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Abstract

This paper presents an approach to train a unified deep
network that simultaneously solves multiple human-related
tasks. A multi-task framework is favorable for sharing in-
formation across tasks under restricted computational re-
sources. However, tasks not only share information but
may also compete for resources and conflict with each other,
making the optimization of shared parameters difficult and
leading to suboptimal performance. We propose a simple
but effective training scheme called GradSplit that alleviates
this issue by utilizing asymmetric inter-task relations. Specif-
ically, at each convolution module, it splits features into T
groups for T tasks and trains each group only using the
gradient back-propagated from the task losses with which it
does not have conflicts. During training, we apply GradSplit
to a series of convolution modules. As a result, each module
is trained to generate a set of task-specific features using the
shared features from the previous module. This enables a net-
work to use complementary information across tasks while
circumventing gradient conflicts. Experimental results show
that GradSplit achieves a better accuracy-efficiency trade-off
than existing methods. It minimizes accuracy drop caused by
task conflicts while significantly saving compute resources in
terms of both FLOPs and memory at inference. We further
show that GradSplit achieves higher cross-dataset accuracy
compared to single-task and other multi-task networks.

1. Introduction
Comprehensive understanding of human appearances

is critical for various vision applications. In recent few
years, impressive progress has been made for various human-
related tasks, such as person re-identification [50], pedestrian
detection [7, 47], and pose estimation [1, 45]. However, most
existing works focus on individual tasks only and lack the
ability to jointly investigate multiple tasks. Similarly, most
existing datasets are annotated for individual tasks and do
not provide complete annotations for various tasks.

In this paper, we study a unified framework that solves
multiple human-related tasks simultaneously. We consider
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Figure 1. Traditional multi-task learning can encounter task con-
flicts, e.g., when jointly training identity-variant (body attributes)
and identity-invariant (body pose) tasks. Our goal is to train a
unified network that solves multiple human-related tasks while
avoiding such task conflicts. Given an image, the proposed network
provides a rich explanation of the person, including attributes, pose,
part masks, and identity. We assume a practical condition where
the multi-task networks are trained across datasets and each dataset
does not necessarily have exhaustive annotations for all tasks.

a practical condition where each training dataset contains
annotations for a single task only, as illustrated in Figure 1.
The desired framework would utilize the mutual information
across tasks and save the memory and computation cost via
the shared network architecture. However, gradient signals
useful for one task may negatively affect other tasks, causing
conflicts when training a multi-task model with a shared
backbone. For example, pose estimation needs pose-variant
features, whereas person re-identification demands pose-
invariant features. This results in training difficulty and thus
leads to sub-optimal overall performance.

To address this issue, existing methods [15, 26, 30, 21,
31] integrate task-specific modules into the shared backbone
to generate task-specific features. In this work, we also en-
courage the shared network to learn task-specific features for
human-related tasks. However, instead of using additional
modules, we achieve this using a simple training scheme.
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For each convolution module in the shared backbone, we
split its filters along the output channel into T groups for T
tasks (Fig. 2). At each iteration, each group is updated by
gradients only from the tasks that do not have conflict with
its assigned task. Specifically, we define the asymmetric
relation t′ → t between tasks t and t′ by comparing the
validation accuracy of two models for task t. If the model
trained solely with task t achieves higher accuracy than the
one trained jointly with both tasks, we define the relation
as “negative”. When updating the tth filter group, we mask
gradients back-propagated from tasks that have negative re-
lations with task t. We dub it Gradient Split (or GradSplit)
as it divides gradients into groups during updates.

It is worth noting that GradSplit only applies to filters
during back-propagation – the forward pass is the same as
the baseline. This naturally brings three benefits. First, the
task-specific filters can still use information from other tasks
as it receives features produced from the other task-specific
filters. In addition, there are no additional parameters or
computational overhead at inference time. Lastly, it does not
require comparisons of gradients from all task losses [46, 5]
and thus simplifies the training procedure, especially for the
case of dealing with multiple single annotation datasets. As
a minor contribution, we provide a strong multi-task baseline
by analyzing the normalization layers in the shared backbone.
It effectively alleviates the domain gap issue when learning
from multiple datasets of different domains.

We evaluate GradSplit on several combinations of tasks
from four human-related tasks, i.e., pose estimation, attribute
recognition, person re-identification, and body part parsing.
Experiments show that GradSplit minimizes accuracy drop
from task conflicts while significantly saving compute re-
sources in terms of both FLOPs and memory at inference.
Compared with existing methods, GradSplit achieves a bet-
ter accuracy-efficiency trade-off. Furthermore, GradSplit
gains higher cross-dataset performance compared to both
single-task and other multi-task networks.

