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Abstract

Inspired by recent advances in vision transformers for
object detection, we propose Li3DeTr, an end-to-end LIDAR
based 3D Detection Transformer for autonomous driving,
that inputs LiDAR point clouds and regresses 3D bounding
boxes. The LiDAR local and global features are encoded
using sparse convolution and multi-scale deformable atten-
tion respectively. In the decoder head, firstly, in the novel
Li3DeTr cross-attention block, we link the LiDAR global
features to 3D predictions leveraging the sparse set of ob-
ject queries learnt from the data. Secondly, the object query
interactions are formulated using multi-head self-attention.
Finally, the decoder layer is repeated L 4.. number of times
to refine the object queries. Inspired by DETR, we em-
ploy set-to-set loss to train the Li3DeTr network. Without
bells and whistles, the Li3DeTr network achieves 61.3%
mAP and 67.6% NDS surpassing the state-of-the-art meth-
ods with non-maximum suppression (NMS) on the nuScenes
dataset and it also achieves competitive performance on the
KITTI dataset. We also employ knowledge distillation (KD)
using a teacher and student model that slightly improves the
performance of our network.

1. Introduction

With the advent of deep learning networks for computer
vision [16, 37] and large-scale datasets [10] the research on
perception systems for scene understanding of autonomous
vehicles is growing rapidly. 3D object detection is one of
the key processes of autonomous driving, which is a two
fold process of classification and localization of the objects
in the scene. LiDAR is one of the significant sensors of au-
tonomous vehicles which provides precise 3D information
of the scene. Although there is a huge progress in 2D object
detection approaches [2, 12, 22, 32, 33, 40], the CNN-based
approaches are not well directly adapted to LiDAR point
clouds due to their sparse, unordered and irregular nature.

Earlier approaches for 3D object detection on LiDAR
data can be divided into two types: point-based and grid-

based methods. Point-based methods [27, 36, 49] are based
on point operations [29, 30] which detect the 3D objects
directly from the point clouds. Grid-based methods ei-
ther voxelize the points into volumetric grids or project
the points to Birds Eye View (BEV) space. The advan-
tage of BEV projection is that it preserves euclidean dis-
tance, avoids overlapping of objects and the object size
is invariant to distance from ego vehicle which is signifi-
cant for autonomous driving scenarios. The sparse CNN-
based voxel feature extraction [47] is advantageous but it
can not extract rich semantic information with limited re-
ceptive fields. We mitigate this issue by employing a multi-
scale deformable attention [55] encoder to capture global
LiDAR feature maps.

Earlier approaches either use two-stage detection
pipeline [7, 36] or anchors [19, 53] or anchor-free networks
[42, 43, 51] for 3D object detection, but all of them em-
ploy post-processing method like NMS to remove redun-
dant boxes. Inspired by Object-DGCNN [45], we formulate
the 3D object detection problem as a direct set prediction
problem to avoid NMS.

We propose an end-to-end, single-stage LiDAR based
3D Detection Transformer (Li3DeTr) network to predict the
3D bounding boxes for autonomous driving. Firstly, the
voxel features are extracted with SECOND [47] by lever-
aging sparse convolutions [15] and BEV transformation or
with PointPillars [19]. Secondly, we employ an encoder
module with multi-scale deformable attention [55] to cap-
ture rich semantic features and long range dependencies in
BEV feature maps to generate LiDAR global features. The
LiDAR global features are passed to the decoder module.
Finally, we introduce a novel Li3DeTr cross-attention block
in the decoder to link the LiDAR global features to the 3D
object predictions leveraging the learnt object queries. The
object queries interact with each other in multi-head self-
attention block [41]. The object queries are iteratively re-
fined and 3D bounding box parameters are regressed in ev-
ery decoder layer. Inspired by DETR [2], we use set-to-set
loss to optimize our network during training.

We conduct experiments on two publicly available au-
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tonomous driving benchmarks, nuScenes [1] and KITTI
[14] dataset. Our network achieves 61.3% mAP and 67.6%
NDS on the nuScenes dataset surpassing the state-of-the-art
CenterPoint [51] and Object-DGCNN [45] by 3.3% mAP
(and 2.1% NDS) and 2.6% mAP (and 1.6% NDS) respec-
tively.

