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Figure 1: An illustration of how contrastive learning with standard data augmentations (T and T ′) embeds two video clips
of the same action captured from different camera angles in the feature space versus the feature space representation of
ViewCLR. Augmentation through Viewpoint Generator (VG) induces similarities among the video clips by generating latent
viewpoint representation in the feature space.

Abstract

Learning self-supervised video representation predomi-
nantly focuses on discriminating instances generated from
simple data augmentation schemes. However, the learned
representation often fails to generalize over unseen camera
viewpoints. To this end, we propose ViewCLR, that learns
self-supervised video representation invariant to camera
viewpoint changes. We introduce a viewpoint-generator
that can be considered as a learnable augmentation for any
self-supervised pre-text tasks, to generate latent viewpoint
representation of a video. ViewCLR maximizes the simi-
larities between the representation of the latent viewpoint
and that of the original viewpoint, enabling the learned
video encoder to generalize over unseen camera viewpoints.
Experiments on cross-view benchmark datasets including
NTU RGB+D dataset show that ViewCLR stands as a state-
of-the-art viewpoint invariant self-supervised method.

1. Introduction
Video understanding has taken a new stride with the ad-

vancements of 3D CNNs [15, 5, 48]. But one major lim-
itation of CNNs is that they are unable to recognize sam-
ples out of training distribution. For instance, if we train
an action classifier with videos acquired from one camera
viewpoint and test the learned model on videos from a dif-

ferent camera viewpoint, the model drastically fails to rec-
ognize. This issue persists in a greater extent while learning
self-supervised video representation expecting the learned
encoder to generalize over a large diversity of viewpoints.

Self-supervised Learning (SSL) has been very successful
with the use of instance discrimination through contrastive
learning [13]. The concept of contrastive learning is based
on maximizing similarities of positive pairs while minimiz-
ing similarities of negative pairs. It is to be noted that the
terminology ‘views’ refer to the version of data obtained
through data augmentation whereas ‘viewpoints’ refer to
the data acquired from different camera angles. Learn-
ing invariance to different views is important in contrastive
learning. These views can be generated through data aug-
mentation like random cropping, Gaussian blurring, rotat-
ing inputs etc. Towards self-supervised video representa-
tion, augmentation by tampering the temporal segments in
a video is explored to learn invariance across the temporal
dimension in videos [21, 22, 12, 36, 33]. However, these
pretext tasks and the associated augmentations are not de-
signed to encode viewpoint invariant characteristics to the
learned video encoder.

In this paper, we focus on learning self-supervised video
representation that generalizes over unseen camera view-
points. We do not aim at designing a new pretext task suit-
able for a specific downstream scenario but instead propose
a module that can be incorporated with the existing self-
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supervised methods. Several methods have been proposed
in the literature to address the challenge of camera view in-
variant features, mostly using 3D Poses [24, 30, 61]. These
poses provide geometric information which are robust to
camera viewpoint changes. The availability of large scale
3D Poses [41] have facilitated the research community to
propose unsupervised skeleton representations [26, 27, 34].
However, the use of 3D Poses are limited to indoor sce-
narios and most importantly lacks encoding the appearance
information. Thus, in this paper, we aim at learning view-
point invariant features with RGB input in order to general-
ize SSL for real-world applications.
General contrastive learning methods using standard data
augmentation schemes are not explicitly designed to en-
courage instances from the same class (for example, simi-
lar actions) but different camera viewpoints to pull closer to
each other in the feature space as illustrated in Fig 1. To this
end, we propose ViewCLR that provides a learnable aug-
mentation to induce viewpoint changes while learning self-
supervised representation. This is achieved by a viewpoint-
generator (VG) that learns latent viewpoint representation
of a given feature map by imposing the features to follow
3D geometric transformations and projections. However,
these transformations and projections are learned by min-
imizing the contrastive loss. This constraint is achieved
by performing a mixup between the features learned by
the encoder and the latent viewpoint representation in the
manifold space. The outcome is a trained video encoder
that takes into account the latent viewpoint representation
of the videos, while maximizing its similarities with repre-
sentation from the original camera viewpoint. As shown in
Fig. 1, the latent viewpoint representation of the videos en-
ables ViewCLR to pull representations from similar classes
but different camera angles closer to each other.
We demonstrate the effectiveness of ViewCLR by eval-
uating the learned representations for the task of action
recognition. Our experimental analysis shows that View-
CLR significantly improves the action classification perfor-
mance with regards to generalizing over unseen videos cap-
tured from different camera angles. On popular multi-view
datasets like NTU RGB+D and NUCLA, ViewCLR with
self-supervised pre-training performs on par with the super-
vised models pre-trained with huge video datasets. This ob-
servation substantiates the importance of learning represen-
tations that are invariant to camera angles which is crucial
for real-world video analysis.

