AlacGAN [3] uti-

lized stroke-based user hints by extracting semantic feature

maps. Although these studies consider the results are im-

proved by user hints, they generally require a large amount

of user interactions.

2.2. Interactive Image Generation

Beyond the colorization task, user interaction is uti-

lized in numerous computer vision tasks, such as image

generation, and image segmentation. In image genera-

tion, research has been actively conducted to utilize vari-

ous user interactions as additional input to GANs. A va-

riety of GAN models employ image-related features from

users to generate user-driven images [6, 15] and face im-

ages [22, 11, 27, 13, 26]. Several models generate and edit

images via natural-language text [31, 20, 37, 2]. In image
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Figure 2: Hint generation process of our proposed GuidingPainter model. The segmentation network and the hint

generation function renders colored hints (C) and condition masks (M ). Based on the guidance results, our colorization

network colorizes the sketch image. The example illustrates the hint generation process in the training phase where Nh = 3
and Nc = 4. First, the groundtruth image is copied as Nc times to consider each color segment at each interaction step.

After element-wise multiplication with guided regions, (a) averages the color to decide representative colors for each guided

region. To restrict the number of hints, we mask out the segments whose iteration step is larger than Nh, The masked results

are (b). Based on (a) and (b), our module generates the colored condition for each segment as (c). In (d), we combine them

into one partially-colorized image C. (e) operates as the same manner with (d) and generates the condition mask M .

segmentation, to improve the details of segmentation re-

sults, recent models have utilized dots [23, 18] and texts [8]

from users. Although we surveyed a wide scope of inter-

active deep learning models beyond sketch image coloriza-

tion, there is no directly related work with our approach,

to the best of our knowledge. Therefore, the use of a deep

learning-based guidance system for interactive process can

be viewed as a promising but under-explored approach.

3. Proposed Approach

3.1. Problem Setting

The goal of the interactive colorization task is to train

networks to generate a colored image Ŷ ∈ R
3×H×W by

taking as input a sketch image X ∈ R
1×H×W along with

user-provided partial hints U , where H and W indicate the

height and width of the target image, respectively. The user-

provided partial hints are defined as a pair U = (C,M)
where C ∈ R

3×H×W is a sparse tensor with RGB values,

and M ∈ {0, 1}1×H×W is a binary mask indicating the

region in which the color hints are provided. Our training

framework consists of two networks and one function: seg-

mentation network f (Section 3.2), colorization network g
(Section 3.4), and a hint generation function called h (Sec-

tion 3.3), which are trained in an end-to-end manner.

3.2. Segmentation Network

The purpose of segmentation network f(·) is to divide

the sketch input X into several semantic regions which are

expected to be painted in a single color, i.e.,

S = f(X; θf ), (1)

where S = (S1, S2, ..., SNc) ∈ {0, 1}Nc×H×W , Si is the i-
th guided region, and Nc denotes the maximum number of

hints. Specifically, f contains an encoder-decoder network

with skip connections, based on U-Net [9] architecture, to

preserve the spatial details of given objects.

Since each guided region will be painted with a single

color, we have to segment the output of U-Net in a dis-

crete form while taking advantages of end-to-end learn-

ing. To this end, after obtaining an output tensor Slogit ∈
R

Nc×H×W of U-Net, we discretize Slogit by applying

straight-through (ST) gumbel estimator [10, 17] across

channel dimensions to obtain S as a differentiable approxi-

mation. The result S satisfies
∑Nc

i=1 Si(j) = 1 where Si(j)
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indicates the i-th scalar value of the j-th position vector, i.e.,

every pixel is contained in only one guided region. Here,

Si(j) = 1 indicates that the j-th pixel is contained in the

i-th guided region while Si(j) = 0 indicates that the pixel

is not contained in the guided region.