2. Related Work

2.1. Human Analysis

Many task-specific datasets and solutions have been pro-
posed for various human analysis tasks, such as pedes-
trian detection [7, 47], person re-identification [50, 35, 37],
body pose estimation [1, 45], human body parsing [11],
and body attribute recognition [22]. Several of the meth-
ods attempt to address multiple tasks together. However,
most of them focus on enhancing the main task using aux-
iliary tasks, such as body attributes [20, 39], and human
poses to enhance person re-identification by learning pose-
invariant features [49, 34, 43] as well as guiding feature
extraction [34, 43]. We aim at tackling every task equally
important and developing a unified model that solves multi-

ple tasks simultaneously.

2.2. Multi-Task Learning

Multi-task learning aims to train a unified model for mul-
tiple tasks [41, 17, 24]. It is desirable because it can reduce
the computation resource (e.g., memory and run time) by
sharing modules across tasks and can utilize knowledge
across tasks to learn richer representations. However, during
training, gradients from different tasks may conflict with
each other and cause sub-optimal solutions. We categorize
the literature of multi-task learning according to each of the
focus as below.

Optimization From optimization perspective, methods
have been proposed to reduce the gradient conflict. Some
methods compare directions of gradients and discard conflict-
ing components to make them aligned [46, 5, 42]. Maninis et
al. [26] enforced the task gradients to be statistically indistin-
guishable from each other through adversarial training. They
typically require comparing gradients from the same image
or domain, whereas task gradients may arise from different
domains in our setting. In the above methods, each filter is
updated using manipulated gradients that aggregate from all
tasks, following a specific task-agnostic rule. In contrast,
we explicitly assign a set of tasks to each filter and drops
gradients from other tasks if they conflict to the assigned
one. As a result, each filter is enforced to fit its dedicated
task throughout the training, whereas dominant task of each
filter can continuously vary during training in other works.

Loss Balancing Since task losses have different magni-
tudes and their relative magnitudes may vary during training,
methods have been proposed to adjust task weights that
minimize prediction uncertainty [16] and match gradient
scales [4]. Other approaches formulate multi-task learn-
ing as a multi-objective optimization problem and seek for
Pareto optimal solutions [32, 19, 25]. They are complemen-
tary to our method and could be potentially combined for
better performance, but is out of the scope of this study.

Architecture Design Beyond the basic architecture that
consists of a common feature extractor and task-specific
heads, multi-stream architectures [27, 10] consisting of
multiple single-task streams and interaction modules show
promising performance. In contrast, Liu et al. [21] pro-
posed to share a common feature extractor with task-specific
attention modules. Some works study a way to find com-
binations of tasks that benefits each other when trained to-
gether [33, 8]. Moreover, a controllable multi-task network
is proposed in [29]. The network dynamically adjusts its ar-
chitecture and weights to match the desired task preference
and the resource constraints. Recently, network architec-
ture search (NAS) techniques are developed to learn how to
branch [12], select task-specific paths [36], and select rele-
vant inter-connections between task-specific networks [9].
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Figure 2. An overview of the proposed framework. The network consists of a shared backbone and task-specific head modules. For each
convolution module in the shared backbone, we split its filters along the output channel into T groups for T tasks (e.g., θt for tth task).
GradSplit manipulates the gradient of each task loss with respect to every group of filters according to the relation mask defined by the
paired task relationship (Section 3.1). GradSplit ensures the gradients from the tth task loss to affect the selected filters only (marked as red
blocks in the middle). It encourages each filter group to be beneficial to the assigned task, while alleviating the potential conflict issue. Note
that this training scheme changes the backward pass only, thus forward pass remains the same. Best viewed in color.

This paper uses a simple architecture: all tasks share a com-
mon backbone and have separate task-specific heads. We
focus on mitigating task conflicts on the shared backbone.

Task-specific Feature Learning The study proposes to
learn task-specific attention modules [26], task-specific fea-
ture scaling [15], or task-specific masks [28]. These methods
need to pass the inputs through the network several times
as task-specific intermediate features are not shared. In con-
trast, our method only needs one forward pass to predict
all the tasks and saves computation cost in the inference,
especially when a large backbone architecture is used. Brag-
man et al. [2] propose stochastic filter grouping (SFG) that
learns to group filters into task-specific or task-agnostic ones
in a stochastic manner. Compared with the above meth-
ods, which use task-specific features for the dedicated task
only, our method enjoys richer representations by sharing
the learned task-specific features across tasks.

