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The role of quantization within implicit/coordinate neu-
ral networks is still not fully understood. We note that us-
ing a canonical fixed quantization scheme during training
produces poor performance at low bit-rates due to the net-
work weight distributions changing over the course of train-
ing. In this work, we show that a non-uniform quantiza-
tion of neural weights can lead to significant improvements.
Specifically, we demonstrate that a clustered quantization
enables improved reconstruction. Finally, by characteris-
ing a trade-off between quantization and network capacity,
we demonstrate that it is possible (while memory inefficient)
to reconstruct signals using binary neural networks. We
demonstrate our findings experimentally on 2D image re-
construction and 3D radiance fields; and show that simple
quantization methods and architecture search can achieve
compression of NeRF to less than 16kb with minimal loss in
performance (323x smaller than the original NeRF).

1. Introduction

There is increasing interest in the compression of im-
plicit neural functions [9, 10, 40, 47]. While existing works
have examined the use of quantization as part of a neural
compression pipeline, there remain a number of classical
quantization methods that have been less applied to these
problems [14, 15, 13]. In particular, within compression of
implicit neural functions the usual method is to apply uni-
form quantization [9, 10, 40], and to use a fixed quantization
scheme which does not change over the course of training.
While simple and efficient, this can introduce quantization
error if the underlying distribution varies across training.

In this work, we apply a cluster quantization method
to more closely represent the weights of implicit neural
representations. In quantization literature a key idea is to
match the distribution of the quantized and original signals
as closely as possible to prevent reconstruction error; this is
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Figure 1. Comparison of cluster and uniform quantization on a
small NeRF model. Top: 4-layers, 64 neurons per layer. Bottom:
4-layers, 128 neurons per layer. Quantization to 3-bits-per-weight.

achievable through the use of clustered partitioning of sig-
nals [13, 15]. In addition, it is well-known that the distribu-
tion of weight values in a network changes over the course
of training - as such the distributional assumption at one
epoch - may not be valid over the entire training cycle.

Furthermore while it is known that uniform quantization
methods can enable representation of signals with a high
degree of fidelity, the trade-off between network capacity
and the level of feasible quantization has been less explored
[9, 10, 40]. Intuitively it would ordinarily be expected that
increasing the amount of network quantization should be
beneficial in reducing the rate (i.e. size in bits) of the net-
work. However, to maintain the same reconstruction quality
one needs to dramatically increase the size of the network
to offset the loss of fidelity in the weights. Surprisingly,
we show that a higher quantization level with a restricted
network structure can be more memory efficient than a low
quantization level with a more expressive network structure.

The broad focus of this paper is a comparative analysis
of cluster and uniform quantization in implicit neural repre-
sentations at low bits-per-weight. In particular, our contri-
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Figure 2. Left: Different uniform quantization ranges. Right:
Comparison between decision boundaries for the examined uni-
form and cluster quantizations. A uniform quantization scheme
equally divides the quantization range. A cluster quantization di-
vides the quantization range such that each partition contains equal
mass of the distribution.

butions are as follows:

e We introduce an adaptive clustering strategy for
quantization-aware training applied to implicit neu-
ral networks, showing improved performance at lower
quantization levels than uniform methods for multiple
modalities (images and neural radiance fields).

* We demonstrate that a performance trade-off between
the level of quantization and the expressivity of net-
work architectures is required to adequately recon-
struct a signal, with high-fidelity reconstructions able
to be achieved even with a binary quantization.

e As an application of the analysis, we demonstrate
that substantial compression of neural radiance fields
(323x smaller than the original NeRF [27] and 58x
smaller than cNeRF [2]) can be obtained with even
simple quantization methods and architecture search
with minimal collapse in performance.

2. Background
2.1. Quantization

We define a quantization scheme @) : A — B as a map
between two sets A, B such that the cardinalities |A| > |B|
(e.g. Q@ : R — Zs). While other alphabets are possi-
ble, typically the codomain has elements in R or Z. For
example, a uniform quantization scheme has a codomain
with an equal spacing within the range (a,b). In contrast
a non-uniform quantization scheme has non-equal spacing
between its elements. Examples of non-uniform quantiza-
tion schemes include logarithmic quantization, in which el-
ements are logarithmically spaced; and cluster quantization,
in which elements are partitioned by decision boundaries
separating clusters of points [14, 15, 13]. The Lloyd Algo-
rithm and K-means are examples of a cluster quantization
in which decision boundaries are determined to have equal

data mass, with the values in each partition mapped to the
centroid (mass centre) of the partition [13, 15].

