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Figure 1: The suggested continual deepfake detection benchmark (CDDB) aims to promote the research of learning a unified model over
a stream of likely heterogeneous deepfakes sequentially. The longest CDDB stream consists of the above 12 types of deepfake sources
(Reals: green boundary, Fakes: red boundary).

Abstract

There have been emerging a number of benchmarks and
techniques for the detection of deepfakes. However, very
few works study the detection of incrementally appearing
deepfakes in the real-world scenarios. To simulate the wild
scenes, this paper suggests a continual deepfake detection
benchmark (CDDB) over a new collection of deepfakes from
both known and unknown generative models. The suggested
CDDB designs multiple evaluations on the detection over
easy, hard, and long sequence of deepfake tasks, with a
set of appropriate measures. In addition, we exploit mul-
tiple approaches to adapt multiclass incremental learning
methods, commonly used in the continual visual recogni-
tion, to the continual deepfake detection problem. We eval-
uate existing methods, including their adapted ones, on the
proposed CDDB. Within the proposed benchmark, we ex-
plore some commonly known essentials of standard contin-
ual learning. Our study provides new insights on these es-
sentials in the context of continual deepfake detection. The
suggested CDDB is clearly more challenging than the ex-
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isting benchmarks, which thus offers a suitable evaluation
avenue to the future research. Both data and code are avail-
able at https://github.com/Coral79/CDDB.

1. Introduction

Deepfakes (deep learning generated fake images/videos)
have become ubiquitous with the advent of increasingly im-
proved deep generative models, such as autoencoders [38],
generative adversarial nets (GANs) [25] and generative nor-
malizing flows (Glows) [18]. As a result, there is a grow-
ing threat of “weaponizating” deepfakes for malicious pur-
poses, which is potentially detrimental to privacy, society
security and democracy [12]. To address this issue, many
deepfake detection datasets (e.g.,[40, 44, 46, 21, 64, 19, 31])
and techniques (e.g., [86, 4, 79, 57, 56, 5]) are proposed.

State-of-the-art deep neural networks have made tremen-
dous progress for deepfake detection tasks in a stationary
setup, where a large amount of relatively homogeneous
deepfakes are provided all at once. In this paper, we study
a natural extension from this stationary deepfake detec-
tion scenario to a dynamic (continual) setting (Fig.1): a
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stream of likely heterogeneous deepfakes appear time by
time rather than at once, and the early appeared deepfakes
cannot be fully accessed due to the streaming nature of data,
privacy concerns, or storage constraints. In such a scenario,
at each learning session when trained on a new deepfake de-
tection task, standard neural networks typically forget most
of the knowledge related to previously learned deepfake de-
tection tasks [53, 36]. This is essentially one of the most
typical continual learning problems that are well-known to
result in catastrophic forgetting [63, 60, 52, 9]. Neverthe-
less, the study on the specific continual deepfake detection
(CDD) problem, benchmarks as well as its particular nature
remains fairly limited.

In this paper, we establish a challenging continual deep-
fake detection benchmark (CDDB) by gathering publicly
available deepfakes, from both known and unknown gen-
erative models. The CDDB gradually introduces deepfakes
to simulate the real-world deepfakes’ evolution, as shown
in Fig.1. The key benchmarking task is to measure whether
the detectors are able to incrementally learn deepfake detec-
tion tasks without catastrophic forgetting. Up to our knowl-
edge, there exist only two similar benchmarks [53, 36].
Both of these benchmarks are limited as they merely per-
form CDD on only one deepfake type of known generative
models (e.g., GANs or face-swap like deepfake models).
As mentioned, the source of deepfakes may not only be un-
known but also be of diverse types, in practice. Therefore,
we proposed a new CDDB which better resembles the real-
world scenarios. Furthermore, our CDDB also categorizes
the evaluation protocol into different cases: from easy to
hard and short to long CDD sequences. Such categorization
allows us to better probe the CDD methods.

We evaluate a set of well-known and most promis-
ing existing continual learning methods on the established
benchmark. In this process, we first evaluate the popu-
lar multi-class incremental learning methods in the CDD
settings. Furthermore, we develop multiple approaches to
adapt these continual learning methods to the binary CDD
problem. Our evaluations also include several other variants
which are evaluated for easy/hard and short/long sequences.
These exhaustive evaluations offer two major benefits: (a)
suitable baselines for the future CDD research; (b) new in-
sights on the established essentials in the context of CDD. In
the latter case, we explore particular essentials including (i)
knowledge distillation; (ii) class imbalance issue; (iii) mem-
ory budget. Notably, our empirical evidence suggests that
the existing consideration for class imbalance issues can be
clearly hurtful to the CDD performance.

In summary, this paper makes three-fold contributions:

• We propose a realistic and challenging continual deep-
fake detection benchmark over a collection of public
datasets to thoroughly probe CDD methods.