3.3. Hint Generation

The hint generation function h(·) is a non-parametric

function that plays the role of simulating U based on S,

a colored image Y , and the number of hints Nh, i.e.,

U = h(S, Y,Nh). (2)

To this end, we first randomly sample Nh from a bounded

distribution which is similar to a geometric distribution for-

mulated as

G(Nh = i) =

{
(1− p)ip if i = 0, 1, ..., Nc − 1

(1− p)Nc if i = Nc,
(3)

where p < 1 is a hyperparameter indicating the probability

that the user stops adding a hint on each trial. We set Nc =
30 and p = 0.125 for the following experiments.

Step1: building masked segments S̃. Given Nh, we con-

struct a mask vector m ∈ {0, 1}Nc having each element

with the following rule:

mi =

{
1 if i ≤ Nh

0 otherwise,
(4)

where mi indicates the i-th scalar value of the vector m.

Afterwards, we obtain a masked segment S̃ ∈ R
Nc×H×W

by element-wise multiplying the i-th element of m with the

i-th channel of S as

S̃i = miSi, (5)

where Si, S̃i ∈ R
1×H×W denote the i-th channel of S and

S̃, respectively.

Step2: building hint maps C. The goal of this step is to

find the representative color value of the activated region in

each segment S̃i, and then to fill the corresponding region

with this color. To this end, we calculate a mean RGB color

c̄i ∈ R
3 as

c̄i =

{
1
Np

∑HW
j Si(j)� Y (j) if 1 ≤ Np

0 otherwise,
(6)

where Np =
∑

j Si(j) indicates the number of activated

pixels of the i-th segment, � denotes an element-wise mul-

tiplication, i.e., the Hadamard product, after each element of

Si is broadcast to the RGB channels of Y , and both Si(j)
and Y (j) indicate the j-th position vector of each map. Fi-

nally, we obtain hint maps C ∈ R
3×H×W as

C =

Nc∑
i=1

c̄iS̃i, (7)

where c̄i is repeated to the spatial axis as the form of

S̃i ∈ R
1×H×W similar to Eq. (5) and S̃i is broadcast to

the channel axis as the form of c̄i ∈ R
3 as in Eq. (6). In

order to indicate the region of given hints, we simply obtain

a condition mask M ∈ R
1×H×W as

M =

Nc∑
i=1

S̃i. (8)

Eventually, the output of this module U = C ⊕ M ∈
R

4×H×W where ⊕ indicates a channel-wise concatenation.

Fig. 2 illustrates overall scheme of the hint generation pro-

cess. At the inference time, we can create U similar to the

hint generation process, but without an explicit groundtruth

image. Note that a sketch image is all we need to produce S̃
at the inference time. We can obtain C and M by assigning

a color to each Si for i = 1, 2, ..., Nh.

To understand how the hint generation module works,

recall that Nh is randomly sampled from the bounded geo-

metric distribution G (Eq. (3)) per mini-batch at the training

time. Since the probability that i ≤ Nh is higher than the

probability that j ≤ Nh for i < j, Si is more frequently

activated than Sj during training the model. Hence, we

can expect the following effects via this module: i) Nh af-

fects in determining how many segments starting from the

first channel of S as computed in Eq. (4-5); therefore, this

mechanism encourages the segmentation network f(·) to lo-

cate relatively important and uncertain regions at the for-

ward indexes of S. Section 4.5 shows this module behaves

as our expectation. ii) We can provide more abundant in-

formation for the following colorization networks g(·) than

previous approaches without requiring additional labels at
training time or even interactions at test time, helping to

generate better results even with fewer hints than baselines

(Section 4.3).

3.4. Colorization Network

The colorization network g(·) aims to generate a colored

image Ŷ by taking all the information obtained from the

previous steps, i.e., a sketch image X , guided regions S,

and partial hints U , as

Ŷ = g(X,S, U ; θg). (9)

The reason for using the segments as input is to provide in-

formation about the color relationship, which the segmen-

tation network infers. In order to capture the context of the

input and to preserve the spatial information of the sketch

image, our colorization networks also adopt the U-Net ar-

chitecture, the same as in the segmentation network. We

then apply a hyperbolic tangent activation function to nor-

malize the output tensor of the U-Net.
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3.5. Objective Functions

As shown in Fig. 2, our networks are trained using the

combined following objective functions. For simplicity, G
denotes the generator of our approach which contains all the

procedures, i.e., f ,h,g, mentioned above while D denotes

training datasets.