A data-dependent quantization scheme can be defined
as a quantization map determined with respect to the data
to be quantized. A data-agnostic quantization scheme has
a mapping determined a priori. For a uniform quantization
scheme a data-dependent approach may be to set the range
to be the (min, max) values of the data, or be a clipped
range incorporating distributional information such as stan-
dard deviations of the data [15, 13]. Figure 2 shows the
difference between these approaches. A fixed quantiza-
tion scheme uses the same quantization scheme for every
epoch t. That is, Q¢ = Q¢41;Vt. An adaptive quantization
scheme allows @ to vary over the course of training.

The quantization error of a scalar x is given by [13]:

e=x— Q(z). (D

For a matrix of values we can use the L2-norm of quan-
tization errors as a distance metric:

e= X -QX)|3. )

For an L-layer perceptron we can define the fotal layer-
wise quantization error (TLQE) to be given by:

TLQE =) Wi - Q(W)]3, 3)

leL

where W, refers to the full precision weights at layer [ and
@ is the quantization mapping applied to layer [.

2.1.1 Fixed and Adaptive Quantization

Consider @Q); as depending on the weights at a given epoch
t. Under a fixed data-dependent cluster quantization, we
have @); defined as a mapping that minimises the distance
between quantized and unquantized values at epoch ¢:

Q= argéninHWt - Q)3 )

Note that typically the distribution of weight values
changes over training. Consider applying the same Q; to
a matrix of weights at time ¢’ after several epochs of train-
ing has occurred. By assumption from Equation 4, we have
that (), is the optimal mapping for epoch ¢ and @y the op-
timal mapping for epoch t’. As a result, we know that the
quantization error that occurs from using Q); at t’ is greater
than or equal to that of applying an optimal Q) :

Wy — Qe(Wi)|3 > Wy — Qe (We)[3. (5)

This motivates the use of an adaptive quantization scheme.
As repartitioning with a K-means algorithm is computation-
ally costly it is possible to set an adaptive quantization rule
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based on an interval of epochs, or based on the quantization
error such that repartition occurs if for a chosen §:

W — Qe(Wi)|l5 > IWy — Qe(W)|l5+6.  (6)

In practice, we find it sufficient to repartition periodically
based only on the number of epochs.

2.2. Implicit Neural Representations (INR)

An INR is a function mapping a coordinate input vec-
tor X to an output feature vector y parameterised by neural
network weights [38, 9, 40, 47] as

fo(x) —y. (7)

Examples of INRs include coordinate networks [32, 31],
NeRF and its many variants [45, 47, 26, 29], audio [38, 10],
video [3, 50, 21], topological representations [48], light-
field representations [11], implicit geometry [8, 28], novel
view synthesis, volumetric scalar fields [24], and gigapixel
image fitting [25]. A special case of INRs are image re-
gression problems [38, 40, 9]. An image regression learns a
representation function mapping: fy(z,y) — (r, g,b) for a
single image. The network weights 8 provide an encoding
that predicts the approximate pixel value for a given coor-
dinate. A forward pass across the original set of coordi-
nates approximately reconstructs the original image. A suf-
ficiently small or quantized network can therefore be treated
as a form of lossy image compression [40, 9, 10].

2.3. Neural Radiance Fields (NeRF)

A NeRF is an implicit neural representation of the form

f@(x7y72797¢)_>(rvgab70-)a (8)

where spatial location is provided by the coordinates
(z,y, z) and viewing direction (6, ¢) [27]. When trained on
a set of camera poses for a given scene, the implicit repre-
sentation enables the interpolation and generation of novel
pose estimates. A wide number of technical variations have
extended the original model for purposes of improved fi-
delity or rendering speed, such as [34], [23] and [5]. While
the implicit nature of NeRF is itself a compression form,
only a few works have investigated further compressing
this model. Methods have included a mixture of rank-
residual decomposition, quantization, entropy-penalisation,
pruning, and distillation techniques [18, 2, 43, 44, 37].