• We comprehensively evaluate existing and adapted

Dataset Real Source Deepfake Source Continual

Deepfake-TIMIT [40] VidTIMIT dataset [66] Known Deepfake tech ✗

UADFW [79] EBV dataset [44] Known Deepfake tech ✗

FaceForensics++ [64] YouTube Known Deepfake tech ✗

Celab-DF v2 [47] YouTube Known Deepfake tech ✗

DFDC [19] Actors Known Deepfake tech ✗

WildDeepfake [88] Internet Unknown Deepfake tech ✗

WhichFaceReal [3] Internet Unknown Deepfake tech ✗

CNNfake [75] Multi-Datasets Known Deepfake tech ✗

GANfake [53] Multi-Datasets Known Deepfake tech ✓

CoReD [36] Multi-Datasets Known Deepfake tech ✓

CDDB (ours) Multi-Datasets&Internet Known&unknown tech ✓

Table 1: Comparison of prominent deepfake datasets. Only CoReD [36], GAN-
fake [53] and our CDDB study continual fake detection benchmarks. However, both
CoReD and GANfake merely detect pure GAN-generated images (or pure deepfake-
generated videos), while ours studies a high mixture of deepfake sources, which are
from either known generative models or unknown ones (i.e., directly from internet).

methods on the proposed benchmark. These evalua-
tions serve as lock, stock, and barrel of CDD baselines.

• Using the proposed dataset and conducted evaluations,
we study several aspects of CDD problem. Our study
offers new insights on the CDD essentials.

2. Related Work
Datasets and Benchmarks for Deepfake Detection. To
evaluate deepfake detection methods, many datasets and
benchmarks have been proposed. For instance, FaceForen-
sic++ [64] contains face videos collected from YouTube and
manipulated using deepfake [2], Face2Face [72], Faceswap
[1] and Neural Texture [71]. WildDeepfake [88] aims at
real-world deepfakes detection by collecting real and fake
videos with unknown source model directly from the in-
ternet. CNNfake [75] proposes a diverse dataset obtained
from various image synthesis methods, including GAN-
based techniques (e.g., [33], [7]) and traditional deepfake
methods. Table 1 summarizes the prominent benchmark
datasets for deepfake detection. The majority of the pro-
posed benchmarks do not include incremental detection in
their experimental setups. While few works, namely GAN-
fake [53] and CoReD [36], have addressed the CDD set-
ting, they either only address known GAN-based deepfakes
[53] or only treat known GAN fakes and known traditional
deepfakes separately [36]. Furthermore, their studied task
sequences are generally short (e.g. they consist of 4 or
5 tasks). However, in the real-world scenario, deepfakes
might come from known or unknown source models. These
models might be based on GANs or traditional methods,
and finally, they form a long sequence of tasks evolving
through time. To bridge the gap between the current bench-
marks and the real-world scenario, our suggested dataset
includes a collection of deepfakes from both known or un-
known sources. In addition, the suggested benchmark pro-
vides three different experimental setups (Easy, Hard, and
Long) for a thorough evaluation of CDD methods.
Deepfake Detection Methods. Along with the discussed
benchmarks, many approaches have been proposed for
deepfake detection (e.g., [64, 45, 57, 4, 54, 56, 53, 75, 24,
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76]). These approaches mainly aim at finding generaliz-
able features from a set of available samples that can be
used to detect deepfakes at test time. For instance, [64]
employs XceptionNet [14], a CNN with separable convo-
lutions and residual connections, pre-trained on ImageNet
[16] and fine-tuned for deepfake detection. Similarly, [75]
uses ResNet-50 [26] pretrained with ImageNet, and further
train it in a binary classification setting for deepfake de-
tection. Different to the aforementioned methods, [53] and
[36] address the CDD problem. [53] adapts one of the tra-
ditional CIL methods, i.e., incremental classifier and repre-
sentation learning (iCaRL) [60], through a multi-task learn-
ing scheme over both deepfake recognition and detection
tasks. To mitigate the catastrophic forgetting, [53] keeps
using the original iCaRL[60]’s knowledge distillation loss,
which enforces the newly updated network to output close
prediction results to those of the network trained on the pre-
vious task given the same samples from an exemplar set of
old samples. Similarly, CoReD [36] tackles forward learn-
ing and backward forgetting with a student-teacher learning
paradigm, where the teacher is the model trained for the pre-
vious tasks, and the student is the new model being adapted
to also include the current task. [36] only uses samples from
the current task for the teacher-to-student knowlege distilla-
tion. To further alleviate the forgetting, [36] adds a feature-
level knowledge distillation loss (i.e., representation loss).
Class-incremental Learning (CIL). In this paper, we fo-
cus on studying three prominent categories of CIL methods:
gradient-based, memory-based and distillation-based.1

