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Abstract

This paper develops a certified defense for deep neural
network (DNN) based content based image retrieval (CBIR)
against adversarial examples (AXs). Previous works put
their effort into certified defense for classification to im-
prove certified robustness, which guarantees that no AX to
cause misclassification exists around the sample. Such cer-
tified defense, however, could not be applied to CBIR di-
rectly because the goals of adversarial attack against clas-
sification and CBIR are completely different. To develop
the certified defense for CBIR, we first define new certi-
fied robustness of CBIR, which guarantees that no AX that
changes the ranking of CBIR exists around the query or can-
didate images. Then, we propose computationally tractable
verification algorithms that verify whether the certified ro-
bustness of CBIR is achieved by utilizing upper and lower
bounds of distances between feature representations of per-
turbed and non-perturbed images. Finally, we propose new
objective functions for training feature extraction DNNs
that increases the number of inputs that satisfy the certi-
fied robustness of CBIR by tightening the upper and lower
bounds. Experimental results show that our objective func-
tions significantly improve the certified robustness of CBIR
than existing methods.

1. Introduction
Content based image retrieval (CBIR) is a task that re-

trieves visually similar images to a given query image from
a set of candidate images. Modern CBIR performs retrieval
by ranking the similarity between the query image and can-
didate images based on feature extraction deep neural net-
works (DNNs) trained by metric learning [4, 3]. However,
recent studies reveal that such DNN-based CBIR is vulner-

able to small human-imperceptible perturbation to the in-
put data, called adversarial examples (AXs) [38, 40, 12, 22,
26, 39, 14, 28, 1]. Such AXs can be input to DNN-based
CBIR as query or candidate images and maliciously modify
the ranking results by manipulating the output of the fea-
ture extraction DNNs. Since the DNN-based CBIR is often
involved in security-critical systems such as face identifica-
tion [16] and person re-identification [34], defense methods
for DNN-based CBIR against AXs are necessary.

A great deal of effort has been devoted to empirical de-
fense methodologies for the classification task [15, 33, 17].
Adversarial training [15], which trains DNNs using AXs as
training data, is one of the most effective empirical defense
methodologies for the classification. Adversarial training
has also been shown to be effective in CBIR empirically
[38, 40]. While these empirical defense methods achieve ro-
bustness against conventional attacks, they often suffer from
adaptive attacks [23], which assume the attacker is aware
of the strategy of the defense method. Since there is no
guarantee that these empirical defense methods are effective
against adaptive attacks, defense methods that achieve ro-
bustness against AXs with theoretical guarantees are needed
to deal with adaptive attacks.

To overcome adaptive attacks, many studies have worked
to establish defense with certified robustness of classifica-
tion. Certified robustness means that there is no AX to cause
misclassification within an lp-ball centered on a given sam-
ple. This type of defense is generally referred to as cer-
tified defense. Certified defense generally consists of (i) a
verification algorithm to verify whether a given classifier
satisfies certified robustness at a given sample and (ii) ro-
bust training for classifier to increase the number of sam-
ples that satisfy certified robustness. Since exactly verify-
ing whether a given classifier satisfies certified robustness at
a given sample is known to be reduced to an NP-complete

4561



problem [8, 29], [6, 7, 35, 30, 36, 21, 24, 37, 31] make the
problem relaxed and computationally tractable. Precisely,
they use the upper and lower bounds of logits against AXs
in the lp-ball instead of exact logits for the verification.
Using the bounds makes the verification computationally
tractable, while the results can include false negative, i.e.,
given samples are determined to be not robust, even when
they actually achieve certified robustness (conversely, sam-
ples determined to be non-robust are guaranteed to be al-
ways non-robust). Considering that this gap is caused by the
looseness of the bounds, robust training to make this bound
tighter has been introduced [6, 7, 35, 30, 36, 21, 24]. By
training the DNN in this way, we can expect to reduce the
number of cases where samples that are robust are judged
to be non-robust.

Although certified defense for classification has been in-
vestigated extensively, no attention has been paid to certi-
fied defense for CBIR. Moreover, the existing certified de-
fense for classification cannot be directly applied to CBIR in
the following sense: the goals of adversarial attack against
classification and CBIR are completely different. Specif-
ically, the adversarial attacks against classification aim to
change the predicted class label of the classifier, whereas
the adversarial attacks against CBIR aim to change the
rank of the similarity between the query image and can-
didate images calculated by feature extraction DNNs. To
realize certified defense for CBIR, we need to introduce a
definition specifically designed for certified robustness of
CBIR. Then, we must design verification algorithms to ver-
ify whether a given feature extraction DNN satisfies the new
robustness at given inputs in computationally tractable ways
and robustness training of feature extraction DNNs suitable
for the new verification algorithm.

1.1. Our Contributions

In this paper, we develop a certified defense for CBIR.
Our contribution is three-fold. First, we define new cer-
tified robustness of CBIR. Our certified robustness means
that, given a feature extraction DNN, query image, and can-
didate images, there is a guarantee that no AX that changes
the ranking of CBIR exists within l∞-balls centered on the
query or candidate images.

Second, we propose computationally tractable verifica-
tion algorithms for the certified robustness of CBIR. To ex-
actly verify whether a given feature extraction DNN satis-
fies our certified robustness at given query and candidate
images, we need to evaluate the exact maximum and min-
imum distance between AXs in lp-balls centered on the
query image and benign candidate images in the feature
space (or AXs in lp-balls centered on the candidate images
and benign query images). That makes the verification com-
putationally intractable. To alleviate this, our algorithms
use upper and lower bounds of the distances obtained by

applying interval bound propagation (IBP) [6, 7, 35] to fea-
ture extraction DNNs.