Our main contributions are as follows:

* We propose an end-to-end, single-stage LiDAR based
3D Detection Transformer (Li3DeTr) for autonomous
driving.  Our method achieves 61.3% mAP and
67.6% NDS on the nuScenes [1] dataset which sur-
passed state-of-the-art LiDAR based object detection
approaches. Our method achieves competitive per-
formance (without NMS) to other approaches (with
NMS) on the KITTI [14] dataset. Similar to DETR
[2], our approach does not require NMS, hence it is
effective to apply knowledge distillation with teacher
and student model to improve the accuracy.

* We introduce a novel Li3DeTr cross-attention block to
link the LiDAR global encoded features to 3D object
predictions leveraging the learnt object queries. The
attention mechanism in encoder and decoder helps to
detect large-size objects effectively as shown in Ta-
ble 3. The ablation study shown in Table 6 justifies
our novel Li3DeTr cross-attention block.

* We release our code and models to facilitate further
research.

2. Related Work

The LiDAR point cloud based 3D object detection ap-
proaches can be divided into two categories: point-based
and grid-based, depending on the type of data representa-
tion used to predict the 3D bounding boxes.

Point-based methods [28, 35, 36, 49, 50] directly use the
sparse and unordered set of points to predict 3D bound-
ing boxes. The point features are aggregated by multi-
scale/multi-resolution grouping and set abstraction [29, 30].
PointRCNN [36] employs a two-stage pipeline for 3D ob-
ject prediction. PVRCNN [35] models point-voxel based
set abstraction layer to leverage the advantage of point and
voxel based methods. Frustum-PointNet [28] uses 2D ob-
ject detection to sample a frustum of points to apply Point-
Net [29] to predict 3D objects. Although point-based meth-
ods achieve large receptive fields with set abstraction layer,
they are computationally expensive.

Grid-based methods. As the LiDAR point clouds are
sparse and unordered set of points, many methods project
the points to regular grids such as voxels [47, 53], BEV
pillars [19] or range projection [3, 13, 39]. The point
clouds are discretized into 3D voxels [38, 53] and 3D
CNNs are employed to extract voxel-wise features. How-
ever, 3D CNNs are computationally expensive and requires
large memory, in order to mitigate this problem [5, 47] use

sparse 3D CNNs [15] for efficient voxel processing. The
LiDAR point cloud is projected into BEV map in Point-
Pillars [19] and PIXOR [48] and 2D CNNs are employed
to reduce the computational cost, however such projection
induces 3D information loss. In order to mitigate this is-
sue, some methods [47, 51] compute voxel features using
sprase convolutions and then project the voxel features into
BEV space, and finally predict the 3D bounding boxes in
the BEV space. As this approach takes the advantage of
voxel and BEV space, we test our network with SECOND
[47] and PointPillars [19] feature extraction networks. In
order to achieve large receptive fields similar to point-based
methods [29, 30], we model long-range interactions of local
LiDAR features using multi-scale deformable attention [55]
block in our encoder to obtain LiDAR global features.