Gradient-based methods (e.g., [62, 84, 23, 65, 69, 74])
overcome catastrophic forgetting by minimizing the inter-
ference among task-wise gradients when updating network
weights. For instance, [74] proposes a null space CIL
(NSCIL) method to train the network on the new task by
projecting its gradient updates to the null space of the ap-
proximated covariance matrix on all the past task data.
Memory-based methods (e.g., [63, 60, 52, 9, 29, 35, 10, 68,
59, 73]) generally mitigate forgetting by replaying a small
set of examples from past tasks stored in a memory. For
example, on the selected exemplars from previous tasks, la-
tent replay CIL (LRCIL) [59] suggests to replay their latent
feature maps from intermediate layers of the model in order
to reduce the required memory and computation.
Distillation-based methods (e.g., [48, 60, 28, 8, 78, 82, 70,
50, 55]) apply knowledge distillation [27] between a net-
work trained on previous tasks and a network being trained
on current task to alleviate the performance degradation on
previous tasks. iCaRL [60] applies the distillation on a ex-
emplar set that is selected by using a herding method, which
chooses samples closest to the sample means. [60] also
identifies class imbalance as a crucial challenge for contin-
ual multi-class classification (CMC). To address this, [60]

1Other CILs are based on regularization or expansion [39, 85, 6, 80, 41, 30, 67].

Family Deepfake Source Real Source # Images

GAN Model

ProGAN [33] LSUN 736.0k
StyleGAN [34] LSUN 12.0k
BigGAN [7] ImageNet 4.0k
CycleGAN [87] Style/object transfer 2.6k
GauGAN [58] COCO 10.0k
StarGAN [13] CelebA 16.8k

Non-GAN Model

Glow [37] CelebA 16.8k
CRN [11] GTA 12.8k
IMLE [43] GTA 12.8k
SAN [15] Standard SR benchmark 440
FaceForensics++ [64] YouTube 5.4k

Unknown Model
WhichFaceReal [3] Internet 2.0k
WildDeepfake [88] Internet 10.5k

Table 2: A new collection of mixed deepfake sources for the suggested CDDB.

suggests a classification strategy named nearest-mean-of-
exemplars. Following the same motivation, LUCIR [28] ap-
plies cosine normalization to the magnitude of the parame-
ters in fully-connected (FC) layers. Based on the distillation
idea, DyTox [20]2 applies the transformer ConViT [22] to
achieve the state-of-the-art CIL.
Discussion. The discussed CIL methods are mostly de-
signed for CMC, which aims to learn a unified classifier
for a set of sequentially-encountered classes. As one of the
continual binary classification (CBC) problems, CDD can
be regarded as a binary task or a set of binary tasks [53], and
therefore we further investigate three general approaches of
adapting these CIL methods to the CDD problem.

3. Suggested CDD Benchmark
For a more real-world CDD benchmark, we suggest en-

forcing high heterogeneity over the deepfake data stream.
In particular, we construct a new collection of deepfakes
by gathering highly heterogeneous deepfakes collected by
[75, 53, 3, 88], which are from remarkably diverse re-
sources. Moreover, the deepfakes from [3, 88] has no in-
formation about their source generative models, and thus
the new data collection reaches a more real-world scenario,
which is always full of arbitrary deepfakes from either
known or unknown sources.

3.1. Data Collection

The new data collection comprises 3 groups of deep-
fake sources: 1) GAN models, 2) non-GAN models, and 3)
unknown models. Below details the deepfake sources and
their associated real sources, which are listed in Table 2.
GAN Models. This group consists of fake images synthe-
sized by 6 GAN models. ProGAN [33] and StyleGAN [34]
are two of the most popular unconditional GANs. They
were trained on each category of the dataset LSUN [81]
and thus they can produce realistic looking LSUN images.
BigGAN [7] is one of the state-of-the-art class-conditional
GAN models trained on ImageNet [16]. Moreover, we in-
clude three image-conditional GAN models for image-to-

2Other transformer-based CIL methods (e.g. [77, 17, 83, 32, 42]) are emerging.
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image translation, namely CycleGAN [87], GauGAN [58]
and StarGAN [13]. These models were trained on one
style/object transfer task selected from the dataset collected
by [87], COCO [49], and CelebA [51], respectively.
Non-GAN Models. This set contains deepfakes generated
by 8 non-GAN models, including Generative Flow (Glow)
[37], Cascaded Refinement Networks (CRN) [11], Implicit
Maximum Likelihood Estimation (IMLE) [43], second-
order attention network (SAN) [15] and 4 other deepfake
models (Deepfake [2], Face2Face [72], Faceswap [1] and
Neural Texture [71]) from [64]. These models were trained
on CelebA [51], GTA [61], a super-resolution dataset and
YouTube videos, respectively, for image synthesis.
Unknown Models. This group includes deepfake im-
ages from 2 unknown generative models, one collected by
WildDeepfake [88] and one by WhichFaceReal [3]. They
both collect deepfakes and real images/videos directly from
the internet. WildDeepfake [88] originally contains deep-
fake/real videos. As our focus is on the detection of deep-
fake images, we randomly select a number of frames from
each video. This group of models are included to further
simulate the real-world, where the source model of the en-
countered deepfakes might not be known.