Third, we propose new objective functions to train fea-
ture extraction DNNs that attain tighter evaluation of the up-
per and lower bound of the distances. When the bounds are
loose, our verification algorithms can judge inputs as non-
robust. To decrease such misjudging, we propose to train
DNN with a regularization term that encourages the bounds
on the distances to be tighter.

We experimentally show that our objective functions sig-
nificantly improve the certified robustness compared to ex-
isting methods, including adversarial training for CBIR [40]
and robust training for improving certified robustness of
classification task [6]. To the best of our knowledge, this
is the first study that achieves certified defense for CBIR.

2. Preliminaries
2.1. Content Based Image Retrieval (CBIR)

CBIR is a task to find images similar to a query image
in a set of candidate images. Let X be the instance space.
Let q ∈ X be a query image and C = {ci|ci ∈ X}Ni=1

be a set of candidate images where N is the number of
candidate images. Let f : X → Rd be a feature ex-
tractor where d is the feature dimension. Then, CBIR
ranks c ∈ C with Euclidean distance d(f(q), f(c)) :=
∥f(q) − f(c)∥2 and retrieves the top-k similar images to
q in C. We define a function IRf (q, C), which returns
the list of elements in C ordered by the distance from q.
IRf (q, C)j ∈ C denotes the j-th most similar image to q in
C and IRf (q, C)≤j = {IRf (q, C)1, ..., IRf (q, C)j} repre-
sents the set of images with the first to j-th highest similar-
ity. We also define a function Rankf (q, c, C) returning the
rank of c in IRf (q, C).

2.2. Adversarial Attacks against CBIR

In recent years, many studies have focused on adversarial
attacks on CBIR [38, 40, 12, 22, 26, 39, 14, 28, 1]. These at-
tacks can be categorized into two types of attacks, query at-
tack (QA) and candidate attack (CA), depending on whether
the AX is given as a query image or a candidate image.

2.2.1 Query Attack (QA)

Let Ct ⊂ C be the target candidates in C specified by the
adversary. The adversary aiming at QA perturbs a source
query image qs to raise or lower the rank of the candidates
in Ct. When the attacker’s goal is to raise the rank of the
candidates in Ct, adversarial perturbation δ for QA is ob-
tained by solving the following optimization problem:

min
δ∈X,∥δ∥∞≤ϵ

∑
t∈Ct

Rankf (qs + δ, t, C) (1)
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where ∥ � ∥∞ is ∞ norm and ϵ ∈ R≥0 is a constant that
bounds the size of the perturbation. Eq. (1) cannot be solved
directly due to the discrete nature of Rankf (·). Instead,
[38, 40] minimizes the following objective function:

min
δ∈X,

∥δ∥∞≤ϵ

∑
t∈Ct

∑
c∈C

[
d(f(qs+δ), f(t))−d(f(qs+δ), f(c))

]
+

.

(2)
Minimization in Eq. (1) is changed to maximization when
the attacker’s goal is to lower the rank of the candidates in
Ct.

2.2.2 Candidate Attack (CA)

Let Qt = {qi ∈ X}Mi=1 be a set of target query images
specified by the adversary. The adversary aiming at CA
perturbs a source candidate image cs ∈ C so that the rank
of perturbed cs is raised or lowered when ∀q ∈ Qt is issued
as a query. When the attacker’s goal is to raise the rank of
the perturbed cs, adversarial perturbation for CA is obtained
by the following minimization problem with respect to δ:

min
δ∈X,∥δ∥∞≤ϵ

∑
t∈Qt

Rankf (t, cs + δ, C). (3)

where ∥ � ∥∞ is ∞ norm and ϵ ∈ R≥0 is a constant that
bounds the size of the perturbation. Since optimization in
Eq. (3) is intractable, [38, 40] optimizes the following ob-
jective function instead:

min
δ∈X,

∥δ∥∞≤ϵ

∑
t∈Qt

∑
c∈C

[
d(f(t), f(cs + δ))− d(f(t), f(c))

]
+

.

(4)
As well as QA, minimization in Eq. (3) is changed to maxi-
mization when the attacker’s goal is to lower the rank of the
perturbed c.

2.3. Certified Robustness

Here, we briefly review the existing definition of the cer-
tified robustness and verification algorithm for classifica-
tion. Then, we define a new certified robustness of CBIR.

2.3.1 Certified Robustness of Classification

The adversarial attacks against the classifier aim to change
the predicted label of the classifier to untargeted or targeted
label by perturbing the input images [5, 2, 15]. The certified
robustness for classification guarantees that predicted labels
are kept invariant when the adversarial attacks are limited
within a specified range:

Definition 1 (Certified Robustness of Classification [13]).
Let x ∈ X be a input image and t ∈ {1, ..., C} be cor-
responding label to x. Let fc : X → RC be a classi-
fier and fc(x)j be the logit of class j ∈ {1, ..., C} for

x. Let ϵ ∈ R≥0. Then, fc is certified robust at x if
minδ∈X,∥δ∥∞≤ϵ fc(x+ δ)t − fc(x+ δ)i:i̸=t > 0.

2.3.2 Verification Algorithm for Classification

Verifying whether fc satisfies certified robustness of classi-
fication at x is reduced to an NP-complete problem [8, 29].
To make the verification computationally tractable, [6, 7,
35, 30, 36, 21, 24, 37, 31] use lower bounds of margins be-
tween logits mi(x) ≤ minδ∈X,∥δ∥∞≤ϵ fc(x+ δ)t − fc(x+
δ)i:i ̸=t instead of the exact margins. mi(x) can be obtained
by computationally tractable algorithms, such as linear re-
laxations of neural networks [30, 36, 21], utilizing global
or local Lipschitz constant of neural networks [24, 37, 31],
or interval bound propagation (IBP) [6, 7, 35]. We remark
that, samples that actually satisfy Definition 1 can be judged
as non-robust because mi(x) > 0 for ∀i ∈ {1, ..., C} \ {t}
is a sufficient condition for Definition 1.