Transformer-based methods. Earlier approaches [7, 19,
35, 36, 50, 53] object detection head employ anchor boxes
to predict the objects, however anchor boxes involve hand-
crafted parameter tuning and they are statistically obtained
from the dataset. To mitigate this issue, some approaches
[5, 43, 48, 51] followed anchor-free pipeline by comput-
ing per-pixel or per-pillar prediction. But these approaches
use NMS to remove redundant boxes. DETR [2] is the
first transformer architecture which formulated 2D detec-
tion problem as a direct set prediction to remove NMS.
Our network follows similar formulation for 3D object de-
tection. Some approaches [24, 27, 34] used transformer
for feature extraction networks. 3DETR [25] is a fully
transformer based architecture for 3D object detection us-
ing vanilla transformer [41] block with minimal modifica-
tions. 3DETR directly operate and attend on points whereas
our approach voxelize the points and attend the BEV global
voxel features which is computationally efficient for au-
tonomous driving scenarios. 3DETR employs downsam-
pling and set-aggregation operation [30] on the input points
of indoor scenarios because the computational complexity
of self-attention increases quadratically (O(n?)) with the
number of input points. Moreover, 3DETR is effective on
indoor datasets, where the points are dense and concen-
trated. Object-DGCNN [45] employs a graph-based model
for transformer-based 3D object detection for outdoor envi-
ronments. BoxeR [26] introduces a novel and simple Box-
Attention which enables spatial interaction between grid
features. BoxeR-2D enables end-to-end 2D object detection
and segmentation tasks, which can be extended to BoxeR-
3D for end-to-end 3D object detection. VISTA [11] is a plug
and play module to adaptively fuse multi-view features in a
global spatial context, incorporated with [5, 51]. It intro-
duces dual cross-view spatial attention to leverage the in-
formation in BEV and Range View (RV) features. We for-
mulate our model with voxel-BEV based CNN backbone ar-
chitecture for local feature extraction and an attention-based
architecture for global feature extraction to increase the re-
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ceptive field size and finally a transformer decoder head to
link global features and 3D predictions.

3. Methodology

Our LiDAR based 3D Detection Transformer (Li3DeTr)
architecture inputs LiDAR point cloud and predicts 3D
bounding boxes in large-scale outdoor environments such as
autonomous driving. The network contains two main mod-
ules: backbone and transformer encoder-decoder as shown
in Figure 1. Inspired by the state-of-the-art 3D object detec-
tion approaches [15, 19], our CNN-based backbone (§ 3.1)
module learns grid-based local voxel features. Specifically,
we employ BEV grid, not only because the 2D grid-like
features are a good trade-off between accuracy and effi-
ciency but also very relevant for autonomous driving, as
there is possibly one object on every grid cell on the ground
plane. The multi-scale deformable attention [55] based en-
coder (§ 3.2) module learns the multi-scale global voxel
features. The encoder module alternates between multi-
scale deformable attention block and multi-layer perceptron
(MLP) block and is repeated L.,. number of times. The
novel Li3DeTr cross-attention block in the decoder (§ 3.3)
module links the global voxel features to the 3D object pre-
dictions leveraging the learnt object queries. The object
queries interact with each other in multi-head self-attention
[41] block. The decoder module is repeated Lg4.. number
of times with alternating multi-head self-attention, Li3DeTr
cross-attention and MLP blocks. The refined object queries
are transformed into 3D bounding box parameters and the
network is trained end-to-end using permutation-invariant
loss [2] (§ 3.4).

3.1. Backbone: Local features

Our network inputs LiDAR point cloud P =
{p1,...,pi,-..,pn} C R3. To accelerate the 3D ob-
ject detection for large-scale point clouds, we scatter the
points into BEV grid and use CNNs to extract local point
features. We test two pipeline: 1) We voxelize the point
cloud with [0.1, 0.1, 0.2] metres voxel size and employ
SparseConv [15] to compute 3D sparse convolutions and
obtain local voxel features. The empty voxels are filled
with zeros and the sparse voxels are transformed to a BEV
2D grid-like features. 2) We convert the point cloud into
a dense BEV pillar map as in PointPillars [19] with [0.2,
0.2, 8] metres pillar resolution. We use pillar feature net
to transform the pillar features. Finally, we employ SEC-
OND [47] backbone to extract local voxel features from the
sparse voxel or BEV pillar features and further transform
them using a feature pyramid network (FPN) [20] to obtain
multi-scale local voxel feature maps Fi, Fo, F3, F4 where
]:j C RHj X W73 ><Cj.