2.4. Related Works
2.4.1 Quantization in Deep Learning

How to quantize a signal to preserve its relevant information
content has been of fundamental interest in signal process-
ing, information theory, compression, and other fields since

at least the time of Shannon [36]. Within image process-
ing, quantization is a fundamental element of image com-
pression algorithms such as JPEG [35, 42]. While the term
quantization can refer to the discretisation of any continu-
ous signal, a distinction should be made to its most com-
mon usage in computer vision: the reduced-precision quan-
tization involved in representing a floating point value in
a reduced number of bits [7, 41]. Within deep learning,
reduced-precision quantization has been widely applied to
the weight and/or activation values in a deep feedforward
network [16, 33, 14, 30, 19]. As deep learning libraries such
as PyTorch and Tensorflow typically represent weights in
32-bit or 64-bit format, a lower-precision quantization can
lead to memory and speed improvements. At the extreme
case, this involves binary neural networks whose weights
are quantized to take binary values of {-1, 1} [6]. This
was examined in Rastegari e al. [33] which introduces a
method of training full-precision networks which is robust
to a quantization transformation, known as quantization-
aware training. A variety of quantization methods for deep
neural networks including non-uniform mappings, global
and layer-wise mappings, integer quantization [19], and
mixed-precision quantization are also widely described in
the literature [16, 14].

2.4.2 Quantizing Implicit Neural Representations

Within the wider INR literature, several works have exam-
ined the use of quantization for compression. Works re-
lated to ours are Dupont et al. [9] which applied quantiza-
tion and architecture search to compress images, Strumpler
et al. [40] which applied quantization-aware training and
entropy coding, and Chiarlo [4], which looked at compres-
sion methods for INRs (distillation, pruning, quantization,
and quantization-aware training). Dupont et al. [10] showed
impressive results compressing INRs over multiple modali-
ties through the use of quantized weight modulations. Each
of these papers apply uniform rather than cluster quantiza-
tion. Furthermore each of recent [40], [10], and [22] apply
a meta-learned preinitialisation (MAML) to improve rate-
distortion performance and model performance. They re-
quire an additional dataset for the preinitialisation; in con-
trast we learn on single signal instances to directly compare
quantization methods.

In terms of works employing cluster quantization to
implicit neural representations, we find Lu er al. [24],
Takikawa et al. [43], and Shi et al. [37] to be the most sim-
ilar to our method. Lu et al. [24] applied a K-means clus-
tering to the weights of each layer of a network to compress
volumetric scalar fields. We differ from their work by inves-
tigating NeRF and 2D image compression; and in addition
employ a quantization-aware training and entropy compres-
sion. The second is the recently released Takikawa et al.
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[43], who applied a learned quantization to feature grids to
compress NeRF and signed-distance fields. While they used
K-means clustering as a post-processing benchmark com-
parison, they did not use it as part of quantization-aware
training as in our method. More recently, Shi ef al. [37] ap-
plied a low-rank decomposition and distillation to a trained
model based on the original NeRF (8 layers, 256 channels),
before a global K-means quantization map is used itera-
tively to quantize each layer with other layers then retrained.
In contrast, we apply layer-wise quantization-aware training
throughout our entire training procedure. Furthermore, our
work directly investigates the impact of quantization meth-
ods, network architectures, and quantization levels have on
compression across different modalities.

3. Method

For a loss function L, number of hidden layers h, num-
ber of hidden units per layer w, quantization function @,
bits-per-weight k, compression function C' and target mem-
ory constraint D, we can view the compression of implicit
neural representations through as a constrained optimiza-
tion across architectures and quantization levels as

min L() 9
s.t. C(Q,w,h,k) < D.

3.1. Quantization Methods

Our experiments are performed on 4 quantization meth-
ods (Explicit [-1, 1], Distributional, Minmax, and K-
means). The first three are uniform quantizations with dif-
ferent ranges (see Figure 2): an explicit range between
[—1, 1]; a distributional range calculated as a function of the
standard deviation of the weight distribution; and a Minmax
quantization range determined by the minimum and maxi-
mum value of the distribution. These are compared with a
clustered calculated using the K-means algorithm.