2.3.3 Certified Robustness of CBIR

Definition 1 is not suitable for CBIR as it is because the
goals of adversarial attacks against classification and CBIR
are different: the adversarial attacks against classification
aim to change the predicted class label of the classifier,
whereas QA and CA aim to change the rank of the can-
didates. Thus, in certified defense for CBIR, we need to
consider rank invariance rather than label invariance against
AXs. We define the certified robustness of CBIR against
QA and CA as follows, respectively:

Definition 2 ((α, ϵ)-Robustness against QA). Let f : X →
Rd be a feature extractor. Let q ∈ X and C = {ci|ci ∈
X}Ni=1 be a query image and a set of candidate images,
respectively. Let α ∈ N0 and ϵ ∈ R≥0. Then, for ∀δ ∈
{δ | δ ∈ X, ∥δ∥∞ ≤ ϵ}, f satisfies (α, ϵ)-robust against
QA at IRf (q, C)j , q, and C if

|Rankf (q + δ, IRf (q, C)j , C)− j| ≤ α. (5)

Definition 3 ((α, ϵ)-Robustness against CA). Let f : X →
Rd be a feature extractor. Let q ∈ X and C = {ci|ci ∈
X}Ni=1 be a query image and a set of candidate images,
respectively. Let α ∈ N0 and ϵ ∈ R≥0. Then, for
C̃ = {IRf (q, C)i + δi}Ni=1 where ∀δ1, ...,∀δN ∈ {δ | δ ∈
X, ∥δ∥∞ ≤ ϵ}, f satisfies (α, ϵ)-robust against CA at
IRf (q, C)j , q, and C if

|Rankf (q, IRf (q, C)j + δj , C̃)− j| ≤ α. (6)

In both robustness definitions, we introduced α to relax
the strictness of the guarantee because it can be too stringent
to require complete rank invariance.
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3. Verification Algorithms for CBIR
In this section, we propose verification algorithms to ver-

ify whether given f satisfies (α, ϵ)-robustness against QA
and CA at given IRf (q, C)j , q, and C (Definition 2 and
Definition 3). Since they are computationally intractable,
the key challenge of designing the verification algorithms is
to make them relax and computationally efficient.

Overview Our idea to recover tractability is to introduce
computationally tractable sufficient conditions for (α, ϵ)-
robustness against QA and CA. Unfortunately, the existing
sufficient condition for Definition 1 cannot be used directly
because Definition 2 and Definition 3 depend on distances
in the feature space rather than the margins of logits. Thus,
in Section 3.1, we first derive sufficient conditions for Defi-
nition 2 and Definition 3 using the upper and lower bounds
of the distances, assuming that the bounds can be obtained
in a tractable way. Then, in Section 3.2, we introduce al-
gorithms to obtain the upper and lower bounds in polyno-
mial time using interval bound propagation (IBP) [6, 7, 35],
which is fast and scalable to DNNs.

3.1. Sufficient Conditions for (α, ϵ)-Robustness
against QA and CA

In this subsection, we derive sufficient conditions for
Definition 2 and Definition 3. Let x1, x2 ∈ X and ϵ ∈ R≥0.
Then, we define upper and lower bounds as follows:

dx2
(x1) ≥ max

δ∈X,∥δ∥∞≤ϵ
∥f(x1 + δ)− f(x2)∥2, (7)

dx2
(x1) ≤ min

δ∈X,∥δ∥∞≤ϵ
∥f(x1 + δ)− f(x2)∥2. (8)

We omit f from the arguments of dx2(x1) and dx2
(x1) for

simplicity when it is obvious from the context.
To derive sufficient conditions for Definition 2 and

Definition 3, we first derive upper and lower bounds
of Rankf (q + δ, IRf (q, C)j , C) in Eq. (5) and
Rankf (q, IRf (q, C)j + δj , C̃) in Eq.(6) by comparing
dx2

(x1) and dx2
(x1) instead of comparing exact distances:

Theorem 1 (Upper and Lower Bounds of Rank Under QA).
Let f : X → Rd be a feature extractor. Let q ∈ X and C =
{ci|ci ∈ X}Ni=1 be a query image and a set of candidate
images, respectively. Let α ∈ N0 and ϵ ∈ R≥0. Then, for
∀δ ∈ {δ | δ ∈ X, ∥δ∥∞ ≤ ϵ},

Rankf (q + δ, ĉ, C) ≤ N −
∑
c∈C

1

[
dĉ(q) < dc(q)

]
, (9)

Rankf (q + δ, ĉ, C) ≥
∑
c∈C

1

[
dc(q) < dĉ(q)

]
+ 1 (10)

where ĉ = IRf (q, C)j .

Proof. The proof is shown in Appendix.

Theorem 2 (Upper and Lower Bounds of Rank Under CA).
Let f : X → Rd be a feature extractor. Let q ∈ X and C =
{ci|ci ∈ X}Ni=1 be a query image and a set of candidate
images, respectively. Let α ∈ N0 and ϵ ∈ R≥0. Then, for
C̃ = {IRf (q, C)i + δi}Ni=1 where ∀δ1, ...,∀δN ∈ {δ | δ ∈
X, ∥δ∥∞ ≤ ϵ},

Rankf (q, ĉ+ δj , C̃) ≤ N −
∑
c∈C

1

[
dq(ĉ) < dq(c)

]
,

(11)

Rankf (q, ĉ+ δj , C̃) ≥
∑
c∈C

1

[
dq(c) < dq(ĉ)

]
+ 1

(12)

where ĉ = IRf (q, C)j .