3.2. Evaluation Scenarios

From the new collection, a large number of differently-
ordered sequences of tasks can be produced to study CDD.
In our benchmark, we suggest three different evaluation
scenarios: an easy task sequence (EASY), a hard task se-
quence (HARD), and a long task sequence (LONG). The
EASY setup is used to study the basic behavior of evaluated
methods when they address an easy CDD problem. The
HARD setup aims to evaluate the performance of compet-
ing methods when facing a more challenging CDD prob-
lem. The LONG setup is designed to encourage methods
to better handle long sequences of deepfake detection tasks,
where the catastrophic forgetting might become more seri-
ous. The three evaluation sequences are detailed as follows:

1. EASY: {GauGAN, BigGAN, CycleGAN, IMLE, FaceForen-
sic++, CRN, WildDeepfake}

2. HARD: {GauGAN, BigGAN, WildDeepfake, WhichFace-
Real, SAN}

3. LONG: {GauGAN, BigGAN, CycleGAN, IMLE, Face-
Forensic++, CRN, WildDeepfake, Glow, StarGAN, Style-
GAN, WhichFaceReal, SAN}

More concretely, the procedure on each sequence is to train
a given model through the stream of involved training data
sequentially, followed by an evaluation using the set of as-
sociated test data. Following the common practice in CIL
[60, 28, 70, 55] and the suggestion in [75], we allow pre-
training evaluated methods over the fake images of ProGAN
and the corresponding real samples as a warm-up step.

3.3. Evaluation Metrics

CDD is a continual learning problem, and thus it should
study the performance of the evaluated methods in terms
of forward learning of each new task, as well as backward
forgetting of previous ones. Accordingly, we suggest using
the average detection accuracy (AA) and the average forget-
ting degree (AF), i.e., mean of backward transfer degrada-
tion (BWT) [52], as the evaluation metrics. Formally, we
can obtain a test accuracy matrix B ∈ Rn×n (i.e., upper
triangular matrix), where each entry Bi,j indicates the test
accuracy of the i-th task after training the j-th task and n is
the total number of involved tasks. AA and AF can be cal-
culated as AA = 1

n

∑n
i=1 Bi,n, AF = 1

n−1

∑n−1
i=1 BWTi,

where BWTi =
1

n−i−1

∑n
j=i+1(Bi,j −Bi,i).

As CDD is also a detection problem, we suggest using
mean average precision (mAP) to measure the performance
of evaluated methods in terms of the trade-off between pre-
cision and recall, where we regard real samples as negatives
and fake samples as positive. Each AP is defined as the area
under the precision-recall (PR) curve for deepfake detection
over one single deepfake task in the sequence [75]. mAP is
the average of all the APs calculated over all detection tasks.

As different tasks may contain the same or similar real
samples, and some fake samples could be from unknown
generative models, we additionally employ the average
deepfake recognition accuracy (AA-M) to study the chal-
lenge for identifying the specific deepfake and real re-
sources. This metric is mainly used for understanding the
gap between CMC and CBC.

4. Proposed Benchmarking Methods
The studied CDD problem requires to distinguish real

and fake samples from the sequentially occurring sources
of real/fake pairs. This section focuses on studying three
main adaptions of CIL to better address the CDD problem.

4.1. Problem Definition and Overview

In the CDD problem, deepfakes and their correspond-
ing real images appear sequentially in time, forming the se-
quence X = {X1,X2 . . . ,Xt}, where Xi = (XR

i , XF
i ) rep-

resents the paired set of real and fake images corresponding
to source i. At each incremental step t, complete data is
only available for the new pair of real and fake image sets
Xt = (XR

t , XF
t ). For memory-based and distillation-based

methods, we additionally use a small amount of exemplar
data P = {P1,P2 . . . ,Pt−1}, which is selected from pre-
vious data X = {X1,X2 . . . ,Xt−1} for rehearsal or distil-
lation. The trained models at step t are finally expected to
distinguish all the fake and real images corresponding to the
sources observed up to and including step t.