The Explicit [-1, 1] uniform quantization is calculated
using a k-bit formula found in Rastegari ef al. [33]:

round((2F — 1)(£EL)) 1

ar(1) = 20— -3, (0

where © € [—1,1]. The Distributional quantization uni-
formly quantizes within d standard deviations of the weight
distribution, where d is calculated according to a k-bit for-
mula found in Dupont et al. [10]:

3k—1)

d=3+715 . 1D

3.2. Quantization-Aware Training (QAT)

We employ the quantization-aware training introduced
by Rastegari et al. [33]. The algorithm is briefly recalled

Algorithm 1 Adaptive Cluster Quantization

Input: bits-per-weight £, model, reparti-
tion_epoch

1: for epoch 1to N do

2:  Train model (quantization-aware training)

3:  if repartition_epoch then

4 for [ in layers do

5: Recalculate quantization map (1D K-means)

6 end for

7. endif

8: end for

9: Convert Quantized Model to Codebook
10: BZIP2 Codebook Model + Cluster Dictionary

in Figure 3. This procedure trains the model robustly to
quantization through the use of a straight-through estima-
tor [1, 33]. We adapt this procedure to include periodic
repartitioning in which the quantization mappings for the
Distributional, Minmax, and K-means are recalculated pe-
riodically over training. The Explicit [—1, 1] quantization is
fixed for all epochs. Repartitioning every F' epochs in a NV
epoch training cycle introduces a computational overhead
of w, where G is a cost of repartitioning which
depends on the network architecture (w, h), quantization
function (g), and bits-per-weight (k). Periodic repartition-
ing therefore strikes a balance between accumulating quan-
tization error and the introduced computational overhead of
recomputing partitions as weight distributions change over
training; see Figure 4 and Sec. 5. Following training, the
quantized weights are converted to an integer representation
(a dictionary mapping of the quantized float and the integer)
as [40]. Both the integer representation and the mapping are
then compressed using BZIP2, an entropy encoding com-
pression library. Algorithm 1 describes our approach.

W = QW) W,
aL A4
— < L(W
n w,)

Figure 3. QAT Per epoch training cycle: The current full-precision
weight matrix W is quantized Q(W) = Wj. The loss function
L(Wy) is calculated for the input data, and the error derivatives
%ﬂi") calculated. The full-precision weight matrix W is then
updated using backpropagation.
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Figure 4. Effect of repartitioning on Total Layerwise Quantization
Error (TLQE) [log scale]. Recalculating partitions reduces quan-
tization error at the cost of increased computation. Architecture: 1
hidden layer, 18 neurons, 5-bit weights, K-means quantization.

3.3. Implementation Details

Training was conducted with the Adam optimizer with
the hyperparameters le=%4, 3 = (0.99,0.999) and weight
decay = 1e~® [20]. For image regression we use a sine ac-
tivation with frequency 30 as described by [9, 40], but com-
pare with Gaussian and ReLU activations as supplemental
ablation [9, 38]. For our 2D image regression experiments,
we experimented with both the MSE loss and its negative
base-10 logarithm (i.e. an unscaled peak signal-to-noise ra-
tio (PSNR)). For the NeRF experiments, we use the MSE
loss [27]; see Sec. 5 for more details. Our experiments are
evaluated quantitatively using standard perceptual metrics,
including the PSNR, the structural similarity index measure
(SSIM), and LPIPS Alex and VGG (two learned perceptual
metrics) [46, 49, 35, 42, 13]. We additionally evaluate the
gradient PSNR, which we define by

PSNRa = —logyo([|A(fo(x,y)) = AX)Z),  (12)

where A(+) is an approximation of the image gradient gen-
erated through the Sobel operator [42]. The gradient PSNR
is used to determine the quality of preserved image gradi-
ents, as these are often important for downstream tasks such
as image classification and segmentation [42].

4. Results

In this section we present our comparison of different
quantization schemes. First, we demonstrate a performance
difference between cluster and uniform quantization for im-
age regression of the CIFAR10 Dataset. This is followed by
a deeper architectural analysis on an instance of the DIV2K
Dataset. As an example application of the analysis we apply
our method to the more complicated modality of NeRF.