Smoothness loss. Although adjacent pixels in an image

have similar RGB values, our segment guidance networks

do not have an explicit mechanism to generate segments

containing those locally continuous pixels. To improve

the users’ ability to interpret the segments, we introduce

smoothness loss, as

Lsmth = E

⎡
⎣HW∑

i

∑
j∈Ni

||Slogits(i)− Slogits(j)||1
⎤
⎦ , (10)

where Ni denotes a set of eight nearest neighbor pixels adja-

cent to the i-th pixel, and Slogit(i) indicates the i-th position

vector of Slogit.

Total variance loss. In our framework, the quality of seg-

ments from f is important because the hints U are built

based on guided regions S = f(X). Although the f can

be indirectly trained by the colorization signal, we intro-

duce a total variance loss in order to facilitate this objective

directly, i.e.,

Ltv = EX,Y∼D

[
Nc∑
i=1

||(Y − c̄i)� Si||2F
]
, (11)

where || · ||F denotes a Frobenius norm. That is, Ltv at-

tempts to minimize the color variance across pixels in each

segment, which helps pixels of similar color form into the

same segment.

Reconstruction loss. Since both a sketch image X and its

corresponding partial hint U are built from a groundtruth

image Y in the training phase, we can directly supervise our

networks G so that it can generate an output image close to

the groundtruth Y . Following the previous work, we select

the L1 distance function as our reconstruction loss, i.e.,

Lrec = EX,Y∼D,Nh∼G [||G(X,Nh, Y )− Y ||1] . (12)

Adversarial loss. As shown in the image generation work,

we adopt an adversarial training [4] strategy, in which our

generator G produces a natural output image enough to fool

a discriminator D, while D attempts to classify whether the

image is real or fake. During the image colorization task,

the original contents of a sketch input should be preserved

as much as possible. Therefore, we leverage the conditional

adversarial [19] loss, written as

Ladv = EX,Y∼D [logD(Y,X)]

+ EX,Y∼D,Nh∼G [log(1−D(G(X,Nh, Y ), X))] .
(13)

Finally, our objective function is defined as

min
G

max
D

L = λtvLtv + λsmthLsmth

+λrecLrec + λadvLadv,
(14)

where each λ indicates the weighting factor for each loss

term. We describe the implementation details in the supple-

mentary material.

4. Experiments
4.1. Sketch Image Datasets

Yumi’s Cells [21] is composed of 10K images from 509

episodes of a web cartoon, named Yumi’s Cells, where a

small number of characters appear repeatedly. Because it

was published in a commercial industry, this dataset in-

cludes not only character objects but also non-character ob-

jects, e.g., text bubbles, letters, and background gradation.

Therefore, we chose this dataset to evaluate the practical

effectiveness of our model.

Tag2pix [12] consists of over 60K filtered large-scale anime

illustrations from the Danbooru dataset [5]. While this

dataset consists of images of a single character and a simply

colored background, the diversity of each character in terms

of pose and scale makes it challenging to generate plausible

colored outputs. We chose this dataset to verify that our

model reflects various user hints well.

CelebA [16] is a representative dataset which contains

203K human face images from diverse races. We chose it to

evaluate our model on real-world images rather than artifi-

cial ones. We randomly divided each dataset into a training,

a validation, and a test set with the ratio of 81:9:10 and re-

size all images to 256× 256. Referring to the recipe of Lee

et al. (2020) [14], the sketch images were extracted using

the XDoG [29] algorithm.

4.2. Evaluation Metrics

Peak signal to noise ratio (PSNR) has been broadly used

as a pixel-level evaluation metric for measuring the dis-

tortion degree of the generated image in the colorization

tasks [35, 9]. The metric is computed as the logarithmic

quantity of the maximum possible pixel value of the image

divided by the root mean squared error between a generated

image and its groundtruth.