Proof. The proof is shown in Appendix.

From Theorem 1 or Theorem 2, we can also obtain the
upper and lower bounds of Rankf (q+δ, IRf (q, C)j , C)−j

in Eq. (5) and Rankf (q , IRf (q, C)j + δj , C̃)−j in Eq. (6)
immediately. We can derive sufficient condition for Defini-
tion 2 and Definition 3 by comparing the bounds with α:

Theorem 3 (Sufficient Condition for (α, ϵ)-Robustness
against QA). Let f : X → Rd be a feature extractor. Let
q ∈ X and C = {ci|ci ∈ X}Ni=1 be a query image and a set
of candidate images, respectively. Let α ∈ N0 and ϵ ∈ R≥0.
Then, f satisfies (α, ϵ)-robust against QA at IRf (q, C)j , q,
and C if

α ≥ N −
∑
c∈C

1

[
dIRf (q,C)j (q) < dc(q)

]
− j

∧ −α ≤
∑
c∈C

1

[
dc(q) < dIRf (q,C)j

(q).

]
+ 1− j. (13)

Proof. The proof is shown in Appendix.

Theorem 4 (Sufficient Condition for (α, ϵ)-Robustness
against CA). Let f : X → Rd be a feature extractor. Let
q ∈ X and C = {ci|ci ∈ X}Ni=1 be a query image and a set
of candidate images, respectively. Let α ∈ N0 and ϵ ∈ R≥0.
Then, f satisfies (α, ϵ)-robust against CA at IRf (q, C)j , q,
and C if

α ≥ N −
∑
c∈C

1

[
dq(IRf (q, C)j) < dq(c)

]
− j

∧ −α ≤
∑
c∈C

1

[
dq(c) < dq(IRf (q, C)j)

]
+ 1− j. (14)

Proof. The proof is shown in Appendix.

From Theorem 3 and Theorem 4, we can verify whether
Definition 2 and Definition 3 are satisfied in polynomial
time if we can calculate dx2(x1) and dx2

(x1) in polynomial
time.
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3.2. Evaluation of dx2(x1) and dx2
(x1)

Next, we show how to evaluate dx2
(x1) and dx2

(x1).
Since Eq. (13) and Eq. (14) are sufficient conditions of
Definition 2 and Definition 3, respectively, they do not nec-
essarily hold, even when Definition 2 and Definition 3 are
guaranteed. Whether Eq. (13) and Eq. (14) can hold de-
pends on the tightness of dx2

(x1) and dx2
(x1). For this

reason, we need to obtain meaningfully tight evaluation of
dx2

(x1) and dx2
(x1). In this subsection, we propose meth-

ods to calculate dx2
(x1) and dx2

(x1) in polynomial time by
utilizing Interval Bound Propagation (IBP) [6, 7, 35]. IBP is
an algorithm for calculating the upper and lower bounds of
logits when a bounded region in the input space is given as
input. IBP is used for robustness verification of the classifi-
cation task and known to give a meaningfully tight bound
for this purpose. Since the computational complexity of
IBP is comparable to two forward propagations of DNNs,
the IBP is scalable even with DNNs.

3.2.1 Original IBP

Given, x ∈ X , ϵ ∈ R≥0, and L-layer classifier fc, original
IBP evaluates the upper and lower bounds of fc(x + δ) for
∀δ ∈ {δ | δ ∈ X, ∥δ∥∞ ≤ ϵ}. Let zl = W lhl−1 + bl be the
l-th affine layer (e.g. fully connected layer and convolution
layer) and hl−1 = σ(zl−1) be a monotonic activation func-
tion (e.g. ReLU) where l ∈ {1, ..., L} and h0 = x. Then,
IBP provides upper and lower bounds on the outputs of l-th
affine layers as follows:

zl = W l h
l−1

+ hl−1

2
+ |W l|h

l−1 − hl−1

2
+ bl, (15)

zl = W l h
l−1

+ hl−1

2
− |W l|h

l−1 − hl−1

2
+ bl (16)

where | · | represents the element-wise absolute value oper-
ator, h

l−1
= σ(zl−1), hl−1 = σ(zl−1), h

0
= x + ϵ1, and

h0 = x− ϵ1.

3.2.2 Proposed Methods

We can evaluate dx2
(x1) and dx2

(x1) by utilizing IBP. Let
f(x)i be the i-th element of f(x). Let f(x)i and f(x)i be
upper and lower bounds of f(x)i calculated by Eq.(15) and
Eq.(16), respectively. Then, we can evaluate dx2(x1) and
dx2

(x1) by the following theorems:

Theorem 5. Let x1, x2 ∈ X and ϵ ∈ R≥0. Then,

max
δ∈X,∥δ∥∞≤ϵ

d(f(x1 + δ), f(x2)) ≤√ ∑
i∈{1,..,d}

max
{
|f(x1)i − f(x2)i|, |f(x2)i − f(x1)i|

}2
.

(17)

Proof. The proof is shown in Appendix.

Theorem 6. Let x1, x2 ∈ X and ϵ ∈ R≥0. Then,

min
δ∈X,∥δ∥∞≤ϵ

d(f(x1 + δ), f(x2)) ≥√ ∑
i∈{1,..,d}

min
{
0, f(x1)i − f(x2)i, f(x2)i − f(x1)i

}2
.