2. Background: Neural Projection Layer
In this section, we recall a recently introduced algorithm

Neural Projection Layer (NPL), which learns a latent rep-
resentation of different camera viewpoint for a given action
in supervised settings [38]. Our ViewCLR is a spiritual suc-
cessor of NPL for learning self-supervised viewpoint invari-
ant video representation. NPL is derived from the standard

3D geometric camera model used in computer vision. NPL
learns a latent 3D representation of actions and its multi-
view 2D projections. This is done by imposing the latent
action representations to follow 3D geometric transforma-
tions and projections, in addition to minimizing the cross-
entropy to learn the action labels. First, the feature map
F ∈ Rc×m×n which is an intermediate representation of
an image of dimension M × N is fed to a CNN that es-
timates the 3D space coordinates px,y for each pixel in F .
Also, a fully-connected layer is used to estimate the trans-
formation matrices - rotation and translation (R and t) for
each image in a video. The learned matrices are used to
transform a specific camera view to a 3D world coordinate
system as pwx,y = px,y · [RT |RT t] for each pixel in F . The
world 3D representation is then given by:

FW
x,y,z =

m,n∑
i=0,j=0

(1− |x− pwi,j [x]|)(1− |y − pwi,j [y]|)

(1− |z − pwi,j [z]|)F
′

i,j

(1)
where F ′ is obtained by concatenating feature map F and
px,y across channels.

Next, the world feature representation FW is projected
back to 2D. This is done by estimating a camera matrix K,
which is given by

K = R

sx 0 x0

0 sy y0
0 0 1

 (2)

where (sx, sy) and (x0, y0) are the scaling factors and the
offsets respectively. R here is a 3×3 camera rotation matrix
which is derived from a set of learned parameters. Thus, the
2D projection of the 3D points is estimated as

F p
c,x,y =

m,n∑
i=0,j=0

(1− |x−Kpwi,j [x]|)

(1− |y −Kpwi,j [y]|)F
′

c,i,j

(3)

These frame-level operations are performed across the tem-
poral dimension of a video to compute the viewpoint in-
variant representation of a video. In addition to learning the
action labels, NPL is constrained over a 3D loss L3D as

L3D(V,U) = ||FW (V )− FW (U)||F (4)

where two videos U and V belong to the same action
class. This loss encourages the representations from dif-
ferent viewpoints of the same action result in the same 3D
representation. However, learning such viewpoint invariant
latent representation with NPL is difficult in the absence
of action labels. In ViewCLR, we adopt strategies to learn
such latent 3D representation even without the need of hu-
man annotated action labels.
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Figure 2: Illustration of each component in ViewCLR. The input sample x is a video clip. First, the MoCo framework with
an encoder and EMA (momentum encoder) is presented at the left. Second, we present ViewCLR with the mixup contrastive
loss Lmix

CL . Then, the viewpoint-generator (VG) with the 3D loss L3D is presented. The world 3D representations FW are
encoded in Queue2. Top-1 NN of f(x) in Queue1 is selected from Queue2 for computing the 3D loss with FW . For brevity,
we ignore the auto-encoder representation of FW in this figure. Finally, we present ViewCLR with all its components,
including the adversarial loss Ladv .

3. ViewCLR
In this section, we describe our proposed ViewCLR

to learn self-supervised video representation such that the
learned representation is robust to different viewpoints. For
self-supervised representation learning, we use instance dis-
crimination approach proposed in MoCo [17]. We remind
the readers that the terminology ‘views’ indicates differ-
ent data views obtained through data augmentation whereas
‘viewpoints’ refer to the videos captured from different
camera angles.

3.1. MoCo
To formulate, given a video x, a set of augmentation

transformations T and T ′ is applied on x to generate its
two views. Note that these views of the same video are
results of standard augmentations and do not involve gen-
erating different camera viewpoints. Given a video encoder
f(·), contrastive loss like InfoNCE [13] maximizes the sim-
ilarity of a video sample f(x) with positive ones k+ and
minimizes similarity to negative ones k−. MoCo uses an
explicit momentum updated version (EMA) of encoder f(·)
to compute the embeddings k+ of video x, and negative em-
beddings k− are encoded in a dictionary queue referred to
as Queue1. Therefore, the InfoNCE loss is formulated as

LCL = −log
exp(f(x) · k+/τ)
N∑
i=0

exp(f(x) · ki/τ)
(5)

where embeddings ki ∈ {k+, k−} and τ is a scaling tem-
perature parameter. The sum is over one positive and N
negative samples in Queue1. For brevity, we loosely use
the same notation for both the augmented version of in-
put x throughout the paper. This framework as shown in
Fig. 2, relies solely on standard transformations T and T ′

to learn discriminative video representation. ViewCLR goes

one step beyond to generate latent viewpoint representa-
tion of the input videos to learn representation invariant to
camera angles. This is achieved by invoking a viewpoint-
generator that projects a viewpoint of a video to another
arbitrary viewpoint. The question remains, how do we use
such a generator in the MoCo framework?