Frechét inception distance (FID). We used FID [7] as an

evaluation metric for measuring the model performance by

calculating the Wasserstein-2 distance of feature space rep-

resentations between the generated outputs and the real im-

ages. A low FID score means that the generated image is

close to the real image distribution.

Number of required interactions (NRI). We propose a

new evaluation metric to measure how many user interac-

tions are required for the model to produce an image of a
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PSNR↑ FID↓ NRI↓
Methods Cond. Yumi Tag2pix CelebA Yumi Tag2pix CelebA Yumi Tag2pix CelebA

CIC � 15.17 13.99 17.01 137.35 167.88 79.05 -

Pix2Pix � 15.11 14.68 16.22 71.93 111.45 54.86 -

AlacGAN � 15.02 14.12 15.73 30.72 46.24 23.52 -

RTUG � 19.05 14.44 17.23 35.52 92.69 52.67 -

Ours � 18.63 15.19 16.53 34.07 55.31 42.46 -

AlacGAN � 15.68 14.53 16.52 29.74 46.52 22.83 31.00 31.00 31.00

RTUG � 20.10 16.36 19.16 30.26 63.58 44.45 13.82 14.79 11.64

Ours � 20.88 17.55 20.24 24.46 43.18 16.43 11.08 11.39 6.98

Table 1: Quantitative comparisons in terms of PSNR, FID, and NRI (Section 4.2). For conditional cases, we compute the

expected values of PSNR and FID when the number of synthesized hints follows G.

AlacGAN RTUG Ours OriginalSketch

Figure 3: Comparison to baselines on diverse datasets.
We compare our model with two conditional coloriza-

tion baselines, AlacGAN and RTUG. From top to bottom,

conditional results on CelebA, Tag2pix, and Yumi’s Cells

datasets are presented.

certain quality. To this end, we count the number of hints

needed by the model to reach a benchmark of PSNR. If the

model cannot reach a certain level of accuracy even with

the maximum number of hints, we compute the count as the

maximum number of hints plus one. The benchmark can

be set according to the user’s tolerance or the purpose of a

framework. We set 20.5, 17.5, and 19.5 as the benchmarks

for Yumi, Tag2pix, and CelebA datasets, respectively.

4.3. Comparisons against Colorization Baselines

We compare our GuidingPainter against diverse baseline

models for the deep colorization tasks, including an im-

age translation model Pix2Pix [9], an automatic coloriza-

tion model CIC [35], a point-based interactive colorization

model RTUG [36], and a scribble-based interactive col-

orization model AlacGAN [3]. Since our main focus is

interactive colorization, we primarily analyze the perfor-

mance of GuidingPainter using conditional cases. In order

to analyze the colorization efficiency of conditional mod-

els, we compute NRI and the expected values of PSNR and

FID when the number of color hints follows the distribu-

tion G. The color hints are synthesized by their own method

used for training, i.e., RTUG and AlacGAN provide hints

in random location while our model provides color hints to

the regions obtained by the active-guidance module, in or-

der from the front channel (S1, S2, ...). Table 1 presents the

quantitative results of our model and other baselines on each

dataset. Our model outperforms all of conditional baselines

on all three metrics. This reveals that our model can gener-

ate various realistic images, reflecting the given conditions

while reducing the interactions. Although our framework is

mainly designed to colorize sketch images when conditions

are given, our model shows the comparable performances

across the automatic colorization setting. We also analyze

the effectiveness of our guidance mechanism in situations

where real users give hints in Section 4.4.

As shown in Fig. 3, our model colorizes each color

within each segment by successfully reflecting both the lo-

cation and the color of hints. The results show that ours

is better than other conditional baselines. For a fair qual-

itative comparison, we equalize the number of hints given

to each method and make the locations of the color hints

for AlacGAN and RTUG similar to ours, by sampling the

points in the regions that our segmentation network pro-

duces. The marks in the sketch image in Fig. 3 indicate

where the hints are provided for RTUG. Compared with the

conditional baselines on the animation dataset, our model

reduces the color bleeding artifact, e.g., the second row in

Fig. 3, and generates the continuous colors for each seg-

ment, e.g., hair in the first row, the sky and the ground in

the third row in Fig. 3. This reveals that our model can dis-

tinguish the semantic regions of character and background

and reflect the color hints into the corresponding regions.