3.2. Encoder: Global features

In order to obtain global voxel features from the local
voxel feature maps, we employ multi-scale deformable at-
tention [55] mechanism because the conventional attention
mechanism [41] leads to unacceptable computational com-
plexities in encoding high resolution feature maps. The
multi-scale deformable attention combines the best of the
sparse sampling of deformable convolution [9] and long-
range relation framework of transformers [41]. The in-
put and output to encoder module are multi-scale feature
maps with the same resolution. The deformable attention
attends only a small set of key sampling points around a
reference point and thereby reduces the computational com-
plexity. The reference point in the deformable self-attention
for each query pixel is itself. Each encoder layer consist
of multi-scale deformable self-attention and MLP blocks
with residual connections and is repeated L., times. The
global voxel features extracted from the encoder is passed
to Li3DeTr cross-attention block in the decoder.

3.3. Decoder

The state-of-the-art 3D object detection approaches ei-
ther formulates the detection head with dense set of anchor
boxes or dense per-pillar prediction such as [43, 51], fol-
lowed by NMS. We remove the need of post-processing step
(like NMS) by formulating the detection head to predict a
set of bounding boxes instead of per-pillar prediction. This
is formulated in the decoder as detailed below.

The decoder inputs a set of object queries Q' =
{¢}Ys € R (where | € {1,2,..., Lgec}. N, is number
of queries and Q! are learnt with the model weights) and
global voxel feature maps {F; }?:1 and it consists of de-
coder layer that is repeated L4, number of times to refine
the object queries.

For the first decoder layer, the 3D reference points are
encoded from the object queries using a single-layer fully
connected (FC) network and sigmoid normalization as in
Equation 1.

T, = d)'r‘ef(qi)a (l)

where r; € [0,1]% and ¢,.s is a FC layer. Each decoder
layer consists of Li3DeTr cross-attention block, multi-head
self attention block and MLP block with skip connections
as shown in Figure 1.

Li3DeTr cross-attention block inputs the object queries
Q= {ql}f\gl (we drop the layer index for simplicity), 3D
reference points r; and LiDAR global multi-scale feature
maps {7 }7_,. The formulation of Li3DeTr cross-attention
block is illustrated in Figure 2.

Let R ;; represents the transformation for the projection
of reference point r; into scale j of LIDAR global voxel fea-
ture map. The LiDAR BEV feature map at scale j is bilin-
early sampled at the location of projection of reference point
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Figure 1: An overview of Li3DeTr architecture. It is an end-to-end, single-stage network which inputs LiDAR point cloud
and predicts 3D bounding boxes. The local and global point features are linked to object predictions in transformer encoder-

decoder architecture leveraging object queries.
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Figure 2: An overview of Li3DeTr cross-attention block

(Rji(r:)), given by F;(R;i(r;)). The attention weights
(w;;) for each query ¢; at each sampled feature scale j is
computed by a FC layer (¢sq4mp) and sigmoid normaliza-
tion, where w;; = @samp(qi). The sampled features from
multi-scale feature maps are added together to obtain cross-
attention features (F4*") for i-th reference point as:

]-“iCAtm = Z}— 5i(Ti))wij 2
Finally, we update the queries as,
¢ = q; + F{ A" + PE(ci), 3)

where PE is positional encoding of reference point to make
the queries location aware. The queries interact with each
other in the multi-head self-attention block and we follow
skip connection following [41]. The object queries (Q') are
updated in each decoder layer.

reg

We employ two FC layers ¢, and ¢cls to predict offset
to box p0s1t1on Apl € R?, box size (I, w!, hl), box orien-
tation (sin 9 , COS 01) box velocity (vm, yi) and class label
(4%) respectively for each object query (q!).

We refine the reference points for each query in each de-
coder layer except for the first decoder layer (which are en-
coded using Equation. 1) by using the predictions of box
position in the previous layer, as

rith =i+ A @
3.4. Loss

Similar to [2, 44, 45], the error between predictions
and ground-truths is calculated by set-to-set loss. Firstly,
the one-to-one assignment between predictions and ground-
truths is performed by Hungarian algorithm [18]. Secondly,
we use bipartite matching to match predictions and ground-
truths. Finally, we employ L; loss and focal loss [21] to
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calculate bounding box regression and classification loss re-
spectively, given the bipartite matching.