3.2. Viewpoint Generator
In this section, we describe our proposed viewpoint-

generator G whose working principle is similar to that of
NPL but adopted for unsupervised setting. First, we jus-
tify the design choice of architecture for ViewCLR. Note
that we aim at training an encoder with contrastive loss that
learns viewpoint invariant representation. The viewpoint-
generator is an additional module that can be placed as a
block at any intermediate position within the encoder or
on top of an encoder. But this design choice would ham-
per the representation learned by the encoder when we re-
move the viewpoint-generator for performing downstream
tasks. Therefore, ViewCLR introduces another branch in
the MoCo framework which consists of an encoder fg(·)
and the viewpoint-generator G. We decompose the encoder
with input x as fg(x) = fg

2 (f
g
1 (x)) where fg

1 (·) and fg
2 (·)

are parts of the encoder fg(·). We plug in our viewpoint-
generator module G with parameters θg in this stream.
In ViewCLR, first an augmentation transformation T ′′ of
the same video x is fed to the partial encoder fg

1 (·). Assum-
ing that we have a viewpoint-generator that can compute la-
tent viewpoint representation of a given feature map, fg

1 (x)
is then fed to the viewpoint-generator G. The output of this
module G(fg

1 (x)) is a representation of the video projected
in an arbitrary latent viewpoint. The idea is to utilize this
representation to train a viewpoint invariant video encoder,
so we infuse this feature G(fg

1 (x)) into the MoCo frame-
work by performing a Mixup [23] operation in the manifold
space.
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Fig. 2.

(I) Mixup for infusing the latent viewpoints. Earlier data
mixing strategies [60, 50, 58, 59] have shown that mix-
ing two instances enforces a model to learn discriminative
features by providing relevant contextual information. In
ViewCLR, we perform mixup between the output feature
map of the viewpoint-generator and the intermediate fea-
ture map of the encoder f(·). We use this strategy to infuse
the output of viewpoint-generator to the MoCo framework.
We perform the mixup in the manifold space as in [50]. Let
yi ∈ {0, 1}B be the virtual labels of the input xi and its aug-
mented version in a batch, where yi,i = 1 and yi,j ̸=i = 0.
Then, the (N + 1)− way discrimination loss for a sample
in a batch is:

LCL(xi, yi) = −yi,b · log
exp(f(xi) · k+/τ)
N∑
j=0

exp(f(xi) · kj/τ)
(6)

where b ranges from 1 to B. Thus, the video instances are
mixed within a batch for which the loss is defined as:

Lmix
CL ((xi, yi), (xr, yr), λ) = LCL(mix(xi, xr;λ), Y ) (7)

where Y = λyi + (1 − λ)yr, λ ∼ Beta(α, α) is a mixing
coefficient, r ∼ rand(B), and Mix() is the Mixup operator.
In ViewCLR, we perform mixup, i.e. simple interpolation
of two video cuboids in the feature space such that

Mix(xi, xr, λ) = λf1(x) + (1− λ)G(fg
1 (x)) (8)

where encoder f(·) is decomposed into f1(·) and f2(·). The
mixed feature is processed by the partial encoder f2(·) to
optimize the mixed contrastive loss presented in equation 7.
This is how, we infuse the latent viewpoint representation
G(fg

1 (x)) in the encoder f(·) to minimize the contrastive
loss as shown in Fig. 2.
(II)Latent 3D representation. The viewpoint-generator is
implemented using NPL and is presented in Fig. 3. Here, we
extend the notations introduced in section 2. The viewpoint-
generator learns the transformation matrices R, t, and the
3D space coordinates px,y using the temporal slices of the

spatio-temporal feature map fg
1 (x) as input frames. The

re-projection of each 3D World representation (for exam-
ple FW

1 ) is performed by estimating the camera matrix K
within a video. The 2D projected output when combined
across all the temporal slices, we obtain the latent viewpoint
representation G(fg

1 (x)) for video x. Different from NPL
in [38], the viewpoint-generator here learns the transforma-
tion matrices to optimize the mixed contrastive loss Lmix