3. Method
Overview Our aim is to train a unified model that solves
multiple human body-related tasks simultaneously. We seek
optimal parameters Θ that minimize the joint task loss L,

min
Θ

L(Θ) =

T∑
t=1

λtLt(Θ), (1)

where T and Lt denote the number of tasks and tth task
loss, respectively. In this work, we assume a multi-head
network which shares a common backbone across tasks and
has task-specific heads as illustrated in Fig. 2.

When training a multi-head network, the shared backbone
is updated using the gradients back-propagated from all the
task losses. It is commonly observed that a multi-task model
achieves sub-optimal accuracy compared to single-task mod-
els [46, 5, 15]. This is potentially due to conflicts across the
tasks. To mitigate this issue, we propose a training scheme,

GradSplit, that reduce interference among tasks during gra-
dient propagation. Instead of using all the task gradients to
update every filter of convolution in the shared backbone,
GradSplit utilizes asymmetric pairwise relations between
tasks to selectively mask gradients and avoid conflicts.

3.1. GradSplit

Asymmetric Inter-task Relationship The asymmetric
inter-task relationship is defined by measuring the impact
of tasks on each other. We first train two models with the
same backbone architecture with different task heads, where
a single-task network is trained for task t and a multi-task
network is trained to jointly minimize losses of tasks t and
t′. Then, we measure the impact of task t′ on task t based
on the relative accuracy change At′→t =

acct|{t,t′}−acct|{t}
acct|{t} ,

where acct|{t, t′} is the accuracy on task t of a multi-task
network trained on tasks t and t′, acct|{t} is the accuracy of
a single-task network trained on task t. A positive value of
At′→t indicates that the training along with task t′ results
in performance increase on task t, while a negative value
indicates that performance decreases on task t. Based on the
relative accuracy change, we determine the directive relation
t′ → t. Concretely, if At′→t is smaller than a threshold τ ,
the directive relation t′ → t is defined as negative. Formally,
we represent the relations using m ∈ {0, 1}T×T :

mtt′ =

{
0 if t ̸= t′and relation t′ → t is negative
1 otherwise.

(2)

Note that this relationship can be asymmetric if joint train-
ing affects each task performance in an opposite way, e.g.,
Attribute→ Pose is negative, while Pose→ Attribute is not
negative. In practice, we enable the network to tolerate a
relatively small accuracy drop. Thus, we use τ = - 0.01,
which works stably and effectively in the experiment.
Inter-task Relationship based Gradient Update Con-
sider a convolution with ci input channels and co output
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channels, parameterized by θ ∈ Rh×w×ci×co . It contains co
filters and each filter produces one feature map, where h and
w indicates height and width, respectively. Based on Eqn. 1,
the standard stochastic gradient descent is formulated as:

θ ← θ − α
∑
t

∇θLt. (3)

Since it averages gradients from different tasks, it may cancel
out useful signals if the tasks conflict and thus potentially
degrade the performance.

To alleviate this issue, GradSplit exploits inter-task rela-
tionship to manipulate gradient. Given T tasks, we divide
filters into T groups and assign each group explicitly to one
task. We denote the parameters assigned to the tth task as
θt ∈ Rh×w×ci×nt , where nt = ⌊co/T ⌋ is the number of
output channels assigned to the task t. Then, one iteration of
parameter update using GradSplit is formulated as:

θt ← θt−α∇GS
θt L, where ∇GS

θt L =
∑
t′

mtt′∇θtLt′ . (4)

It updates parameter θt using the gradients from only a subset
of tasks {t′}, where the relationship task t′ → t is not
negative, while discarding gradients from the other tasks.

GradSplit does not influence the forwarding procedure
while affecting only the gradient updating procedure. As
a result, it is easily applicable to any convolution layers
without modifying the network structure. In the experiment,
we apply GradSplit to the last layer (e.g., Layer4 of ResNet-
50) of the shared backbone which empirically leads to the
best performance (shown in Table 4).

Intuitive Understanding of GradSplit as Regulariza-
tion Consider manipulating gradients with respect to θt as
weighted linear sum of task gradients, i.e.,

∑
t′ wt′∇θtLt′ .

When wt′ is a stochastic binary mask, it is equivalent
to dropping-out gradients [40] with specifically designed
dropout masks with the drop rate p ∈ [0, 1]. When wt′ =
mtt′ , this becomes equivalent to GradSplit, which is an
extreme case when p → 1. Thus, GradSplit can be also
interpreted as a regularizer, as it drops out gradients with
specific masks and injects noise to gradients during training.