The CDD problem can be relaxed to a CMC problem,
once each real/fake source is regarded as an independent

1342



class. In this case, traditional CIL methods can be applied
to CDD. A basic CIL system is to train a network model Θ
that consists of a deep feature extractor ϕ(·) and a fully-
connected (FC) layer fc(x). Like a standard multi-class
classifier, the output logits are processed through an acti-
vation function φ(·) before classification loss ℓclass is eval-
uated corresponding to the correct class. To address catas-
trophic forgetting, many of the state-of-the-art CIL methods
apply distillation loss ℓdistill over the exemplar set P of old
samples from previous tasks. Besides, a supplementary loss
ℓsupp is often applied to strengthen the classification over
multiple classes at P . In general, the loss function for CIL
systems can be formulated as:
ℓCIL(Θ) = ℓclass(Xt,Θ)+γdℓdistill(P,Θ)+γmℓsupp(P,Θ)

(1)
where γd, γm are hyperparameters for the trade-off among
the three losses. The classification loss is the usual cross-
entropy loss calculated on the new data

ℓclass(Xt,Θ) = −
∑

xi∈Xt

k∑
yj=1

δyj=yi
log gyj

(xi) (2)

where δyj=yi
is an indicator to check whether the predic-

tion yj is in line with the ground truth yi, k is the total class
number, gyj

(·) = φ(·)◦fc()◦ϕ(·) computes the probability
of the class yj , and ◦ is function composition. The distilla-
tion term is a KL-divergence loss [27] with temperature T :

ℓdistill(P,Θ) = −
∑
xi∈P

T 2DKL(g
T (xi)||g̃T (xi)) (3)

where g̃(·) is the old classifier, which is the one be-
fore the current updating phase. As done by [28], the
distillation can be also performed over the feature level,
i.e. ℓdistill(P,Θ) = −

∑
xi∈P 1 − ⟨ϕ̃(xi), ϕ(xi)⟩, where

ϕ̃(·), ϕ(·) are the feature extractors of the old and new net-
works respectively, and ⟨·⟩ denotes cosine similarity. The
additional term could be a margin ranking loss from [28]:

ℓsupp(P,Θ) =
∑
xi∈P

J∑
yj=1

max(τ−⟨θyi , ϕ(xi)⟩+⟨θyj , ϕ(xi)⟩, 0)

(4)
where ⟨·⟩ indicates cosine similarity, τ is the margin thresh-
old, θ is class embeddings (i.e., weight parameterization
of the FC layer), θyi is the ground truth class embedding
of xi, θyj is one of the nearest-J class embeddings. The
loss pushes nearest classes away from the given class. ℓsupp
could be also a divergence loss [20], which acts as an aux-
iliary classifier encouraging a better diversity among new
classes and old ones. More details are presented in [20].

The three losses can be also applied to different data.
For example, ℓclass and ℓdistill can be also used to simulta-
neously learn over both the new and old data, i.e., P ∪ Xt.
In this paper, we mainly study four representative methods
LRCIL [59], iCaRL [60], LUCIR [59] and DyTox [20], all
of which can be formulated by Eqn.1. For LRCIL, γd and
γm are zeros. For iCaRL, γm is zero. By comparison, LU-
CIR and DyTox applies non-zero γd and γm.

4.2. Adapting CIL to CDD

We study three main adaptations of CIL methods for
CDD. The key idea for the adaption is to enforce the clas-
sification loss ℓclass and the distillation loss ℓdistill to better
fit the binary classification (i.e., detection) task, which is
formulated as

ℓBIL(Θ) = ℓ̂class(Xt,Θ)+γdℓ̂distill(P,Θ)+γmℓsupp(P,Θ)
(5)

where ℓ̂class and ℓ̂distill are the main adapted components.
Below details three main ways for the adaption on them.
Binary-class (BC) Learning. One of the most straightfor-
ward solutions is to change the categorical cross-entropy
loss with the binary one:

ℓ̂class(Xt,Θ) = −
∑

xi∈Xt

δy=yi log gy(xi)+(1−δy=yi) log(1−gy(xi))

(6)
where δy=yi

is an indicator for the ground-truth label yi,
gy(xi) applies Sigmoid function φ(xi) instead, calculating
the probability of the given sample xi being a fake sample.
In addition, the distillation loss ℓ̂distill is based on the bi-
nary prediction. For the final classification, we apply the
Sigmoid function based results. As ℓsupp is originally de-
signed for better multi-class classification, it can be ignored
in the binary adaptation.
Multi-class (MC) Learning. For this approach, we use
the original classification, distillation, and supplementary
losses, i.e. ℓ̂class = ℓclass, ℓ̂distill = ℓdistill, ℓ̂supp =
ℓsupp. We regard each real/fake class from different tasks
as an independent class. For classification, we apply ŷi =
argmaxyj

gyj
(xi), given a sample xi. If ŷi is one of the

fake/real classes, we will predict xi to fake/real.
Multi-task (MT) Learning. Another adaption is to apply
a multi-task learning formulation. In particular, both the
multi-class classification and the binary-class classification
(i.e., detection) tasks are managed by the same classifier
g(·). To this end, we adapt the classification loss by adding
a binary cross-entropy term to the categorical cross-entropy