CL .
The question remains, how does the viewpoint-generator
learns the world 3D representation? Although we do not
have the leverage to use action labels, but we propose to
mine positive samples from the dictionary queue (Queue1)
that encodes history of embeddings. Inspired from the as-
sumptions in [14, 27, 10], we take into account that the near-
est neighbor representation of x in Queue1 belongs to the
same action category. Consequently on one hand, we ob-
tain the Top-1 nearest neighbor of f(x) in Queue1 such that

NN(f(x),Queue1) = arg min
q∈Queue1

||f(x)− q||2 (9)

On the other hand, we encode the world 3D representation
of a video, referred to as FW in another dictionary queue,
namely Queue2. Note that the representation FW is ob-
tained by combining all the world 3D representation per
temporal slices in a video. In order to optimize the memory
requirement incurred in storing the world 3D representation
in Queue2, we use an auto-encoder with a reconstruction
loss to squeeze the (c+3)×T ×m×n world 3D represen-
tation of the video to a dlow dimensional embedding vector
(FW

inter). The details of this auto-encoder is provided in the
implementation details. Thus, the dlow dimensional vector
after L2-normalization is enqueued to Queue2 while main-
taining consistency with the embeddings in Queue1 (see
Fig. 2). Now, we reformulate 3D loss L3D presented in
equation 4 as

L3D = ||FW
inter(x)−Queue2(idx)||F (10)

where idx = NN(f(x),Queue1) represents the index
of the Top-1 nearest neighbor 3D world representation in
Queue2.
(III)Adversarial learning of the viewpoint-generator.
Although the viewpoint-generator learns relevant transfor-
mations and projection, it might be prone to learning view-
points similar to the original viewpoint of the input video x.
Thus, we adopt an adversarial learning to generate different
viewpoints as shown in Fig. 2. In contrast to the previous
two constraints, here we introduce the partial encoder fg

2 (·).
The adversarial learning of viewpoint-generator is achieved
by using a Gradient Reversal Layer (GRL) on top of fg

2 (·)
to maximize the following

max
θg

Ladv = Ex∼Px(|f
g
2 (G(f

g
1 (x)))− f(x)|F ) (11)

where Px is the data distribution of x. This adversarial loss
maximizes that the distance between the feature represen-
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tations f(x) and fg
2 (G(f

g
1 (x))), resulting in generation of

complementary camera viewpoints by G.

3.3. Training ViewCLR

Training ViewCLR is quite straightforward. We first
train an encoder f(·) using MoCo framework with infoNCE
loss for 300 epochs. Then, we introduce the third stream
with partial encoders fg

1 (·) and fg
2 (·) initialized with the

weights of f(·) and train them altogether with the summa-
tion of mixup contrastive loss Lmix

CL , 3D Loss L3D, adver-
sarial loss Ladv , and the reconstruction loss for another 200
epochs. This two stage learning enables the encoder to se-
lect semantically meaningful Top-1 nearest neighbor, hence
benefiting the viewpoint-generator to learn high quality 3D
world representation.

4. Experiments
In this section, we describe the datasets used in our ex-

perimental analysis, implementation details, and evaluation
setup. We present ablation studies to illustrate the effective-
ness of ViewCLR and also, provide a state-of-the-art com-
parison.

4.1. Datasets

Our dataset choices are based on multi-camera setups
in order to provide cross-view evaluation. So, we do not
make use of popular datasets like Kinetics-400 [18], and
UCF101 [45] to pre-train ViewCLR as the videos in these
datasets do not posses the view-point challenges we are ad-
dressing in this paper.
NTU RGB+D (NTU-60 & NTU-120): NTU-60 is acquired
with a Kinect v2 camera and consists of 56k video samples
with 60 activity classes. The activities were performed by
40 subjects and recorded from 80 viewpoints. For evalua-
tion, we follow the two standard protocols proposed in [41]:
cross-subject (CS) and cross-view (CV). NTU-120 is a
super-set of NTU-60 adding a lot of new similar actions.
NTU-120 dataset contains 114k video clips of 106 distinct
subjects performing 120 actions in a laboratory environ-
ment with 155 camera views. For evaluation, we follow
a cross-subject (CS1) protocol and a cross-setting (CS2)
protocol proposed in [29].
Northwestern-UCLA Multiview activity 3D Dataset
(NUCLA) is acquired simultaneously by three Kinect v1
cameras. The dataset consists of 1194 video samples with
10 activity classes. The activities were performed by 10
subjects, and recorded from three viewpoints. We per-
formed experiments on N-UCLA using the cross-view (CV)
protocol proposed in [52]: we trained our model on samples
from two camera views and tested on the samples from the
remaining view. For instance, the notation V 3

1,2 indicates
that we trained on samples from view 1 and 2, and tested on
samples from view 3.