4.1. CIFAR10

Experiments for 2D image reconstruction were con-
ducted on the CIFAR10 dataset. We use a base network of
1 hidden layer, sine activation, 20 neuron layers replicating
the architecture used for COIN compression experiments in
[10]. Repartitioning was applied at every epoch. As can be
seen in Figure 5, the K-means cluster quantization has im-
proved reconstruction relative to the other methods as eval-
uated across perceptual metrics. Interestingly, it is found
to have substantially higher accuracy according to the Gra-
dient PSNR even at high bits-per-weight. Comparing the
uniform approaches, Distributional and Minmax quantiza-
tion gives broadly similar results. Quantizing uniformly be-
tween a fixed [-1, 1] gives the worst performance with little
signal reconstructed at low bits-per-weight.
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Figure 5. Perceptual evaluation (CIFAR10)
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4.2. DIV2K

We conducted the experiments for 2D image reconstruc-
tions on the DIV2K image test suite, which consists im-
ages with at least 2000 pixels on at least one axis. Figure
7 compares the quantization methods at different architec-
tures and rates of quantization. Repartitioning was applied
every 50 epochs. As expected, the K-means quantization
outperforms the uniform quantization methods at low bit-
rates. At 8 bits-per-weight the difference between K-means,
Distributional, and Minmax quantization is negligible. This
is consistent with the well-known result that high resolution
uniform scalar quantizers closely approximate an optimal
quantization (to within 2.82dB for a Gaussian source), a re-
sult first noted by Koshelev in 1963 and since rediscovered
by multiple authors [15, 13].

Memory Usage

y
.
\g 3

Wictgy, 505

Image Quality

Compressed Memory (kb)

Figure 6. Architecture search over the number of hidden layers,
and the number of units per hidden layer. The colours correspond
to different quantization bits-per-weight (1, 3, 5, 8) using K-means
quantization. Div2K index 3, evaluated at 3000 epochs.

4.3. NeRF Experiments

For evaluations on neural radiance fields, we used a 4-
layer NeRF [27] with 64 hidden units per layer without hi-
erarchical sampling trained for 200,000 epochs with repar-
titioning every 100 epochs. The highest performing epoch
was selected for evaluation. A ReLU activation with posi-
tional encoding is used as per [27]. Note that our analysis
is agnostic to activations; see supplemental ablation. Initial
experiments were performed on the LLFF ‘flower’ instance
with bits-per-weight (1, 3, 5, 8). Following this an evalua-
tion was conducted on the full LLFF and Blender Datasets
using with weights quantized to 3 bits-per-weight.

LLFF Dataset Figure 9 shows our results in compress-
ing the NeRF on a ‘flower’ instance (LLFF) using uniform
and cluster quantization. Significant compression of NeRF
is observed without a catastrophic degradation of accuracy
(e.g. 20.77 PSNR with a model size of 25.6kb). In terms of
memory usage, this compares favourably to that obtained
by both the original NeRF (27.42 PSNR, 5169kb) and cN-
eRF (27.39 PSNR at 938kb) [27, 2]. Furthermore, we note

1-Bit Weights 3-Bit Weights

o
== K-means Wfdth R
Distributional

5-Bit Weights = E’lllnlmla]x

/. 4
/’. o PSNR
sy

4

Widey, 5

8-Bit Weights

Figure 7. Comparison between quantization methods under differ-
ent architectures at different rates on DIV2K index 3. The clus-
tered quantization outperforms uniform methods at low bits-per-
weight and the difference becomes marginal at higher resolutions.

the improvement of K-means quantization at low bits-per-
weight. At 3 bits-per-weight K-means quantization obtains
a test PSNR of 18.93 with an architecture of 4-layers 64
neurons, compared to 17.82 under Explicit [-1,1] quantiza-
tion, 17.56 under Minmax quantization, and 18.02 under
a Distributional quantization. Moreover K-means quanti-
zation enables the signal to be obtained under 1-bit quan-
tization (16.21 PSNR); a restriction that causes the signal
to collapse under both Explicit and Distributional quantiza-
tion. At higher bits-per-weight this benefit is diminished.
This is expected and consistent with quantization theory,
as increasing partitions reduces the uncovered distributional
support [13, 15]. Architecture choice has a large impact on
memory footprint (e.g. increasing hidden layer neurons to
128 approximately triples the used memory from 25.6kb to
76.9kb), with a positive but marginal improvement in PSNR
(20.77 to 21.61; see Supplementary Materials).