ℓ̂class(Xt,Θ) = (1− λ)ℓclass(Xt,Θ) + λℓ′class(Xt,Θ) (7)

where ℓclass is the regular multi-class classification task loss
Eqn.2, the binary-class classification task loss ℓ′class is com-
puted by taking into account the activations, g(·), of all the
classes, separately for the fake and real classes, and the hy-
perparameter λ is for the balance between these two task-
based losses. Formally, ℓ′class is computed by

ℓ′class(Xt,Θ) =
∑

xi∈(Xt)

δY=FdF (xi) + δY =RdR(xi) (8)

where dF (xi) and dR(xi) are designed for the aggregation
over all fake classes and all real classes respectively. In this
paper, we study the following four aggregation approaches:
(1) SumLog (Eqn.9a) that is proposed in [53], (2) SumLogit
(Eqn.9b), (3) SumFeat (Eqn.9c), and (4) Max (Eqn.9d).
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dF (xi) =
∑

y∈{fake}

log gy(xi), dR(xi) =
∑

y∈{real}

log gy(xi) (9a)

dF (xi) = log
∑

y∈{fake}

gy(xi), dR(xi) = log
∑

y∈{real}

gy(xi) (9b)

dF (xi) = log gy(
∑

y∈{fake}

xi), dR(xi) = log gy(
∑

y∈{real}

xi) (9c)

dF (xi) = max
y∈{fake}

(log gy(xi)), dR(xi) = max
y∈{real}

(log gy(xi))

(9d)

where y ∈ {fake} indicates all the associated fake classes,
and y ∈ {real} corresponds to all the real classes.

For the MT case, we use the original distillation and sup-
plementary losses, i.e. ℓ̂distill = ℓdistill, ℓ̂supp = ℓsupp,
where ℓdistill and ℓsupp are computed using Eqn.3 and
Eqn.4, respectively. As done in the MC case, we use
ŷi = argmaxyj

gyj
(xi) for the final classification.

5. Benchmarking Results

We evaluate three families of CIL methods with our
exploited variants (using BC, MC, MT) on the suggested
CDD benchmark for the three scenes (Sec.3.2): 1) EASY,
2) HARD, and 3) LONG, with the introduced measures
(Sec.3.3). The three sets of state-of-the-art CIL methods
are: 1) Gradient-based: NSCIL [74], 2) Memory-based:
LRCIL [59], and 3) Distillation-based: iCaRL [60], LU-
CIR [28] and DyTox [20]. Besides, we evaluated the multi-
task variant of iCaRL (iCaRL-SumLog)3 [53]. We adapted
the top-4 best CIL methods (i.e., LRCIL, iCaRL, LUCIR,
DyTox) using BC, MC, MT. Note that it is non-trivial to
adapt DyTox with BC, as the loss is tightly constrained for
multiple-class classification. Thus, we do not evaluate its
BC variant. For a fair comparison, except for DyTox that
is based on an ImageNet pre-trained transformer ConViT
[22], we employ the state-of-the-art deepfake CNN detector
(CNNDet) [75] that applies a ResNet-50 pretrained on Im-
ageNet [16] and ProGAN [33] as the backbone for all the
rest methods over the proposed CDDB. For most methods,
we used their official codes, and tuned their hyperparam-
eters for better performances. For a consistency, we em-
pirically set the MT learning hyperparameter as λ = 0.3
for all the MT methods. For EASY, HARD and LONG, we
assign the same memory budget (i.e., 1500) for all those
methods that need a memory to save exemplars. Addition-
ally, we study three reduced memory budgets (i.e., 1000,
500, 100) for HARD. For all the evaluations, we evaluate
the joint training methods using CNNDet/ConViT with ei-
ther binary classification loss (CNNDet-Binary) or multi-
class classification loss (CNNDet/ConViT-Multi) to study
the approximated upper bound for the incremental learning
methods. The detailed settings, the parameter setups, and

3We overlooked the method [36], as its code is not publicly available.

more empirical studies are presented in Suppl. Material4.