4. Experiments

We evaluate Li3DeTr network on the publicly available
autonomous driving datasets, nuScenes [1] and KITTI [14].
We introduce the experimental setup (§ 4.1) with dataset de-
tails and evaluation metrics (model settings and training de-
tails are provided in supplementary), and then present both
qualitative and quantitative results (§ 4.2) and analysis on
the nuScenes and KITTI dataset. We perform ablation stud-
ies (§ 4.3) to study the different configurations of our net-
work.

4.1. Experimental Setup

nuScenes dataset [1] contains 750, 150 and 150 sequences
(of ~20s duration) with 28K, 6K and 6K annotated sam-
ples for training, validation and testing respectively. Each
sample consists of 32-beam LiDAR point cloud with 30K
points. The dataset also provides 9 non-key frames (called
sweeps) to aggregate to one key-frame, resulting in ~300K
points per annotated frame. 10 different categories of ob-
jects are available to compute the metrics.

Kitti dataset [14] consists of 7481 and 7518 training and
testing samples. The training samples are further divided
into 3712 train and 3769 val splits. Each sample consists of
32-beam LiDAR point cloud. Cars, pedestrians and cyclists
are the three main categories for evaluation.

Evaluation metrics. The two main metrics following the
official evaluation of nuScenes dataset [1] are mean average
precsion (mAP) and nuscenes detection score (NDS). In ad-
dition, we also evaluate true positive (TP) metrics: average
translation error (ATE), average scale error (ASE), average
orientation error (AOE), average velocity error (AVE), av-
erage attribute error (AAE). We follow the official evalua-
tion metric of KITTI dataset [14] mean average precision
(mAP) with IoU threshold of 0.7 for car category and 0.5
for pedestrian and cyclist categories..

4.2. Results
4.2.1 Quantitative Results

We compare Li3DeTr network with the state-of-the-art
methods on the nuScenes [1] fest dataset as shown in Ta-
ble 1. Our network surpassed the state-of-the-art CNN-
based CenterPoint [51] by 3.3% mAP and 2.1% NDS and
transformer-based Object-DGCNN [45] network by 2.6%
mAP and 1.6% NDS. Albeit CenterPoint [51] uses post-
processing method like NMS, our approach of formulat-
ing object detection as a direct set prediction problem in-
spired by DETR [2] doesn’t require NMS to obtain the gain
in mAP and NDS. We also compare with the NMS-free
state-of-the-art transformer-based network Object-DGCNN

[45] with two different backbones: PointPillars [19] and
VoxelNet [53]. Our transformer based NMS-free approach
surpassed in both pillar [19] and voxel [53] backbones by
0.6% mAP (and 0.2% NDS) and 2.6% mAP (and 1.6%
NDS) respectively. Although our Li3DeTr network out-
performs most of the other methods in terms of mAP and
NDS, VISTA-OHS [11] performs slightly better than our
approach on the nuScenes fest dataset. VISTA is a plug
and play module to fuse multi-view features incorporated
with [5] which requires post-processing methods like NMS,
whereas our approach is a standalone method for 3D object
detection without NMS. The perfromance of our approach
compared with state-of-the-art approaches on nuScenes val
dataset is provided in supplementary.

We employ knowledge distillation (KD) with a teacher
and student model. The earlier works on 3D object de-
tection involve NMS, so it is not effective to distill those
models. As our approach is NMS-free, we can effectively
distill the information between models with similar detec-
tion heads. We train a teacher model with the loss given
in § 3.4 and then we train a student model (with same ar-
chitecture as teacher model) with the supervision of output
of teacher model and the ground-truth. With the KD, we
achieve 62.2% mAP and 68.0% NDS which is 0.9% mAP
and 0.4% NDS improvement over our model without KD.