Blender Dataset Table 1 shows comparison of the eval-
uated methods on Blender test NeRF instances. Results
show clear improvement on perceptual metrics for K-means
quantization. The size of these models following com-
pression with BZIP2 is noticeably larger for the K-means
quantization. As BZIP2 compresses most effectively for
repeated information, it is possible that the distribution of
quantized weights is more uniform under the K-means clus-
tering (and is therefore being used more completely). Note
that the compressed size obtained under this process is very
small, with the NeRF model compressed to a size of approx-
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Figure 8. Synthetic NeRF Qualitative Result on “drum” instance. Less distortion is visible under the K-means quantization. Each model is
less than 16kb (4 hidden layers of 64 neurons, with 3-bit quantization).
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Figure 9. Comparison of PSNR and Compressed Memory Size for
NeRF Flower images. Architecture (4-layers, 64 neuron layers).

imately 16kb. The qualitative evaluation shows that even
under this extreme compression a clear signal is able to be
reconstructed (see Figure 8).

5. Discussion and Limitations

Periodic Repartitioning While recalculating partitions
more frequently reduces quantization error (see Figure 4),
this overhead may make frequent repartitioning using K-
means impractical for large architectures with high quanti-
zation resolution. The computational complexity of the im-
plemented K-means algorithm is O(mn + nlogn) where
m is the number of partitions and n is the data points [39].
For our case this depends on the bits-per-weight &, (as
m = 2%); the number of neurons at each layer wiy , Wout
(as n = w;y, * Weye); and the number of layers. As such,
the clustering operation scales inefficiently with large archi-
tecture sizes and bits-per-weight. In practice, we find that
repartitioning every 50 to 100 epochs to balance this cost
in our experiments to a manageable overhead. To a lesser
extent, the overhead for Distributional and Minmax is also
affected by repartitioning frequency. While a balance be-

tween the increased computation cost and perceptual benefit
of more frequent repartitioning is a subjective consideration
for the experimenter, we note as a societal impact the high
global energy consumption in machine learning [12].

Network Capacity and Quantization Trade-Off One
interesting experimental observation is an apparent trade-
off between the network capacity and quantization. In Fig-
ure 6, we show the effect of weight quantization at differ-
ent bit rates using K-means quantization. By considering
the level-sets of the induced PSNR, we note that multiple
configurations of network width, depth, and quantization
level can lead to the same PSNR. The architectures dif-
fer however on the memory consumption, with exponential
memory increase in the number of layers. A consequence
of this is architectural mitigation of reconstruction failure
even with extreme weight quantization. Figure 10 shows
this visually on CIFAR: a) shows a network of 3 hidden
layers, 256 neurons per layer, 1-bit weights (PSNR: 22.21,
31.6kb); b) 3 hidden layers 512 neurons, 1-bit weights
(PSNR: 33.61; 124.41kb). As compression, this is not very
useful: the quantized network in b) is approximately 40x
the original CIFAR image - however it clearly demonstrates
the performance trade-off between weight quantization and
neural architecture. As comparison, we note that improved
memory efficiency can be obtained with a higher number
of bits-per-weight as shown in: c¢) where we have 2 hidden
layers, 20 neurons, quantized to 5-bit weights (PSNR:29.69,
3.11kb) due to the architecture memory cost.