(18)

Proof. The proof is shown in Appendix.

The computational complexity of calculating the upper
bound in Eq. (17) and the lower bound in Eq. (18) is com-
parable to three forward propagation of DNNs. Thus, cal-
culating Eq. (17) and Eq. (18) requires one more forward
propagation of DNNs than calculating the lower bounds of
margins between logit mi(x) by IBP for robustness verifi-
cation for classification. Evaluating Eq. (17) and Eq. (18)
to determine if the derived robustness conditions (Eq. (13)
and Eq. (14)) is satisfied, we can obtain our tractable verifi-
cation algorithms as follows:

Verifyα,ϵ(f, q, C, j) =

{
True if Eq. (13) or (14) is True

False otherwise.

(19)

4. Robust Training for CBIR
In this section, we propose robustness training for CBIR.

We experimentally confirm that Eq.(13) and Eq.(14) are al-
ways not satisfied for all q, C, and j used in our experiments
when using f trained by conventional metric learning (See
Section 5 for details). This is because the upper and lower
bounds calculated by Eq. (17) and Eq. (18) can be too loose
to satisfy the sufficient conditions Eq. (13) and Eq. (14). To
increase the number of inputs that satisfy Eq. (13) and Eq.
(14), we need to train f so that attains tighter evaluation of
dx2

(x1) and dx2
(x1).

To this end, we propose two new objective functions to
train feature extractor for CBIR. One is training of general
feature extractor that attains tighter bounds in Eq. (17) and
Eq. (18) without knowledge of query and candidate images.
The other is fine tuning of feature extractor given that can-
didate images for the target CBIR are provided. We remark
that both algorithms are independent, and the latter algo-
rithm can be applied to the feature extractor trained with
the former algorithm.

4.1. Training General Feature Extractor for Robust
CBIR

Recall that tighter evaluation of the upper bound in Eq.
(17) and the lower bound in Eq. (18) is needed to attain cer-
tified robustness in a meaningful way. Our idea is to train f
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by simultaneously minimizing conventional objective func-
tion (e.g., triplet loss [19]) and the regularization term to
make the bounds in Eq. (17) and Eq. (18) tighter.

Let Dtrain = {(a, p, n)i}Mi=1 be a training data set where
p belongs to the same class as a, and n belongs to a different
class than a. Here, the training dataset and query/candidate
images of CBIR are mutually exclusive. Then, our objective
function is given as follows:

min
f

∑
(a,p,n)∈Dtrain

κ·T(a, p, n)+(1−κ)·
∑

x∈{p,n}

Reg(a, x)

(20)

where Reg(a, x) = max

{
|d(f(a), f(x))− dx(a)|,

|d(f(a), f(x)) − dx(a)|
}

and T(a, p, n) is the triplet loss

[19] often used in metric learning, which affects the perfor-
mance of CBIR. Reg(a, x) is a regularization term to en-
courage that the upper and lower bound of ∥f(a + δ) −
f(x)∥2 are close to ∥f(a) − f(x)∥2. κ ∈ [0, 1] is a hyper
parameter to adjust the trade-off between performance of
CBIR and (α, ϵ)-robustness of CBIR against QA and CA.
We call the training with Eq. (20) as Tightly Bounding
Training (TBT).

4.2. Fine-tuning DNNs to Candidate Images

The feature extractor obtained by Eq. (20) is indepen-
dent of the CBIR query and candidate set. In this sub-
section, assuming that the candidates images for the target
CBIR are given, we show a method to fine tune the feature
extractor to the set of candidate images. The objective of
this fine-tuning is to reduce the gap between Definition 3
and the corresponding sufficient condition in Eq. (14) by
adjusting f with the given candidate images. To achieve
this, we update f so that tighter evaluation of Eq. (17)
and Eq. (18) is attained with given candidate images while
maintaining the performance of CBIR.

Let C = {ci|ci ∈ X}Ni=1 be the set of candidate im-
ages. Let f0 be the pre-trained feature extractor before fine-
tuning. Then, our objective function for fine-tuning is given
as follows:

min
f

∑
c1,c2∈C

(
κ · d(f0(c1), f(c1)) + (1− κ) ·Reg(c1, c2)

)
.

(21)
The first term maintains the accuracy of the CBIR by en-
suring that the difference between the features calculated
by f and f0 is small. The second term is a regulariza-
tion term to encourage that the upper and lower bound of
∥f(c1 + δ) − f(c2)∥2 are close to ∥f(c1) − f(c2)∥2. κ ∈
[0, 1] is a hyperparameter to adjust the trade-off between the
performance of CBIR and (α, ϵ)-robustness against CA. We

call fine-tuning with Eq. (21) as Fine-tuning to Candidates
with Tighter Bounds (FCTB).

5. Experiments
In this section, we evaluate our proposed robustness

training (TBT and FCTB), in terms of CBIR accuracy on
clean images and robustness against QA and CA. The ro-
bustness is evaluated by empirical robustness, which is the
accuracy of CBIR on the generated AXs, and certified ro-
bustness, which represents how often CBIR achieves (α, ϵ)-
robustness for given inputs by our robustness verification
algorithm Eq. (19).

5.1. Experimental Setting

5.1.1 Datasets

We use MNIST [11], Fashion-MNIST (FMNIST) [32], and
CIFAR10 [10] for our evaluations. These datasets consist of
an training and test set annotated with labels. We train fea-
ture extractors f on the training sets and evaluate f using
the test set. Let Q = {(qi, yqi)}

|Q|
i=1 and C = {(ci, yci) ∈

X}|C|
i=1 be the annotated set of query and candidate images,

respectively. We randomly select Q and C without duplica-
tion from the test set so that |Q| = 1000 and |C| = 1000.
Pixel values of images in all datasets are in [0, 1].