We compare the recent works on KITTI [14] dataset for
car category as shown in Table 2. Our network achieves
a competitive performance to the state-of-the-art LiDAR-
based approaches like VoxelNet [53], PointPillars [19],
TANet [23] and SECOND [47] in terms of AP;p and
APggy for easy, moderate and hard samples. Our net-
work could not achieve the state-of-the-art performance on
KITTI [14] dataset as compared to nuScenes [1] dataset be-
cause the transformer network is data hungry and KITTI
dataset has 3712 samples for training which is approx-
imately 7.5 times less number of training samples than
nuScenes dataset (which has 28K training samples). In
addition to this, the nuScenes dataset provides 9 non-key
frames (called sweeps) to aggregate to one key frame, re-
sulting in dense LiDAR points but KITTI dataset provides
only one LiDAR key frame which results in sparse point
cloud. However, our approach obtains competitive perfor-
mance to the state-of-the-art transformer based architecture
VoTr-SSD [24] which uses NMS. To the best of our knowl-
edge this is the first transformer based 3D detection net-
work to report results both on nuScenes and KITTI datasets,
which compares the results of detection with an emphasis
on training sample size which is significant for transformer
based architectures alongside the density of LiDAR point
clouds. We further provide comparison of methods in terms
of AP3;p and APggy on the pedestrian and cyclist cate-
gories for easy, moderate and hard samples in the supple-
mentary.

4254



Table 1: Comparison of recent works on nuScenes [1] fest set.

Method NDS1T mAPT mATE|] mASE] mAOE] mAVE| mAAE| NMS
PointPillars [19] 55.0 40.1 39.2 26.9 47.6 27.0 10.2 v
SSN [54] 61.7 51.0 33.9 24.5 429 26.6 8.7 v
CyliNet RG [31] 66.1 57.6 28.3 25.3 29.1 26.8 18.0 v
CVCNet-ens [4] 66.6 58.2 28.4 24.1 37.2 22.4 12.6 v
HotSpotNet [5] 66.0 59.3 27.4 23.9 38.4 333 13.3 v
CenterPoint [51] 65.5 58.0 - - - - - v
VISTA-OHS [11] 69.8 63.0 25.6 23.3 32.1 21.6 12.2 v
Object-DGCNN (pillar) [45] 62.8 53.2 34.6 26.5 31.6 26.0 19.1 X
Object-DGCNN (voxel) [45] 66.0 58.7 333 26.3 28.8 25.1 19.0 X
Ours (pillar) 63.0 53.8 35.1 26.4 32.1 26.5 19.0 X
Ours (voxel) 67.6 61.3 30.5 254 35.2 26.7 12.5 X

Table 2: Comparison of recent works in terms of APs;p and APggy detection on KITTI [14] val set. We list results for car

category for easy, moderate and hard samples with IoU=0.7.

APsp APgppy
Method Easy Mod. Hard | Easy Mod. Hard | NMS
RGB & LiDAR
MV3D [6] 712 626 565 | 8.5 78.1 76.6 v
AVOD-FPN [17] - 73.2 - - - - v
F-PointNet [28] | 87.3 709 63.6 | 88.1 840 764 v
3D-CVF [52] 89.6 798 784 - - - v
LiDAR
VoxelNet [53] 819 654 628 | 88.0 784 713 v
PointPillars [19] | 86.6 760 689 | 90.1 86.6 82.8 v
TANet [23] 875 76.6 738 - - - v
SECOND [47] | 874 764 69.1 | 894 83.8 78.6 v
3DSSD [49] 89.7 794 786 | 927 89.0 859 v
VoTr-SSD [24] | 87.8 782 769 - - - v
Pointformer [27] | 90.0 79.6 78.8 - - - v
Ours (voxel) 87.6 768 739 | 89.6 86.8 83.1 X

4.2.2 Qualitative Results

The visualization of 3D bounding box predictions of our
approach on the nuScenes dataset is shown in Figure 3. Al-
though the LiDAR point clouds are sparse, our approach
not only detects small objects like traffic cones but also ef-
ficiently detect large size objects like truck, bus, construc-
tion vehicle. This is possible with the local and global fea-
ture maps of backbone and attention mechanism in encoder
alongside the cross-attention in the decoder. Our approach
is also able to detect some cars which are not annotated
in ground-truth. A short demo video of 3D object predic-
tions of our network projected into BEV map is presented
athttps://youtu.be/5pLnLRO_2-T.