3.2. Training with Multiple Task-Specific Datasets

We assume a practical setting where each dataset contains
annotations for a single task. Under this condition, a model is
trained using multiple datasets whose images from different
datasets present unique visual characteristics for background,
lighting and resolutions. Eqn.(1) is further specified as:

min
Θ

T∑
t=1

λtEDt
[ℓt(fΘ(Xt), Yt)], (5)

where ℓt and fΘ denote task t loss function and prediction
function, respectively.

Round-Robin Batch-Level Update We adopt round-robin
batch-level update regime [24] for optimization. One multi-
task iteration consists of a sequence of forwarding each task
batch and updating parameters. It is flexible enough to allow
different input sizes for different tasks and also scales to the
number of tasks with constrained GPU memory.

Domain Gaps between Training Datasets With round-
robin batch construction, a mini-batch for task t consists of
images sampled from the distribution Dt. The empirical loss
is computed as:

T∑
t=1

∑
Bt

1

|Bt|
∑

xt∈Bt

ℓt(fΘ(xt), yt), (6)

where Bt denotes a mini-batch sampled for task t. Mean-
while, batch normalization (BN) is widely adopted for state-
of-the-art network architectures such as EfficientNet [38]
and ResNet [13]. Note that BN uses running batch statistics
during training and accumulated statistics during inference,
with i.i.d. mini-batch assumption. Due to domain gaps be-
tween datasets, running BN statistics used to compute task t
loss for mini-batch Bt follow different distributions across
tasks during training, whereas common BN statistics are
accumulated over tasks and used in the testing stage. We
find that such BN statistics mismatch between training and
testing stage degrades performance significantly.

As one candidate solution, task-specific BN [3] mitigates
this issue by using separate BN modules for different tasks
while sharing the remaining convolutions. However, features
following the first task-specific BN cannot be shared across
tasks and require N forward passes for N tasks, which in-
creases the computational cost. Another solution is to fix
BN statistics during training, however, we empirically find
this practice is also not suitable. Instead, we use group
normalization (GN) [44] in the shared backbone, which can
circumvent the above issue. In our experiments, we observed
dramatic gains from this choice as shown in the large accu-
racy gap between two backbone choices (ResNet-50-BN vs.
ResNet-50-GN) for the multi-head baseline in Table 2.

4. Experiments

4.1. Experimental Settings

Task setup In this work, we seek to learn a single network
that solves several human-related tasks. In the experiment,
we choose four representative tasks including both dense pre-
diction tasks (human pose estimation and parsing) and image-
level tasks (person re-identification and attribute recognition).
In all experiments, each task is trained and tested on the dif-
ferent splits of the same dataset. Under this setting, there
exist domain gaps among different tasks, but there is no
domain gap between training and testing set for each task.
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Datasets and metric: (I) PA-100k dataset [22] contains
100,000 pedestrian images in total. Each image is annotated
with 26 commonly used attributes. We report results for
Attribute recognition on this dataset. We use mean accuracy
(MA) as the evaluation measure.
(II) Market-1501 [50] contains 12,936 training images and
19,732 gallery images. 751 identities are for training and 750
identities for testing. There are 3,368 images from the 750
identities used as queries. We apply this dataset for person
re-identification (ReID). Rank-1 accuracy and mAP score
are reported as the evaluation metrics.
(III) MPII dataset [1] is used for Pose estimation. This
dataset contains 24,920 scene images and 40,522 annotated
persons (28,821 for training and 11,701 for the test). Each
person has 16 labeled body joints. We adopt the standard
Percentage of Correct Keypoints (PCK) measurement as the
evaluation metric. Specifically, we measure PCKh@0.5 for
individual joints and report the average of them.
(IV) LIP [11] is used for training the human Parsing task,
which consists of pixel-level annotations of 20 semantic
human parts (including one background label) from 50,462
images. We follow the standard training/validation split
(30,462/10,000) setting and report mIoU score and mean
accuracy (Mean Acc.) to evaluate the parsing performance.
Overall multi-task performance We report the summary
of multi-task performance following [15, 26]. We measure
the performance gain obtained by a multi-task network m
compared to the reference single-task networks s: ∆m =
1
T