5.1.2 Evaluation Measures

Performance of CBIR. To evaluate the performance of
CBIR, we use Recall@K, which is one of the evaluation
measures for CBIR [18, 27]. Recall@K evaluates whether
how often any of the top K candidates is similar to the query
image. For evaluation purpose, images belonging to the
same class are regarded as similar images. Then, Recall@K
is defined as follos:

1

|Q|
∑

(qi,yqi
)∈Q


1 if ∃(c, yc) ∈ IRf (qi, C)≤K

s.t. yc = yqi
0 otherwise.

(22)
Empirical Robustness. To evaluate the empirical ro-

bustness against QA and CA, we extend recall@K and
define empirical robust Recall@K (ER-Recall@K) against
QA and CA. ER-Recall@K against QA represents how of-
ten any of the top K candidates is similar to the query image
under QA:

1

|Q|
∑

(qi,yqi
)∈Q


1 if ∃(c, yc) ∈ IRf (qi + δi, C)≤K

s.t. yc = yqi
0 otherwise

(23)
where δ1, ..., δ|Q| are adversarial perturbations generated
with Eq.(2). We randomly select a single target candidate
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image Ct = {(ct, yct)} ⊂ C such that yct ̸= yqi for each
(qi, yqi) ∈ Q. We minimize Eq.(2) by using PGD [15] with
the step size of ϵ

10 and the number of updates of 100, where
ϵ ∈ {0.1, 0.2} for MNIST and FMNIST and ϵ ∈ { 2

255 ,
3

255}
for CIFAR10, respectively.

ER-Recall@K against CA represents how often any of
the top K candidates is similar image to the query image
under CA:

1

|Q|
∑

(qi,yqi
)∈Q


1 if ∃(c, yc) ∈ IRf (q, C \ Cs ∪ C̃s)≤K

s.t. yc = yqi
0 otherwise.

(24)
where Cs ⊂ C is a set of source candidate images, and
C̃s = {(ci + δi, yci)|(ci, yci) ∈ Cs}|Cs|

i=1 is the set of images
obtained by adding adversarial perturbation δ1, ..., δ|Cs| to
each image in Cs with Eq.(4). We randomly select 100
source candidate images Cs = {(ci, yci)}100i=1 such that
yci ̸= yqi for each (qi, yqi) ∈ Q. We minimize Eq.(4) using
PGD with the same step and perturbation size as the QA.

Certified Robustness. To evaluate the certified robust-
ness, we define an extension of recall@K, certified robust
Recall@K (CR-Recall@K). Given a set of query images,
this measure evaluates how often (i) the retrieved candidate
image by the query image has certified robustness against
QA or CA, and (ii) are similar to the query image:

1

|Q|
∑

(q,yq)∈Q


1 if ∃(c, yc) ∈ IRf (q, C)≤K s.t. yc = yq

∧ Verifyϵ,α(f, q, C,Rankf (q, c, C))

0 otherwise.
(25)

where Verifyϵ,α(f, q, C,Rankf (q, c, C)) is defined by Eq.
(19). We use α = K − Rankf (q, c, C) for each c ∈
IRf (q, C)≤K . Then, Verifyϵ,α(f, q, C,Rankf (q, c, C))
verifies whether c is still included in IRf (q, C)≤K under
QA and CA, and CR-Recall@K is a lower bound of ER-
Recall@K. Due to page limitations, only the results for
ϵ = 0.2 and ϵ = 2

255 are shown here. The results for ϵ = 0.1
and ϵ = 3

255 are included in Appendix.

5.1.3 Comparison Methods

We compare our proposed robustness training Eq. (20)
(TBT) and Eq. (21) (FCTB) with three existing methods:
(i) triplet Loss (Triplet) [19], (ii) anti-collapse triplet (ACT),
which is an adversarial training for CBIR to improve em-
pirical robustness [40], (iii) robust training for classification
using interval bound propagation (C-IBP) to improve certi-
fied robustness of classification task [6].

We use Triplet as a baseline which does not have any
mechanism for robustness. We compare TBT and FCTB
with ACT to show that adversarial training is not sufficient
to improve certified robustness of CBIR. We also compare

TBT and FCTB with C-IBP to show that robust training for
improving certified robustness for the classification task is
inadequate to improve certified robustness for CBIR. Detail
of each method are explained in Appendix.

5.1.4 Architectures and Training Hyper Parameters

Architectures. In our experiments, we train the feature ex-
tractor f of embedding dimensionality 128 in two differ-
ent model architectures, as shown in Appendix. We refer
to each model as Small (3-layer CNN) and Large (6-layer
CNN), respectively. Due to page limitations, the results for
Small are included in Appendix.

Hyperparameters. The total number of training epochs
is 100 for MNIST and FMNIST and 200 for CIFAR10. We
use the Adam optimizer [9] with a batch size of 100 and an
initial learning rate of 0.001. We decay the learning rate by
times 0.1 at 25 and 42 epochs for MNIST and FMNIST and
times 0.5 every 10 epochs between 130 and 200 epochs for
CIFAR10. The margin of triplet loss is set to m = 1.0.

When training with TBT, to stabilize training, we use
scheduling strategy for ϵ and κ proposed in [6]. Specifically,
ϵ is gradually increased from 0.0 to ϵe, and the κ is gradually
decreased from 1.0 to κe. We use ϵe = 0.2 for MNIST and
FMNIST, and ϵe = 2

255 for CIFAR10, respectively. We use
κe = 0.5 for all datasets. Then, we linearly increase ϵ and
decrease κ between 2K and 10K steps. The results of other
κe are shown in Appendix.