4.2.3 Analysis

The performance analysis of our approach by object cate-
gory, object distance and object size compared to state-of-
the-art LiDAR based CNN and transformer models is de-
tailed below.

Object category. The performance of our network in terms
of Average Precision (AP) for each object category com-
pared to other state-of-the-art networks on the nuScenes [1]
val dataset is shown in Table 3. We compare with Object-
DGCNN [45] as it a standalone transformer model like
ours for fair comparison. The transformer encoder which
extracts global LiDAR features leveraging long range in-
teractions using multi-scale deformable attention and de-
coder cross-attention significantly improves the AP of large
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Figure 3: Visualization of results on the nuScenes dataset. Blue and

boxes represent predictions and ground-truth

respectively. Points inside the bounding boxes are shown in red. Best viewed in color and zoom-in.

Table 3: Performance of our network in terms of Average Precision (AP) by object category on the nuScenes val set. CV
- Construction Vehicle, Motor - Motorcycle, Ped - Pedestrian, TC - Traffic Cone, Barr - Barrier. x: MMDetection3D [8]

implementation. The scores in

indicate the increase in performance with respect to scores in underline.

Method ‘ Car  Truck Trailer Bus CcvV Bicycle Motor Ped TC Barr ‘ mAP
Pointformer [27] 823 48.1 434 55.6 8.6 22.7 55.0 81.8 722 66.0 | 53.6
CenterPoint [51] % | 85.1 53.0 354 66.8 13.9 34.4 55.2 84.6 669 67.5 | 56.2
VISTA [11] 85.0 574 39.9 66.4 21.2 51.7 66.6 845 685 66.8 | 60.9
Obj-DGCNN [45] | 84.0 54.0 404 66.8 20.2 44.7 66.2 81.6 647 62.6 | 58.5
Ours 858 56.5 43.0 70.9 229 51.6 66.9 839 668 657 | 614

size objects like bus, construction vehicle, trailer and truck.
Although the number of bicycle category objects are less
compared to other objects, our model surpassed Object-
DGCNN [45] by 6.9% AP, this is possible with the local
and global feature extraction in addition to Li3DeTr cross-
attention of decoder. The other object categories obtain a
competitive performance. We quantize the point clouds in
the backbone of our network and downsample the feature
maps into multiple strides to increase the receptive field, but
that leads to information loss which thereby makes our net-
work difficult to detect smaller objects like pedestrians and
barriers. The design of point cloud backbones in the future,
maintaining the original resolution while increasing the re-
ceptive field would solve this problem. The performance
of our network in terms of AP for each object category on
nuScenes fest dataset is provided in supplementary.

Object distance. The ground-truth 3D bounding boxes are
divided into three subsets: [Om, 20m], [20m, 30m] and
[30m, +co] basing on the distance between object cen-
ters and ego vehicle. The performance of our network in
terms of mAP by object distance on the nuScenes [1] dataset
compared to CenterPoint [51] and Object-DGCNN [45] is
shown in Table 4. Our approach significantly improves the
mAP of objects at object distance greater than 30m com-
pared to CNN-based CenterPoint [51]. Although the Li-
DAR point cloud is sparse at far distance from ego vehicle,
our attention mechanism in encoder and decoder models
long range interactions between the sparse points to predict
the objects at far distance.

Table 4: Performance of our network in terms of mAP by
object distance on the nuScenes val set. x: MMDetection3D
[8] implementation. The scores in indicate the in-
crease in performance with respect to scores in underline.

Method | [Om,20m]  [20m,30m]  [30m,+0c0]
CenterPoint [51] x | 71.3 51.5 26.5
Obj-DGCNN [45] | 73.2 55.5 303
Ours 75.6 56.9 327

Object size. The ground-truth 3D bounding boxes are di-
vided into two subsets: [Om, 4m] and [4m, +o0], bas-
ing on the size of the longer edge of the bounding box. The
performance of our model in terms of mAP by object size
compared to state-of-the-art approaches on the nuScenes
[1] dataset is shown in Table 5. Our transformer based ap-
proach predominantly improves the mAP of large size ob-
jects than small size objects compared to CNN-based Cen-
terPoint [51]. This proves our hypothesis that long range in-
teractions made possible by attention mechanism improves
the detection performance.