4.2. Implementation Details

For our experiments with ViewCLR, we use 32 RGB
frames of resolution 128 × 128 as input, at 30 fps. For ad-
ditional data augmentation, we apply clip-wise consistent
random crops, horizontal flips, Gaussian blur and color jit-
tering. We also apply random temporal cropping from the
same video as used in [14]. For the encoder backbone f(·),
we choose S3D [55] architecture. For the third stream, the
viewpoint-generator is plugged after 3 blocks in S3D. So,
fg
1 (·) stands for the first 3 S3D blocks and fg

2 (·) stands for
2 S3D blocks. The input to the viewpoint-generator G(·)
is a 480 × 32 × 28 × 28 spatio-temporal tensor. We use
an NPL [38] and learn the transformation matrices for each
spatial tensor (480 × 28 × 28). This operation is iterated
over 32 temporal slices. The output of NPL from all the
time steps are concatenated to obtain FW (the 3D world
feature) and G(fg

1 (x)) for input x.
The auto-encoder in the viewpoint-generator involves pool-
ing FW temporally followed by flattening the features (de-
noted by Finter) and fed to two MLPs. The first MLP
projects the (c+ 3)×m× n dimensional vector to a lower
dimension dlow = 128 and then another MLP to upsample
the former to a (c + 3) × m × n dimensional vector. We
invoke a reconstruction loss to minimize the output of the
auto-encoder and Finter.
Hyper-parameters: α = 1.0 for mixup, momentum = 0.999
for momentum encoder and softmax temperature τ = 0.07.
The queue size of MoCo for pre-training is set to 2048. For
optimization, we use Adam with 10−3 learning rate and
10−5 weight decay. All the experiments are trained on 2
V100 GPUs, with a batch size of 32 videos per GPU.

4.3. Evaluation setup
For downstream task, we evaluate the pre-trained View-

CLR models for the task of action classification. We eval-
uate on (1) linear probe where the entire encoder is frozen
and a single linear layer followed by a softmax layer is
trained with cross-entropy loss, and (2) finetune where
the entire encoder along with a linear and softmax layer is
trained with cross-entropy loss. Note that the encoder f(·)
is initialized with the ViewCLR learned weights. More de-
tails for training the downstream action classification frame-
work is provided in the Supplementary.

4.4. Ablation Study
In this section, we empirically show the effectiveness

of our viewpoint-generator and the associated loss func-
tions introduced in ViewCLR. Our baseline model is MoCo
trained with only InfoNCE loss. In Table 1, we provide
the linear-probe and finetuned action classification results
on NTU-60 and NUCLA datasets. For our ablation studies,
we follow the evaluation protocol proposed in [49] as it bet-
ter represents the cross-view challenge. In this protocol, we
take only 0◦ viewpoint from the CS split for training, and
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Method
Linear Probe Fine-tune

NTU-60 NUCLA NTU-60 NUCLA
CVS1 CVS2 CVS3 V 1,2

3 CVS1 CVS2 CVS3 V 1,2
3

InfoNCE 28.9 20.0 20.4 37.6 82.5 74.4 73.8 81.0
ViewCLR 42.5 32.5 30.6 46.6 84.2 77.0 75.8 84.6

ViewCLR-L3D 37.5 27.1 24.9 40.3 83.2 75.7 74.5 82.9
ViewCLR-LAdv 39.2 30.3 28.1 45.8 83.8 76.5 75.4 84.1

ViewCLR-LAdv-L3D 32.6 24.9 23.8 43.9 82.9 75.1 74.1 82.2
ViewCLR-T ′′ 42.1 31.9 30.2 45.9 84.1 76.8 75.5 84.3

Table 1: Ablation Study of ViewCLR by evaluating on NTU-60 (CVS protocol) and NUCLA datasets for the task of action
classification. All the baseline MoCo models with InfoNCE loss are trained for 500 epochs. Whereas, the ViewCLR models
are initialized with InfoNCE models trained for 300 epochs and then trained with the additional losses for 200 epochs. The
results are provided for Linear-probe and fine-tuned evaluation setup. All the methods are trained in an unsupervised manner.