∑T
i=1(−1)li

Mm,i−Ms,i

Ms,i
, where li = 1 if a lower value

means better performance for metric Mi of task i, and 0
otherwise. T is the total number of tasks.
Implementation details We use Pytorch for all the exper-
iments. The ResNet-18-GN and ResNet-50-GN [44] pre-
trained on ImageNet [6] are used as the shared backbone
networks. The PSP structure [48] is used as a head network
for Parsing task. For Pose, we follow the encoder-decoder
structure proposed in Xiao et al. [45]. Finally, we use head
structure of “Conv-BN-FC” and “Conv-FC” for ReID and
Attribute, respectively. The Pose head module is initialized
from normal distribution followed the practice in [45], and
the remaining head modules use kaiming initialization. We
used separate optimizers for tasks following [18]. We train
the network using a linear warm-up for the initial 3 epochs
and then switch to cosine learning rate decay with 10 anneal-
ing cycles [23] for the remaining 100 epochs. Each epoch
includes 1,000 major iterations, in which we learn each task
sequentially. We tried different update frequencies for tasks
to handle the different difficulties but empirically observed
only slight difference in performance. Thus we used uni-
form weights in all the experiments for simplicity. We set
the initial learning rate to 0.001 and batch size to 64. We use
threshold τ= -0.01 to define the pairwise relations among
four human-related tasks and summarize them in Table 1.

Table 1. Asymmetric pairwise task relations across four human
body-related tasks. Each entry (t′, t) corresponds to the relation
t′ → t. Negative relation is indicated using ↓. Empty entries
denote that performance drop of task t is smaller than a threshold
τ=-0.01 when trained together with task t′.

Performance On
Attribute ReID Pose Parsing

Tr
ai

ne
d

W
ith Attribute − ↓ ↓ ↓

ReID ↓ − ↓ ↓
Pose − − − −

Parsing − − − −

Single-task networks Multi-task models have a accuracy-
efficiency trade-off. A naı̈ve solution for multi-task learning
is to employ a set of networks where each network is dedi-
cated to one task. We compare with two sets of single-task
networks with different network capacities. (I) using ResNet-
18 models as a baseline: each for one of the four tasks. It has
63M parameters which is larger than the proposed model of
52M on the four-task setting. (II) using ResNet-50 models
as an an upper bound for calculating the multi-task perfor-
mance ∆m as it shares the same backbone architecture with
our multi-task model.

4.2. Domain Gaps between Training Datasets

Discussion on the backbone choice of multi-task models
Training using multiple datasets causes a subtle normaliza-
tion problem as discussed in Section 3.2. This motivates us
to use choose a backbone with appropriate normalization.
Specifically, the backbone is expected to 1) does not intro-
duce extra parameters or computational cost and 2) mitigate
the influence caused by domain gap and achieve reasonably
good multi-task accuracy.

In Table 2, we report the results of networks with BN,
TBN, and GN. First, we observe that BN is relatively suit-
able for single-task networks, achieving higher or compara-
ble performance compared to its GN-based counterparts (row
1-4). Second, due to the reason discussed in Section 3.2,
using BN in a multi-task network significantly degrades per-
formance amongst all tasks. For example, using BN in the
multi-head baseline is 16.1% lower than using GN in mAP
on ReID. Third, using TBN [3] as backbone (i.e., ResNet-50-
TBN) can mitigate the domain gaps and achieves comparable
accuracy with GN on all tasks. However, TBN uses separate
BN modules for different tasks, which increases the com-
putation cost for inference: it needs 41G FLOPs under the
four-task setting, while using GN only requires 18G FLOPs.
Based on the above analysis, we use the backbone with GN
to build up solid multi-head baselines.
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Table 2. Method comparison under four-task setting. We report MA score (%) for Attribute on PA-100K [22], mAP (%) on Market-1501
[50] for ReID, Mean PCKh@0.5 (%) on MPII [1] for Pose, mIoU (%) on LIP [11] for Parsing. We also report overall multi-task performance
∆m (%, see Section 4.1), which indicates the average relative improvement over the single-task baselines (ResNet-50-GN). * denotes using
task specific batch normalization (TBN) [3] in the backbone. The best overall multi-task performance is in bold.

Methods Backbone
ReID Attribute Pose Parsing ∆m

(↑)
#Param
(M) ↓

#FLOPs
(G) ↓mAP (↑) MA (↑) Mean (↑) mIoU (↑)

Single-task Networks
(Upperbound)

ResNet-50-GN 81.1 78.0 88.2 45.6 +0.0 123 41
ResNet-50-BN 83.0 78.3 88.4 45.4 – 123 41

Single-task Networks
(Baseline)

ResNet-18-GN 74.9 76.9 87.0 42.4 – 63 24
ResNet-18-BN 74.2 74.2 87.4 41.9 – 63 24