4.3. Ablation Studies

Attention blocks. The performance of our network in
terms of mAP and NDS with different attention operations
for self and cross-attention blocks in the decoder (§ 3.3)
is shown in Table 6. We test our approach by employing
DGCNN [46] similar to [45] and multi-head self-attention
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Table 5: Performance of our network in terms of mAP by
object size on the nuScenes val set. x: MMDetection3D [8]
implementation. The scores in indicate the increase
in performance with respect to scores in underline.

Method | [0m,4m]  [4m, +00]
CenterPoint [51] * | 34.9 23.5
Obj-DGCNN [45] | 36.0 254
Ours 37.9 27.8

[41] to model object query interactions and, deformable
cross-attention [55] and our Li3DeTr cross-attention to
attend the global voxel features. Our Li3DeTr cross-
attention shows improved performance compared to de-
formable cross-attention [55] for both of the self-attention
operations. This proves the effectiveness of our Li3DeTr
cross-attention block to effectively link the global voxel fea-
tures with the 3D object predictions.

Table 6: Ablation study with different attention operations
in the decoder on the nuScenes val set

Self-attention Cross-attention ‘ mAP NDS

Deformable attn. [55] | 58.6  66.0

DGCNN [46] Li3DeTr (ours) 59.0 663
. Deformable attn. [55] | 57.9 65.5
Multi-head self attn. [41] Li3DeTr (ours) 61.4 67.6

Number of queries. The performance of our network in
terms of mAP and NDS on the nuScenes [1] dataset for dif-
ferent number of queries in the decoder is shown in Table 7.
The performance of our network in terms of mAP and NDS
slightly increases with increase in number of queries be-
cause object queries represent the potential positions of ob-
jects. However, the performance has slight impact for over
900 queries. So, we fix number of queries to 900.

Table 7: Ablation study on the number of object queries in
decoder on the nuScenes val set

| Li3DeTr (pillar) | Li3DeTr (voxel)

No. of queries | mAP ~ NDS | mAP NDS
300 51.9 60.4 59.3 65.1
600 52.5 61.4 60.2 66.1
900 53.8 63.0 614 67.6
1000 53.1 62.5 60.8 67.2

Backbones. The performance of our network in terms of
mAP and NDS on nuScenes dataset for different backbones
compared with CenterPoint [51] and Object-DGCNN [45]

is shown in Table 8. We test our approach with Point-
Pillars [19] with 0.2m voxel size and VoxelNet [53] with
0.1m voxel size for LIDAR point cloud feature extraction.
As shown in Table 8, our approach with VoxelNet feature
extraction outperforms the network with PointPillars back-
bone. However, our architecture is flexible to plugin various
backbones depending on the specific requirements of differ-
ent applications.

Table 8: Ablation study on different backbones on the
nuScenes val set

Backbone Method | mAP  NDS

CenterPoint [51] 50.3 60.2
Object-DGCNN [45] | 532 628
Ours 538 63.0

CenterPoint [51] 564 64.8
Object-DGCNN [45] | 58.6  66.0
Ours 614 67.6

PointPillars [19]

VoxelNet [53]

5. Conclusion

We present an end-to-end, single-stage LiDAR based 3D
Detection Transformer (Li3DeTr) architecture which inputs
LiDAR point clouds and predicts 3D bounding boxes. In-
spired by DETR [2], we formulate our model with set-to-
set loss and thereby remove the need for post processing
methods like NMS. We introduce a novel Li3DeTr cross-
attention block in the decoder head to link the global Li-
DAR voxel feature maps (obtained from encoder network)
and 3D predictions, leveraged by sparse set of object queries
learnt from the data. Without bells and whistles, our net-
work archives 61.3% mAP and 67.6% NDS surpassing
the state-of-the-art methods on the nuScenes dataset and
achieves competitive performance on the KITTI dataset.
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