5.1. EASY Evaluation

Table 3 reports the benchmarking results of the evaluated
methods for the CDDB EASY. Table 4 studies other essen-
tial components for the CDD problem.
Vanilla Deepfake Detection vs. Continual one (CDD).
As discussed in Sec.1 and Sec.2, most of deepfake detection
techniques are designed to single/stationary deepfake detec-
tion tasks. We follow CNNDet[75]’s suggestion to train it
on the ProGAN dataset, and applied the pre-trained model
to the seven tasks directly in the EASY evaluation. Thus,
we further name this method as CNNDet[75]-Zeroshot. Be-
sides, we also compare the one that finetunes the pre-trained
CNNDet on each new task, due to the access limit to the old
task data. The same training strategies are also applied to
one of the state-of-the-art transformers, i.e., ConViT [22].
By comparing the continual learning setups (BC, MC, MT),
we can find that all the zeroshot and finetune setups perform
clearly worse, showing that the necessity of applying the
continual learning approaches to the CDD problem.
Basic Findings on Essentials for CDD. 1) Due to the se-
rious forgetting problem, finetuning the CNNDet/ConViT
methods works worse than the pretrained CNNDet/ConViT
models over ProGAN. 2) The clearly inferior performances
of the state-of-the-art gradient-based method NSCIL might
be because its null space cannot be approximated well on
the highly heterogeneous fakes and reals. 3) LRCIL merely
performs a rehearsal on the data to address forgetting, and
thus we added a knowledge distillation (KD) term to LR-
CIL (i.e., LRCIL-KD), which further improves AA with a
marginally worse AA-M. (see Table 4). 4) class imbalance
issue is not so important to CDD. From Table 4, we dis-
cover that its used cosine normalization based fully con-
nected layer (CosFC) [28] clearly hurts the performance
(see the comparison LUCIR-CosFC vs. LUCIR-LinFC in
Table 4). CosFC is proposed to address the class imbalance
issue, with which the test samples are often predicted into
new classes in the CMC context. However, predicting the
test fakes into the new fake class is acceptable for our stud-
ied CDD problem. Therefore, the normalization techniques
is very likely to hurt the CDD performance. Based on the
observation, we replace CosFC with regular FC (LinFC) in
all LUCIR based variants for better performances.
CNN vs. ViT. The CNN-based methods are mostly outper-
formed by the ViT-based methods (ConViT and DyTox), as
we can see in Table 3. Nevertheless, we should notice that
the parameter size (≈86M) of the used ConViT is about 3
times larger than that (≈25M) of CNNDet (ResNet50). The
study provides two choices when we address the CDD prob-

4The supp. metrial also studies GANfake [53]. As it does not release the de-
tailed train/val/test splits, we can only empirically study our own splits following the
description in the oiriginal paper.
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CDDB-EASY1500
Learning Sys. Evaluated Method Task1 Task2 Task3 Task4 Task5 Task6 Task7 AA AF AA-M mAP

Baseline

CNNDet[75]-Zeroshot 63.85 68.75 71.95 60.93 91.31 60.93 49.01 66.68 NA NA 79.02
CNNDet[75]-Finetune 57.25 51.00 57.63 47.81 80.41 48.00 78.77 60.28 -14.29 NA 61.67
ConViT[22]-Zeroshot 89.55 75.38 94.66 98.51 80.22 96.67 49.25 83.46 NA NA 61.04
ConViT[22]-Finetune† 51.45 49.25 52.86 51.49 77.63 55.49 86.28 60.64 -42.75 NA 56.92

Binary-class
(BC) learning

NSCIL[74]-Sigmoid* 48.35 50.25 49.43 56.58 56.56 70.73 57.63 55.65 -42.04 NA 63.50
LRCIL[59]-Sigmoid* 83.00 88.00 82.82 96.20 79.02 97.14 62.82 84.14 -9.15 NA 91.37
iCaRL[60]-Sigmoid* 76.90 80.00 88.93 99.41 85.03 99.45 76.64 87.05 -10.64 NA 92.25
LUCIR[28]-Sigmoid* 90.60 91.05 90.46 99.80 91.04 99.80 75.38 91.16 -4.76 NA 95.94

Multi-class
(MC) learning

NSCIL[74] 46.80 52.50 47.90 45.26 35.21 51.33 58.85 48.26 -50.88 8.41 44.26
LRCIL[59] 83.50 77.88 90.84 98.90 84.75 98.86 65.92 85.81 -5.88 67.11 92.63
iCaRL[60] 77.50 71.38 91.22 99.57 95.66 99.92 78.28 87.65 -9.41 65.39 94.12
LUCIR[28]-LinFC 91.60 89.12 92.56 99.76 94.45 99.80 71.21 91.21 -2.88 74.62 94.75
DyTox[20] 98.30 94.25 98.85 100.00 95.66 100.00 85.94 96.14 -1.24 83.66 93.90