NDDR [10]
ResNet-18-GN

67.4 76.4 86.8 41.7 -7.3 68 26
Cross-stitch Network [27] 67.0 76.0 87.0 41.2 -7.7 63 24

RCM [15]

ResNet-50-GN

54.9 68.1 69.0 36.1 -21.9 141 80
SFG [2] 64.4 73.9 71.8 34.8 -17.0 52 20
GradNorm [4] 56.1 77.7 68.4 28.5 -23.1 52 18
MTAN [21] 42.7 77.4 86.0 41.9 -14.7 75 40

ASTMT [26] ResNet-50-TBN* 50.6 78.9 87.0 43.6 -10.6 82 42

Multi-head Baseline
ResNet-50-BN 63.2 76.3 78.9 39.8 -11.9 52 18

ResNet-50-TBN* 78.1 77.2 86.8 41.8 -3.7 52 41
ResNet-50-GN 79.3 76.4 86.1 42.7 -3.3 52 18

GradSplit (Ours) ResNet-50-GN 80.1 77.8 86.4 43.9 -1.8 52 18

4.3. Multi-Task Rich Human Analysis

GradSplit consistently outperforms multi-head baseline
under different multi-task settings As shown in Table 2-
3, GradSplit gains further improvements from the multi-head
baseline under different multi-task settings. For instance,
under the four-task setting (Table 2), GradSplit consistently
outperforms multi-head baseline: it is 0.8% in mAP, 1.3% in
MA, 0.3% in Mean, and 1.2% in mIoU higher than baseline
on ReID, Attribute, Pose, and Parsing, respectively.

We note that GradSplit achieves a better accuracy-
efficiency trade-off compared to existing methods. In the
four-task setting, the overall multi-task performance of Grad-
Split is comparable to that of the single-task network (upper
bound), requiring only 50% of the parameters and FLOPs.

Comparison to task-specific learning methods When
updating the filter group assigned to task t, GradSplit drops
gradients from the task losses that have negative relation
with task t. As a result, it will result in filters that pro-
duce features specific to their corresponding tasks. This is
significantly different from other methods based on task-
specific modules [15, 2, 26]. (I): RCM [15] introduces Repa-
rameterized Convolutions (RC) on an ImageNet pretrained
backbone (fixed during optimization) to learn task-specific
features. However, the pretrained feature is unsuitable for
our problem where all samples are human images. This
potentially prevents RCM from achieving the desired perfor-
mance in our setting. For instance, it is 9.6 % lower than

Table 3. Comparison on three tasks: ReID, Attribute, and Pose.

Methods Backbone
Attribute ReID Pose ∆m

(↑)
#Param
(M) ↓MA (↑) mAP (↑)Mean (↑)

Single-task
R50-GN 78.0 81.1 88.2 +0.0 85
R18-GN 76.9 74.9 87.0 – 39

Cross-stitch [27]
R18-GN

76.3 72.7 86.8 -4.7 38
NDDR [10] 76.1 69.3 86.8 -6.2 42

GradNorm [4]
R50-GN

74.0 54.5 85.1 -13.8 38
MTAN [21] 77.4 50.0 85.5 -14.0 38

Multi-head
R50-GN

75.9 76.5 86.3 -3.5 38
GradSplit 77.6 80.2 86.3 -1.3 38

GradSplit in Attribute (as shown in Table 2). (II): SFG [2]
stochastically re-purposes the convolution filters to be task-
specific or shared. In our experiments, it did not improve
accuracy from the baseline. (III): ASTMT [26] uses three
task-specific modules (i.e., Parallel RA [31], Squeeze-and-
Excitation blocks [14], and task-specific BN (TBN) [3]) to
learn task-specific features. ASTMT achieves the highest
accuracy on both Attribute and Pose in four-task setting,
however, it shows 50.6% mAP on ReID, which is 29.5%
lower than GradSplit. Due to this imbalance, the overall
multi-task performance ∆m is 8.8% lower than GradSplit.

Task balancing methods We report the results of Grad-
Norm [4] in Table 2 and Table 3. It aims to balance task
losses by stimulating the task-specific gradients to be of sim-
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Figure 3. Example visualization of conflict frequency of task-
specific gradients in different layers of multi-head baseline network
(ResNet-50-GN). We quantify the relation of gradients amongst
all tasks by calculating the cosine similarity scores. The conflict
frequency in this figure represents how likely the gradients of two
tasks have a negative correlation.

ilar magnitude. In our setting, the magnitude of pose loss is
smaller than the magnitudes of other task losses. Under the
multi-dataset learning setting, GradNorm failed to handle
this imbalance effectively and achieved overall low accuracy.
MGDA [32], which seeks to find Pareto optimal solutions,
was also tested, but the overall accuracy was low. Please
refer to the supplementary document for more results.