we test on the 0◦, 45◦, 90◦ views of the cross-subject test
split. We call this protocol crossview-subject CVS1, CVS2,
and CVS3 respectively. Our focus is mainly to improve for
the unseen and distinct view of 45◦ and 90◦. The models
trained on NUCLA are initialized with NTU-60 pre-trained
weights.
In Table 1, we show that ViewCLR outperforms traditional
contrastive model (MoCo) on linear-probe evaluation by a
significant margin for both seen (CSV1) and unseen scenar-
ios. The relative improvement on seen camera view-point
is 47% whereas it is upto 62.5% on unseen camera view-
point on NTU-60. The improvement is also consistent for
the fine-tuned models. Next, we provide a full diagnosis of
ViewCLR to understand the driving force of this improve-
ment.
We remove the 3D Loss that encourages the representation
of the videos to project in the same 3D world coordinate
system. This model is indicated by ViewCLR-L3D. By de-
fault, we also remove the autoencoder and consequently the
reconstruction loss from this model. Thus, the viewpoint-
generator computes feature map G(f1(x)) with the adver-
sarial loss to minimize the mixed contrastive loss. Although
the performance of this model is superior to the baseline
MoCo model but we show that the absence of the proposed
3D Loss significantly hampers the performance. Thus,
the learned representations from the viewpoint-generator
highly relies on our proposed 3D Loss. Conversely, we re-
move the adversarial loss and retain the 3D loss in View-
CLR (referred to as ViewCLR-Ladv). This experiment fur-
ther confirms the effectiveness of our proposed 3D loss. The
performance gap of ViewCLR-Ladv model w.r.t. ViewCLR
is owing to the adversarial loss that enables G to generate
latent viewpoint dissimilar to the original viewpoint. Fi-
nally, we pre-train ViewCLR by removing the viewpoint-
generator in the third stream. So, the third stream only pro-
vides feature to perform manifold mixup of the features.
This model (ViewCLR–Ladv–L3D) is trained only with the
mixup contrastive loss Lmix

CL . This model further corrobo-
rates the effectiveness of the viewpoint-generator. Thus, we
show that all the components of ViewCLR along with the

Method NTU-60 NUCLA NTU-120
CS CV V 1,2

3 CS1 CS2

Supervised (S3D) [55] 85.1 86.9 81.3 77.6 80.9
ρ-BYOL (SSL) [11] 87.1 89.7 87.1 80.9 82.4

ViewCLR (ρ-BYOL) 89.5 92.9 89.1 83.8 85.7
MoCo (SSL) [17] 87.5 91.3 87.2 81.1 83.3

ViewCLR (MoCo) 89.7 94.1 89.1 84.5 86.2
K400 pre-trained S3D (SSL) 90.1 92.3 88.6 85.1 84.9

Table 2: Comparison of ViewCLR with representative base-
lines by finetuning the encoders for action classification. All
the SSL models on NUCLA are pre-trained with NTU-60.
K400 pre-trained S3D is pre-trained on Kinetics-400 using
MoCo [17].

proposed losses are instrumental for learning viewpoint in-
variant video representation.
In addition to the above ablations, we also perform
the ViewCLR experiments with two transformations
(ViewCLR-T ′′) as in MoCo and feed the same encoder data
(generated by T ′) to the Viewpoint Generator. This exper-
iment shows that a minor performance gain in ViewCLR is
also attributed to the additional views w.r.t. MoCo.

4.5. Comparison to the state-of-the-art
Most of our state-of-the-art (SOTA) comparison includes

self-supervised approaches using 3D Poses since cross-
view datasets like NTU RGB+D and NUCLA are popular
for skeleton based action recognition. To provide an exten-
sive SOTA comparison, we also present the supervised ap-
proaches using (i) models pre-trained on large datasets like
Kinetics-400, and (ii) multi-modal (RGB + Poses) informa-
tion.
Comparison with representative baselines. In Table 2, we
present the action classification performance of ViewCLR
along with the representative baselines on NTU-60, NU-
CLA and NTU-120 datasets. Our representative baselines
are (i) S3D [55] encoder trained from scratch with randomly
initialized weights, (ii) S3D encoders pre-trained using SSL
methods like MoCo [17] and ρ-BYOL [11], and (iii) S3D
encoder trained on large-scale Kinetics [18] dataset using
SSL method MoCo. All the SSL models on NUCLA are
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Figure 4: Partial fine-tuning results of ViewCLR vs. 3s-
CrosSCLR on NTU-60 (CS). Two ST-GCN blocks in 3s-
CrosSCLR are fine-tuned for every one block of S3D in
ViewCLR.