When training with FCTB, we fine-tune the pre-trained
feature extractor with TBT. We set fixed ϵ to 0.2 for MNIST
and FMNIST and 2

255 for CIFAR10. We set fixed κ to 0.2
for MNIST and 0.1 for FMNIST and CIFAR10. Other hy-
perparameters are shown in Appendix.

5.2. Results

Table 1 and Table 2 show the results of Recall@K, and
ER-Recall@K, and CR-Recall@K for Large. We can see
that TBT has less Recall@K than Triplet, ACT, and C-IBP
from Table 1. This is presumably due to the fact that the
diversity of feature representation is reduced by making the
upper and lower bound evaluated tighter. However, the gap
in Recall@K between TBT and the existing methods be-
comes smaller as K increases. Thus, that is not a practical
problem in situations where K is large.

From Table 2, we can confirm both ER-Recall@K
and CR-Recall@K of Triplet are significantly lower than
the other methods. C-IBP and ACT achieve higher ER-
Recall@K than Triplet, while their CR-Recall@K is zero
or nearly zero, even with larger K. This implies that C-
IBP and ACT cannot help to provide certified robustness of
CBIR. This is because ACT is training to improve empiri-
cal robustness, which is no enough to improve certified ro-
bustness. We also conjecture that C-IBP is not sufficient to
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Table 1: Comparison of Recall@K (Large). Each value is rounded off to two decimal places.

MNIST FMNIST CIFAR10
K 1 10 20 40 1 10 20 40 1 10 20 40

Triplet 0.99 1.00 1.00 1.00 0.89 0.98 0.99 0.99 0.58 0.93 0.97 0.99
ACT 0.99 1.00 1.00 1.00 0.83 0.97 0.98 0.99 0.63 0.93 0.96 0.99
C-IBP 0.97 0.99 1.00 1.00 0.75 0.96 0.98 0.99 0.39 0.87 0.94 0.98
TBT 0.94 0.98 0.99 0.99 0.62 0.93 0.97 0.98 0.18 0.81 0.93 0.97
TBT+FCTB 0.93 0.98 0.98 0.99 0.64 0.94 0.97 0.98 0.19 0.82 0.93 0.97

Table 2: Comparison of empirical robust (ER) Recall@K and certified robust (CR) Recall@K (Large). QA and CA represents
query attack and candidate attack, respectively. For calculating ER-Recall@K and CR-Recall@K, we use ϵ = 0.2 (MNIST
and FMNIST) and ϵ = 2

255 (CIFAR10). Each value is rounded off to two decimal places.

ER-Recall@K (QA) CR-Recall@K (QA) ER-Recall@K (CA) CR-Recall@K (CA)
K 1 10 20 40 1 10 20 40 1 10 20 40 1 10 20 40

Triplet 0.00 0.05 0.09 0.14 0.00 0.00 0.00 0.00 0.21 0.38 0.47 0.58 0.00 0.00 0.00 0.00
ACT 0.97 0.99 1.00 1.00 0.00 0.00 0.00 0.00 0.98 0.99 1.00 1.00 0.00 0.00 0.00 0.00

MNIST C-IBP 0.97 0.99 1.00 1.00 0.00 0.00 0.00 0.01 0.96 0.99 0.99 1.00 0.00 0.00 0.00 0.00
TBT 0.92 0.98 0.98 0.99 0.03 0.31 0.47 0.65 0.93 0.98 0.99 0.99 0.01 0.42 0.78 0.95

TBT+FCTB 0.92 0.97 0.98 0.99 0.03 0.30 0.45 0.64 0.92 0.98 0.98 0.99 0.02 0.48 0.82 0.96

Triplet 0.00 0.09 0.14 0.20 0.00 0.00 0.00 0.00 0.04 0.11 0.14 0.19 0.00 0.00 0.00 0.00
ACT 0.74 0.95 0.97 0.98 0.00 0.00 0.00 0.00 0.57 0.92 0.96 0.99 0.00 0.00 0.00 0.00

FMNIST C-IBP 0.71 0.96 0.98 0.99 0.00 0.01 0.04 0.08 0.67 0.95 0.98 0.99 0.00 0.00 0.00 0.03
TBT 0.59 0.93 0.97 0.98 0.02 0.20 0.30 0.45 0.55 0.93 0.97 0.98 0.00 0.07 0.24 0.64

TBT+FCTB 0.60 0.93 0.97 0.99 0.02 0.22 0.34 0.44 0.55 0.93 0.96 0.98 0.00 0.09 0.25 0.62

Triplet 0.19 0.70 0.82 0.89 0.00 0.00 0.00 0.00 0.00 0.09 0.25 0.58 0.00 0.00 0.00 0.00
ACT 0.47 0.88 0.94 0.97 0.00 0.00 0.00 0.00 0.22 0.72 0.88 0.96 0.00 0.00 0.00 0.00

CIFAR10 C-IBP 0.40 0.87 0.94 0.98 0.00 0.04 0.10 0.23 0.35 0.84 0.93 0.98 0.00 0.02 0.08 0.21
TBT 0.20 0.79 0.92 0.97 0.02 0.18 0.31 0.48 0.15 0.78 0.92 0.96 0.00 0.19 0.34 0.58

TBT+FCTB 0.19 0.81 0.93 0.97 0.02 0.20 0.34 0.48 0.17 0.80 0.92 0.97 0.01 0.21 0.44 0.70

tighten Eq. (17) and Eq. (18) since it aims at tightening the
upper and lower bounds of logits. In contrast, TBT achieves
significantly higher CR-recall@K, particularly when K is
large. This is because TBT can tighten Eq. (17) and Eq.
(18) successfully.