Especially, for the last two rows of Fig. 3, our model is supe-

rior to colorize the background region, while other baselines

colorize the background across the edges or only part of the

object. Technically, our approach can be applied to col-

orize not only a sketch image but also a gray-scale image.
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TPI↓ / QS↑ CS↑
Yumi’s Cells Tag2pix CelebA total

RTUG 11.87 / 3.93 8.02 / 3.15 7.82 / 3.85 3.14

Ours 7.80 / 4.07 7.22 / 4.00 7.13 / 3.81 4.07

Table 2: User study results on three different datasets.
Time per interaction (TPI) is the average time (sec.) spent

by a user before moving on to next interaction. Qual-

ity score (QS) is the overall quality of a colorized image.

Convenience score (CS) denotes users’ convenience on the

overall workflow. QS and CS are measured from one to five,

and all scores were surveyed by users.

(a)

(b)

Sketch Groundtruth

Figure 4: Dark snail example. A sketch image(top left)

and a groundtruth image (top right) on dark snail. (a) are

prioritization results of GuidingPainter, and (b) are when

we fix Nh = Nc of our model during the training time.

Additional results for qualitative comparison and grayscale

colorization are in the supplementary materials.

4.4. User Study on Interactive Colorization Process

To validate the practical interactive process of our active-

guidance mechanism, we develop a straightforward user in-

terface (UI) that control peripheral variables except for our

main algorithm. We conduct an in-depth user evaluation, in

which users directly participate in the process of our frame-

work. We then record various metrics to assess the practical

usefulness of our method. We choose RTUG as our baseline

interactive method since its interactive process is directly

comparable to ours. As shown in Table 2, our model shows

better time-per-interaction (TPI) scores with less qualita-

tive degradation than RTUG model, confirming the superior

time efficiency of our model. The total colorization time is

decreased by 14.2% on average compared to RTUG. Fur-

thermore, the improvement in the convenience score (CS)

reveals that our approach clearly reduces the users’ work-

load. For more details, e.g., our UI design, see the supple-

mentary material.

4.5. Effectiveness of Active-Guidance Mechanism

To understand the effects of our active-guidance mech-

anism described in Section 3.2-3.3, we design two sub-

experiments as follows.

Dark Snail. The first one is a simulation to show that the
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Figure 5: PSNR scores of GuidingPainter decrease when

masking out all segment information except for the i-th hint.

proposed mechanism works as we expected by using the

toy example named Dark Snail. As shown in the first row

of Fig. 4, squares and rectangles are sequentially placed

in a clockwise direction, and a groundtruth is generated

at every mini-batch by having randomly sampled colors of

red, green, and blue. In this setting, it is impossible for a

model to estimate the exact color of each object unless each

color hint is provided. Because the size of each rectangle is

halved compared to the previous one, querying the largest

region first is an optimal choice in terms of the information

gain. In other words, this toy experiment is designed to con-

firm whether our model can (i) divide the semantic regions

with the same color and (ii) ask for the color hints of objects

in a descending order by their size. Fig. 4 (a) shows the

guided regions obtained from a model that is trained by our

original mechanism, GuidingPainter. Surprisingly, the orig-

inal model tends to build the semantic segments, which are

i) bounded by only one object and ii) placed in decreasing

order based on the segment’s size, except for the 4-th case.

Alternately, Fig. 4 (b) is retrieved from a modified version

of our model that is trained by fixing Nh = Nc during the

training time, i.e., we simply turn off the most critical role

of hint generation function. Fig. 4 (b) demonstrates that the

modified model totally loses its guiding function, implying

that the active-guidance mechanism plays a critical role in

our framework.

Importance of highly ranked segments. For every dataset

described in Section 4.1, we test how each segment pro-

vided by the active-guidance module affects the perfor-

mance of colorization. To assess the importance of the i-th
segment, we put the map of the i-th channel in front of re-

maining channels of S and then give a hint only at the first

segment. Fig. 5 shows the tendency that the PSNR score

decreases as a hint is given from the rear-ranked segment,

which shows that the active-guidance module encourages to

locate the important regions in the front channels of S.