Comparison to backbone-focused architectures These
methods consider feature sharing in the backbone. In Table 2
and Table 3, we compare GradSplit with four representative
architectures, including MTAN [21], NDDR [10], and Cross-
stitch [27]. Cross-Stitch and NDDR first train task-specific
streams and then fine-tune the whole network, including the
interaction module. Empirically, this way cannot bring use-
ful information across tasks and failed to improve accuracy.
The task-specific attention module proposed by MTAN only
brings improvement over multi-head baseline on Attribute,
while reporting low accuracy on the remaining tasks. Differ-
ent from these methods, our GradSplit consistently brings
improvements for all tasks over multi-head baseline.

4.4. Component Analysis and Discussion

Visualization of gradient conflict We show an example
gradient conflict in the multi-head network via a conflict
frequency map. We obtain the gradients for each task with
a batch of 16 samples. We then quantify the relationship
of task gradients by calculating the cosine similarity matrix.
We repeat the process 20 times and report the average values.
We define that there is a “gradient conflict” if the cosine simi-
larity of gradients is negative given task gradients, following

Table 4. Analysis of GradSplit: 1) effect of applying Gradsplit
on more layers; 2) effect of random dropout mask; 3) task-specific
filters; and 4) GradSplitτ=inf : each group of filters is only updated
by its assigned task loss. Layer i-j denotes applying GradSplit on
four layers, from layer i to j. Hyper-parameter p is the drop rate of
DropGrad [40]. ResNet-18-GN is used as the shared backbone.

Methods
Pose Attribute ReID Parsing

Mean MA Rank-1 mAP mIoU

Multi-head Basel. 84.9 75.5 86.2 64.7 38.0

G
ra

dS
pl

it Layer 4 85.4 77.1 89.2 71.4 39.1
Layer 3-4 85.0 77.1 88.0 68.0 38.3
Layer 2-4 85.2 77.0 87.4 67.6 38.0
Layer 1-4 84.6 77.0 87.6 66.9 36.6

DropGrad (p=0.50) 81.5 74.0 85.8 64.3 36.3
DropGrad (p=0.75) 81.5 73.9 85.3 63.7 36.8

GradSplitτ=inf 84.8 76.9 87.6 67.6 38.1

the practice in [46]. In Fig. 3, we show an example conflict
frequency map at the first block in different layers of the
multi-head baseline. We observe that values in the entries
deviate from the chance of 0.5. Depending on the pairwise
relation of tasks, conflicts occur more frequently if tasks are
competing with each other. For example, we show ReID and
Parsing conflict more often than average in layer 4.

Which modules to apply GradSplit Table 4 shows the
results of GradSplit when it is applied to a different com-
bination of layers. The results are on the four-task setting,
and both baseline and GradSplit use ResNet-18-GN as back-
bones. The Layer i-j denotes that GradSplit is applied on
the ith layer to the jth layer. For example, Layer 2-4 means
that GradSplit is applied to layer 2, 3, and 4. GradSplit can
alleviate conflicting gradient issue but at the same time de-
creases the model capacity per task by reducing the number
of dedicated filters. Meanwhile, some common features (e.g.,
low-level patterns) can be shared across tasks and enhance
representation ability when trained with joint loss. There
is a trade-off between the above two factors. The results
in Table 4 reflect this, showing the highest accuracy when
GradSplit is applied to only Layer 4.

Comparison with regularization method GradSplit can
be understood as a regularization method (discussed in Sec-
tion 3.1). We compare GradSplit with DropGrad [40], which
is a regularization method originally proposed for meta-
learning. The key difference from GradSplit is that it drops
gradients randomly from every filter so that the dominant
task gradients of a filter can vary during training. Comparing
DropGrad (p = 0.75) and Layer 4 in Table 4 implies that
fixing the task-agnostic mask based on the inter-task rela-
tionship for gradient dropout is important. Note that when
setting p = 0.75, the ratio of dropped gradients in DropGrad
matches with GradSplit.
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Table 5. Comparison when VGG-11 is employed as the backbone,
for MPII, Market attributes, Market-1501 and LIP datasets.

Methods
Pose Attribute ReID Parsing

Mean MA Rank-1 mAP mean Acc.