pre-trained with NTU-60. In Table 2, we adapted ViewCLR
with another SSL strategy BYOL following the implemen-
tation provided in [11]. Details of this adaptation is pro-
vided in the supplementary. Although, ρ-BYOL cannot sur-
pass the action classification performance when compared
with SSL using MoCo owing to small scale data training.
But ViewCLR variant with BYOL outperforms the super-
vised and SSL baselines. This improvement is even more
significant for the ViewCLR with MoCO. Thus, the effec-
tiveness of ViewCLR with BYOL and MoCo shows its ro-
bustness to different SSL methods. Moreover, we find that
ViewCLR achieves competitive results with encoders pre-
trained with large-scale Kinetics [18] dataset. In fact, for
challenging cross-view protocols, ViewCLR outperforms
encoder using extra data of the scale of Kinetics. This shows
the importance of ViewCLR type SSL w.r.t. primitive pre-
training schemes with large-scale dataset for learning view-
point invariant features.
Linear Probe on NTU-60. In Table 3 (at left), we present
the linear-probing on NTU-60 where ViewCLR signifi-
cantly outperforms the MoCo model, however lags behind
other self-supervised skeleton based methods [34, 27] and
also Motion decoder [25] which leverages optical flow in-
formation. Poses and Optical Flow cues characterize highly
prominent patterns pertaining to the viewpoint. So, the
methods [39, 46, 34, 25, 27] exploiting these cues outper-
form ViewCLR with RGB input in Table 3. However, both
these cues require additional compute and (supervised) pose
data labels. Also, they lack appearance information which
is encoded by RGB. As a result, all these methods are out-
performed by ViewCLR when the pre-trained encoder is
fine-tuned (see Table 3). Moreover, a recent article [16]
suggested that Linear Probe evaluation misses the oppor-
tunity of pursuing strong but non-linear features and thus
they proposed a new partial fine-tuning protocol. Following
this new protocol, we fine-tune the last S3D block of View-
CLR against two ST-GCN blocks of 3s-CrosSCLR while
freezing the other blocks on NTU (CS protocol). We find

Figure 5: Visualization of the learned Projections for differ-
ent scenarios. The learned camera view is fixed and treated
as the origin of the world coordinate system while trans-
forming the learned projections.

that finetuning only one S3D block of ViewCLR boosts the
accuracy significantly from 57.0% to 81.1% outperform-
ing 3s-CrosSCLR that yields 79.6% accuracy. We present
the full partial fine-tuning results of ViewCLR vs. 3s-
CrosSCLR in Fig. 4.
Finetuned Results on NTU-60. In Table 3 (at right), we
present the comparison to the SOTA methods on NTU-60
dataset in which ViewCLR outperforms all the unsuper-
vised methods. In order to compare with the models us-
ing RGB and Poses, we perform a late fusion of ViewCLR
with logits obtained from a skeleton based action recogni-
tion model, CTR-GCN [24]. Our ViewCLR + Poses model
outperforms all the SOTA results. It also indicates the com-
plementary nature of our RGB based ViewCLR model and
the skeleton based CTR-GCN model.
Transfer Ability. In Table 4, we present the SOTA results
of NTU-60 pre-trained ViewCLR on NUCLA and NTU-
120 datasets. The action classification accuracy on both the
datasets are on par with the SOTA methods which show the
generalization capability of ViewCLR. Skeleton cloud col-
orization [57] outperforms ViewCLR on NUCLA as it takes
into account a high dimensional point cloud input which
enables this method to address self-occlusions present in
this dataset. However, this method fails to generalize over
large-scale dataset like NTU-60. ViewCLR + Poses outper-
forms methods like STA [8] and VPN [9] which are pre-
trained on ImageNet + Kinetics-400 (INK) in contrast to
self-supervised NTU-60 ViewCLR pre-training. In Table 4
(at right), we show that the performance of downstream task
enhances with increase in the size of pre-trained data. The
performance of ViewCLR improves by upto 1.9% on NTU-
120 when the size of the pre-trained data increases from
34K to 55k video samples.
Qualitative Analysis. In Fig. 5, we provide a visualization
of the learned camera for three samples with same action
but different viewpoint and different action with same view-
point. We fix the learned camera position to represent it as
the origin of the world coordinate system and transform the
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Method Modality NTU-60
CS CV

LongTGAN [62] Poses 39.1 48.1
MS2L [26] Poses 52.6 -

AS-CAL [39] Poses 58.5 64.8
P&C [46] Poses 50.7 76.3

SeBiReNet [34] Poses - 79.7
Motion decoder [25] Flow 77.0 78.8
3s-CrosSCLR [27] Poses 77.8 83.4

MoCo [17] RGB 30.5 33.5
ViewCLR RGB 57.0 60.2

Method Modality NTU-60
CS CV

Supervised [9] RGB + Poses 93.5 96.2
MS2L [26] Poses 78.6 -

3s-CrosSCLR [27] Poses 86.2 92.5
Motion Decoder [25] Depth 68.1 63.9

Colorization [57] Depth 88.0 94.9
Motion Decoder [25] Flow 80.9 83.4
Motion Decoder [25] RGB 55.5 49.3

ViewCLR RGB 89.7 94.1
ViewCLR+Poses RGB + Poses 93.7 97.0

Table 3: Linear Probe (at left) and Fine-tune (at right) action classification results of unsupervised methods on NTU-60. The
approaches with Pose and Flow inputs are inherently at an advantage in linear probing as their inputs become more similar
across viewpoints with additional compute and training data. Whereas, ViewCLR outperforms all the unsupervised methods
when fine-tuned.