Future Work Further improvements can additionally be
applied to our chosen quantization schemes. In particular,
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Method PSNR SSIM LPIPS Size (kb)
Chair

K-means 29.78 0.95 0.08 15.58
Distributional 26.76 0.91 0.16 13.45
Minmax 27.69 0.93 0.14 10.95

Explicit [-1, 1]  28.40 0.94 0.12 14.49
Drums

K-means 21.03 0.81 0.25 15.85
Distributional 19.72 0.72 0.41 13.40
Minmax 19.35 0.71 0.42 11.63

Explicit [-1, 1]  20.47 0.77 0.32 15.00
Ficus

K-means 23.85 0.89 0.12 16.17
Distributional 23.03 0.86 0.22 13.42
Minmax 22.71 0.85 0.25 11.85
Explicit [-1, 1]  23.39 0.88 0.16 14.10
Hotdog

K-means 27.52 0.88 0.19 15.52
Distributional 25.04 0.80 0.36 13.24
Minmax 25.60 0.83 0.29 11.51
Explicit [-1, 1]  26.07 0.83 0.30 14.83
Lego

K-means 22.88 0.82 0.16 15.69
Distributional 21.37 0.77 0.27 13.33
Minmax 20.79 0.76 0.28 10.92
Explicit [-1, 1]  21.89 0.79 0.21 14.89
Materials

K-means 21.51 0.82 0.23 15.36
Distributional 19.88 0.76 0.37 13.22
Minmax 19.76 0.75 0.37 10.64
Explicit [-1, 1]  20.77 0.78 0.34 14.03
Mic

K-means 26.07 0.93 0.13 16.02
Distributional 23.68 0.89 0.24 13.43
Minmax 23.09 0.89 0.24 11.30
Explicit [-1, 1]  24.96 0.92 0.18 14.44
Ship

K-means 24.49 0.69 0.37 15.87
Distributional 23.45 0.65 0.46 13.35
Minmax 23.48 0.66 0.45 11.08

Explicit [-1, 1]  23.93 0.66 0.44 14.52
Table 1. Quantitative Results on Blender (NeRF), Architecture: 4
hidden layers, 64 units per layer, 3-bit quantization). Metrics av-
eraged over sampled 2D views of the reconstruction.

the quantization methods employed are deterministic which
can introduce patterns and artefacts in the quantized map-
ping; the well-known method of dithering is one way to
avoid this issue [13, 35]. To a certain extent recalculating
centroids introduces a source of stochasticity which may
help obviate this issue, but a formal evaluation remains an
area for future work. As a side note, we find that using

a log L2 loss function (i.e. directly optimising for PSNR)
produced higher accuracy reconstructions at a given train-
ing epoch than the standard L2 loss function more common
in the literature (see supplementary material), a result that
held consistently across ablations of network architecture
and activation function. We note that the logarithm is a
monotonic operation, and therefore does not change the the-
oretical minimum of the converged network. As a result, it
is interesting to see that this modification led to consistent
improvements in the 2D evaluation. This result did not hold
in general for other more expressive experiments, such as
NeRF. Formal investigation to the cause of this observation
remains a potential avenue of enquiry.

3 hidden layers
256 neurons
1-bit weights

3 hidden layers
512 neurons
1-bit weights

2 hidden layers
20 neurons
5-bit weights

Ground Truth

PSNR: 22.21
31.6kb 124.41kb 3.11kb

PSNR: 33.61 PSNR: 29.69

Figure 10. Trading network capacity for quantization levels. While
it is possible to use K-means weight quantization to enable 1-bit
reconstructions with sufficient network capacity, this comes at a
trade-off for memory efficiency.

6. Conclusion

We investigated the use of non-uniform quantization for
the compression of implicit neural functions. By accounting
for the weight distribution of the neural network layers, we
are able to achieve higher performance at lower bits-per-
weight than under uniform quantization approaches. We
have additionally shown that there exists a trade-off be-
tween the network capacity and the weight quantization lev-
els, with an extreme (binary) quantization able to be com-
pensated with sufficient network capacity for simple exper-
iments. Our method enables compression of neural radi-
ance fields to a large degree compared to the original NeRF
model. As the strategy involves a modification of the quan-
tization strategy employed to the neural weights, it is pos-
sible that this may also be applied to other large implicit
neural representations. Of particular interest is the potential
to apply it to high resolution methods such as kiloNeRF,
which have a large memory footprint of 100MB or SNeRG
with 90MB [34, 17]. As these methods are optimised for in-
ference in real-time this would be a step towards lightweight
real-time NeRF models.
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