Multi-head Basel. 83.6 71.0 76.0 50.5 45.8
GradSplit 83.0 72.6 78.4 53.3 46.0

Table 6. Cross-dataset accuracy comparison on Market-1501 for
Attribute. In this table, the multi-task networks are trained under
four-task setting. Note that, the Attribute annotation of Market-
1501 is not used during training. We report the MA score (%) of
common attributes appeared in Market-1501.

Methods Backbone Attribute (MA)

Single-task network
ResNet-50-BN 71.5
ResNet-50-GN 73.0

MTAN [21] ResNet-50-GN 75.5
GradNorm [4] ResNet-50-GN 75.5
ASTMT [26] ResNet-50-TBN 76.5

Multi-head baseline
ResNet-50-GN 74.6

ResNet-50-TBN 73.8

GradSplit ResNet-50-GN 77.5

Effect of inter-task relationship We evaluate an extreme
variant of our method, i.e., “GradSplitτ=inf”, which uses the
threshold τ = inf to obtain inter-task relation. This is equiv-
alent to using the mask m̃ = IT instead of m, where IT is
an identity matrix of size T . In a nutshell, each group of
filters is only updated by its assigned task loss. This practice
potentially avoids the conflict issues and achieves some im-
provements over multi-head baseline in Table 4 (e.g., 1.4%
on Attribute and 2.9% mAP on ReID). However, without
inter-task relationship, GradSplitτ=inf cannot effectively ma-
nipulate gradient to learn the shared backbone, being inferior
to GradSplit on all tasks.

Different network architectures In addition to ResNet-
50 and ResNet-18, we use VGG-11 as backbone and report
results in Table 5. We observe that GradSplit improves over
multi-head baselines in three tasks and is comparable for the
fourth (Pose), achieving overall good performance.

Cross-dataset analysis To further study the effect of multi-
task learning and advantage of GradSplit, we conduct a
cross-dataset analysis. Specifically, we report the results
of Attribute on Market-1501 dataset. Note that, Market-
1501 is used for ReID task and its Attribute annotations
are not used during training. We have two observations in
Table 6. First, multi-task learning can help cross-dataset
testing. Compared with single-task network, all multi-task
models achieve higher MA score on Market-1501. This
implies that multi-task models learns more robust feature
representations. Second, GradSplit gain the highest accu-
racy, which further validates its effectiveness.

Table 7. Comparison on four tasks when increasing the back-
bone capacity. Task-specific L4 branches out different task-head
networks at the end of layer-3 of ResNet-50 and it uses layer4
structures for each task (R50-L4). R50-GN+ increase the backbone
capacity of ResNet-50 by adding more convolutions to layer4.

Methods Backbone
Attr ReID Pose Parsing∆m

(↑)
#Param

(M)MA mAPMean mIoU

Single-task R50-GN 78.0 81.1 88.2 45.6 +0.0 123

Task-specific L4 R50-L4 76.8 78.2 86.4 43.5 -2.9 96

DropGrad (p=0.50)
R50-GN+

77.9 80.2 86.4 42.2 -2.7 72
Multi-head 77.1 80.4 87.8 46.9 +0.1 72
GradSplit 78.2 81.6 87.9 47.4 +1.1 72

Effect of backbone capacity. To study this, we add more
convolutions to layer4 of ResNet-50-GN (denoted as R50-
GN+). We also report results with task-specific layer4 (de-
noted as R50-L4) for each task. As shown in Table 7, using
task-specific layer4 for each task cannot bring improvements.
This is probably because there are still task conflicts in the
shared backbone. Moreover, DropGrad does not work either.
This further suggests that gradient removal based on inter-
task relations is crucial. We also observe that the multi-head
baseline matches the single-task performance (∆m=+0.1).
GradSplit achieves a further +1.0% improvement and out-
performs single-task accuracy on three tasks.

5. Conclusion

We present a framework to train a unified model for mul-
tiple human-related tasks. When tasks require task-specific
features, they may compete each other with conflicting gradi-
ents during training, leading to lower overall accuracy. To al-
leviate this issue, we propose a novel training scheme called
GradSplit, which enables each task to learn its assigned fil-
ters without the interference from other tasks. Moreover,
Gradsplit enables each task-specific filter to selectively lever-
age all input features, producing more informative features
for its assigned task. In the experiment, we extensively test
GradSplit on four human-related tasks. We show that Grad-
Split consistently outperforms strong baselines and achieves
a better accuracy-efficiency trade-off.
Limitations and future work To reduce the computational
overhead for task relation estimation, it would be also inter-
esting to study other strategies based on gradient similarity
and loss changes. As GradSplit is a general approach which
is applicable beyond human-related tasks, our future research
includes the extension to other applications.
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