Method Modality NUCLA
V 1,2
3

Su
pe

r. CTR-GCN [6] Poses 96.5
Separable STA [8] RGB + Poses 92.4

VPN [9] RGB + Poses 93.5

U
ns

up
er

.

MS2L [26] Poses 86.8
Motion Decoder [25] Depth 62.5

Colorization [57] Depth 94.0
ViewCLR RGB 89.1

ViewCLR+Poses RGB + Poses 97.2

Method Modality NTU-120
CS1 CS2

Su
pe

r. CTR-GCN [6] Poses 88.9 90.6
Separable STA [8] RGB + Poses 83.8 82.5

VPN [9] RGB + Poses 86.3 87.8

U
ns

up
er

. AS-CAL [39] Poses 48.6 49.2
3s-CrosSCLR [27] Poses 80.5 80.4

ViewCLR† RGB 82.1 84.3
ViewCLR RGB 84.5 86.2

ViewCLR+Poses RGB + Poses 91.1 92.3

Table 4: Comparison to the SOTA results on NUCLA and NTU-120. The supervised methods using RGB + Poses modalities
presented in these tables are pre-trained with ImageNet1K + Kinetics labels in contrast to our unsupervised pre-training. All
unsupervised NUCLA models are pretrained on NTU-60 and ViewCLR† is pre-trained on NTU-60.

2D projections accordingly. We notice that this latent view-
point projection differs for different actions captured from
the same viewpoint and similar for the same action captured
from different camera viewpoint.

5. Related work
Self-supervised video representation. For learning

self-supervised video representation many works have ex-
ploited the temporal structure of the videos, such as pre-
dicting if frames appear in order, reverse order, shuffled,
color-consistency across frames, etc [21, 22, 12, 36, 33, 54,
53, 51, 40]. On the other hand, some methods have been
taking advantage of the multiple modalities of videos like
audio, text, optical flow, etc by designing pretext tasks for
their temporal alignment [7, 20, 2, 35, 37, 32, 1]. Whereas,
very less attention is given towards learning viewpoint in-
variant video representation which is crucial for real-world
applications.
View Invariant Action Recognition. With the advance-
ments in the field of Graph Convolutional Networks [19]
and the availability of abundant 3D Pose data [41], many
works have studied skeleton based action recognition [56,
47, 43, 44, 24, 30, 6]. These skeleton based methods are
robust to viewpoint changes due to their extension across
depth dimension. Furthermore, to encode appearance in-
formation in contrast to the Pose based features, several
multi-modal approaches utilizing both RGB and Poses have
been proposed in [42, 28, 31, 3, 4, 8, 9]. Recently, sev-
eral skeleton based self-supervised methods have been pro-

posed in [26, 62, 39, 46, 34]. CrosSCLR [27] performing
positive mining across different views (joints, bones, mo-
tion) is one of the effective skeleton based self-supervised
model till date. However, these methods utilizing 3D poses
are limited to indoor scenarios or availability of high qual-
ity poses which is impractical for real-world applications.
In contrast, ViewCLR learns viewpoint invariant represen-
tation using RGB input only, thus encoding appearance in-
formation. Most similar to our work, NPL [38] is a geomet-
ric based layer to learn 3D viewpoint invariant representa-
tion in supervised settings. Different from NPL, ViewCLR
can be considered as an augmentation tool for learning self-
supervised viewpoint invariant representation.

6. Conclusions
We have shown that a complementary viewpoint gener-

ation of a video while learning self-supervised video rep-
resentation can significantly improve the learned represen-
tation for downstream action classification task. We pre-
sented ViewCLR that learns latent viewpoint representation
of videos through a viewpoint-generator while optimizing
the self-supervised contrastive loss. Our experiments show
the importance of each component of ViewCLR and also
confirm its robustness to unseen viewpoints. We believe
that ViewCLR is a first step towards generalizing the unsu-
pervised video representation for unseen camera viewpoints
and hence, will be a crucial takeaway for the vision commu-
nity.
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