From Table 1 and Table 2, we can also confirm that fine-
tuning pre-trained feature extractor with TBT to candidate
images (TBT+FCTB) improve CR-Recall@K while main-
taining Recall@K. This implies that FCTB can further re-
duce the gap between Definition 3 and the corresponding
sufficient condition in Eq. (14).

6. Limitations

A drawback of our certified defense is that it does not
scale to high-resolution images, which require advanced ar-
chitecture. We train feature extractor with TBT using CUB-
200-2011 [25] (image size is 224×224) and VGG architec-
ture [20]. The detail of experimental settings is explained in
Appendix. As a result, its training collapses, which means
that the trained feature extractor returns the same value for

all test inputs. This is because IBP provides very loose
bounds for advanced deep architectures, resulting in ex-
tremely large regularization terms in Eq.(20). We also ob-
tain the same results when training a feature extractor with
C-IBP. Developing a certified defense for CBIR that scales
to high-resolution images is a future research direction.

7. Conclusion
In this study, we proposed a certified defense for CBIR.

Our certified defense improves the certified robustness of
CBIR, which guarantees that no AX that largely changes
the ranking of CBIR exists around the query or candidate
images. To the best of our knowledge, this is the first paper
on certified defense for CBIR.
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tin Vechev. An abstract domain for certifying neural net-
works. Proceedings of the ACM on Programming Lan-
guages, 3(POPL):1–30, 2019.

[22] Giorgos Tolias, Filip Radenovic, and Ondrej Chum. Targeted
mismatch adversarial attack: Query with a flower to retrieve
the tower. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 5037–5046, 2019.

[23] Florian Tramer, Nicholas Carlini, Wieland Brendel, and
Aleksander Madry. On adaptive attacks to adversarial ex-
ample defenses. Advances in Neural Information Processing
Systems, 33:1633–1645, 2020.

[24] Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama.
Lipschitz-margin training: Scalable certification of perturba-
tion invariance for deep neural networks. Advances in neural
information processing systems, 31, 2018.

[25] Catherine Wah, Steve Branson, Peter Welinder, Pietro Per-
ona, and Serge Belongie. The caltech-ucsd birds-200-2011
dataset. 2011.

[26] Hongjun Wang, Guangrun Wang, Ya Li, Dongyu Zhang, and
Liang Lin. Transferable, controllable, and inconspicuous ad-
versarial attacks on person re-identification with deep mis-
ranking. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 342–351,
2020.

[27] Jian Wang, Feng Zhou, Shilei Wen, Xiao Liu, and Yuanqing
Lin. Deep metric learning with angular loss. In Proceed-
ings of the IEEE international conference on computer vi-
sion, pages 2593–2601, 2017.

[28] Zhibo Wang, Siyan Zheng, Mengkai Song, Qian Wang,
Alireza Rahimpour, and Hairong Qi. advpattern: physical-
world attacks on deep person re-identification via adversari-
ally transformable patterns. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 8341–
8350, 2019.

[29] Lily Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-
Jui Hsieh, Luca Daniel, Duane Boning, and Inderjit Dhillon.

4569



Towards fast computation of certified robustness for relu net-
works. In International Conference on Machine Learning,
pages 5276–5285. PMLR, 2018.

[30] Lily Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-
Jui Hsieh, Luca Daniel, Duane Boning, and Inderjit Dhillon.
Towards fast computation of certified robustness for relu net-
works. In International Conference on Machine Learning,
pages 5276–5285. PMLR, 2018.

[31] Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi,
Dong Su, Yupeng Gao, Cho-Jui Hsieh, and Luca Daniel.
Evaluating the robustness of neural networks: An extreme
value theory approach. arXiv preprint arXiv:1801.10578,
2018.

[32] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-
mnist: a novel image dataset for benchmarking machine
learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[33] Weilin Xu, David Evans, and Yanjun Qi. Feature squeez-
ing: Detecting adversarial examples in deep neural networks.
arXiv preprint arXiv:1704.01155, 2017.

[34] Mang Ye, Jianbing Shen, Gaojie Lin, Tao Xiang, Ling
Shao, and Steven CH Hoi. Deep learning for person re-
identification: A survey and outlook. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2021.

[35] Huan Zhang, Hongge Chen, Chaowei Xiao, Sven Gowal,
Robert Stanforth, Bo Li, Duane Boning, and Cho-Jui Hsieh.
Towards stable and efficient training of verifiably robust neu-
ral networks. In International Conference on Learning Rep-
resentations, 2019.

[36] Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh,
and Luca Daniel. Efficient neural network robustness certifi-
cation with general activation functions. Advances in neural
information processing systems, 31, 2018.

[37] Huan Zhang, Pengchuan Zhang, and Cho-Jui Hsieh. Recur-
jac: An efficient recursive algorithm for bounding jacobian
matrix of neural networks and its applications. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 5757–5764, 2019.

[38] Mo Zhou, Zhenxing Niu, Le Wang, Qilin Zhang, and Gang
Hua. Adversarial ranking attack and defense. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XIV 16, pages
781–799. Springer, 2020.

[39] Mo Zhou, Le Wang, Zhenxing Niu, Qilin Zhang, Yinghui
Xu, Nanning Zheng, and Gang Hua. Practical relative or-
der attack in deep ranking. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 16413–
16422, 2021.

[40] Mo Zhou, Le Wang, Zhenxing Niu, Qilin Zhang, Nanning
Zheng, and Gang Hua. Adversarial attack and defense in
deep ranking. arXiv preprint arXiv:2106.03614, 2021.

4570