While following the colorization order suggested by the

model is an efficient way to reduce loss at training time, it

is also possible to change the colorization order with ad-

ditional learning. Detailed discussions on our approach,

including the learning method for changing the order and

limitations, are provided in the supplementary materials.
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Figure 6: Qualitative results of ablation study for the losses (a) Lrec, (b) Lrec + Ladv , (c) Lrec + Ladv + Ltv , and (d)

Lrec + Ladv + Ltv + Lsmth. Each column of images indicates the priority of guided regions. The first row shows regions

guided by the model in order of their priority, and the second row represents the intermediate colorization results.

Lrec Ladv Ltv Lsmth
PSNR / FID / NRI

Yumi’s Cells Tag2pix CelebA

(a) � 21.04 / 28.30 / 9.95 18.11 / 66.21 / 8.86 20.76 / 39.73 / 5.58
(b) � � 20.84 / 27.90 / 11.05 17.55 / 48.37 / 11.30 20.41 / 17.15 / 6.13

(c) � � � 20.72 / 27.81 / 10.39 17.58 / 47.32 / 10.48 20.19 / 16.54 / 7.20

(d) � � � � 20.88 / 24.46 / 11.08 17.55 / 43.18 / 11.39 20.24 / 16.43 / 6.98

Table 3: Quantitative results of the ablation study for the losses (a) Lrec, (b) Lrec +Ladv , (c) Lrec +Ladv +Ltv , and (d)

Lrec + Ladv + Ltv + Lsmth.

4.6. Effectiveness of Loss Functions

This section analyzes the effects of each loss function

using both quantitative measurements and qualitative re-

sults. In this ablation study, we found a trade-off between

the pixel-distance-based metric, i.e., PSNR, and the feature-

distribution-based metric, i.e., FID, according to the combi-

nation of loss functions. Since Lrec exactly matches up to

the PSNR, Table 3 (a) shows the best score of the PSNR-

related measurement. However, it does not perform well in

terms of FID especially in the Tag2pix and CelebA datasets.

This phenomenon can also be found in Fig. 6 (a). The char-

acter in the first colorization result tends to be painted with

grayish color, and overall colorization results loss sharp-

ness. After Ladv is added, the FID scores in Table 3 (b)

dramatically improve, along with the qualitative results in

Fig. 6 (b), but PSNR-based scores slightly decrease. As

discussed in a previous work [28], we guess that the PSNR

score is not sufficient to measure how naturally a model

can generate if only partial conditions are given. Although

Fig. 6 (b) shows plausible images, the hair in all the output

images are slightly stained. By adding Ltv , these stains are

removed, and the colors become clear, as shown in Fig. 6

(c). After adding Lsmth, the guided regions become signif-

icantly less sparse than before, and the strange colors on the

sleeve of Fig. 6 (c)’s character disappear, as shown in Fig. 6

(d). Table 3 shows the FID score improves after adding

Ladv , Ltv , and Lsmth one by one from Lrec on all datasets.

Despite the trade-off, we select (d) as our total loss function,

considering the qualitative improvements and the balance

between the PSNR-based and FID metrics.

5. Conclusions

This work presents a novel interactive deep colorization

framework, which enables the model to learn the priority

regions of a sketch image that are most in need of color

hints. Experimental results show that our framework im-

proves the image quality of interactive colorization models,

successfully reflecting the color hints with our active guid-

ance mechanism. Importantly, our work demonstrates that

GuidingPainter, without any manual supervision at all, can

learn the ability to divide the semantic regions and rank

them in decreasing order of priority by utilizing the col-

orization signal in an end-to-end manner. We expect that

our approach can be used to synthesize hints for training

other interactive colorization models. Developing a sophis-

ticated UI which integrates our region prioritization algo-

rithm with diverse techniques, such as region refinement,

remains as our future work.
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