Multi-task
(MT) learning

LRCIL[59]-SumLog[53] 86.65 85.63 91.79 99.22 88.72 99.57 68.27 88.76 -3.99 66.03 93.95
iCaRL[60]-SumLog[53] 74.40 78.38 88.36 99.65 92.24 99.69 79.84 87.05 -10.72 71.41 93.02
LUCIR[28]-SumLog[53] 88.70 88.62 93.89 99.37 94.82 99.80 75.71 91.56 -3.65 74.47 95.47
DyTox[20]-SumLog[53]‡ 98.30 95.00 99.43 100.00 96.30 100.00 85.89 96.42 -0.72 83.94 94.01
LRCIL[59]-SumLogit 86.95 88.12 92.75 99.45 88.35 99.45 70.24 89.33 -4.27 68.00 94.84
iCaRL[60]-SumLogit 85.25 86.12 88.93 99.65 92.98 99.80 80.27 90.43 -6.12 74.18 95.27
LUCIR[28]-SumLogit 89.95 89.62 94.47 99.65 95.75 99.80 74.79 92.00 -3.13 73.55 95.26
DyTox[20]-SumLogit 98.30 94.75 99.05 100.00 96.86 100.00 86.82 96.54 -0.82 84.42 94.23
LRCIL[59]-SumFeat 84.85 85.13 92.56 99.26 87.15 99.45 69.90 87.81 -5.30 66.40 93.73
iCaRL[60]-SumFeat 77.90 84.25 90.84 99.65 82.72 99.69 79.11 87.74 -9.52 68.15 93.88
LUCIR[28]-SumFeat 90.05 89.38 94.85 99.92 95.01 99.92 73.53 91.81 -3.12 74.23 95.66
DyTox[20]-SumFeat 98.05 93.63 99.24 100.00 96.12 100.00 86.67 96.24 -1.13 83.98 94.20
LRCIL[59]-Max 87.80 89.00 92.18 67.96 87.15 99.22 69.85 89.16 -4.43 69.38 94.60
iCaRL[60]-Max 82.35 87.00 92.94 99.76 91.77 99.73 79.74 89.92 -6.79 73.47 94.87
LUCIR[28]-Max 89.85 91.25 94.08 99.53 92.51 99.65 72.61 91.21 -4.00 74.06 95.41
DyTox[20]-Max 98.80 92.63 99.05 100.00 96.12 100.00 86.23 96.12 -1.19 84.14 94.08

Joint Training CNNDet [75]-Binary 98.65 98.38 96.37 100.00 95.19 100.00 79.59 95.20 NA NA 98.36
CNNDet [75]-Multi 95.70 97.00 95.80 99.96 96.30 99.96 75.28 94.29 NA 79.28 97.25
DyTox[20]-Multi 99.40 96.37 98.28 100.00 94.64 100.00 80.22 95.53 NA 81.87 95.34

Table 3: Benchmarking results on the suggested CDDB’s EASY evaluation. CNNDet/ConViT-Zeroshot is merely trained on ProGAN, and CNNDet/ConViT-Finetune is tuned
over the 7 tasks. ConViT[22]-Finetune†: low AA/mAP seems attributed to huge forgetting. Sigmoid*: applying Sigmoid function based classification loss. SumLog[53]‡: most
cases fail, only λ = 0.0001 works. AA: Average Accuracy for deepfake detection, AF: Average Forgetting degree, AA-M: Average Accuracy for deepfake recognition, mAP:
mean Average Precision. green: LRCIL, blue: iCaRL, red: LUCIR, cyan: DyTox. Bold: best green/blue/red/cyan results, Underline: second best green/blue/red/cyan results.

CDDB-EASY1500
Learning System Evaluated Method AA AF AA-M

Multi-class

LRCIL[59] 85.81 -5.88 67.11
LUCIR(CosFC)[28] 87.24 -10.32 71.42
LRCIL[59]-KD 86.85 -5.50 66.57
LUCIR[28]-LinFC 91.21 -2.88 95.41

Table 4: Evaluation results on essentials of CILs on the EASY evaluation. AA:
Average Accuracy for detection, AF: Average Forgetting degree, AA-M: Average
recognition Accuracy. Results of LRCIL and LUCIR are in green, red respectively.

lem. One is the family of light CNNDet models, and the
other one is the group of heavy ConViT mdoels.
BC vs. MC vs. MT Learning Systems. Table 3 re-
flects that DyTox gets almost saturated performances on the
EASY eveluation (even higher than its upperbound DyTox-
Multi). Also we discover that its variants performs almost
the same in terms of AA, while DyTox-MC works gener-
ally worse than DyTox-MT in the reduced memory case
(see Tabel 7). Hence, we turn to concentrate on the com-
parison over the lighter CNN-based methods. Except for
the case on LRCIL, Table 3 shows that the BC variants
of the rest models (like iCaRL and LUCIR) perform very
comparably with their corresponding MC models in terms
of AA and AF, showing that the fine-grained classification
benefits the detection. It is also good for the MC method
to eventually label an image as a fake if the classifier de-
cides for any of the fake classes. By comparison, most of
the MT variants of LRCIL, iCaRL and LUCIR work bet-
ter than (or at least comparable with) their corresponding
BC and MC models in terms of AA, and some of MTs per-
form clearly better than their corresponding MCs in terms of
AA-M. This mainly stems from the natural complementary
properties between the fine-grained multi-class separation
and the coarse-grained binary-class cohesion, and most of
the suggested MT methods balance them well.
SumLog vs. SumLogit vs. SumFeat vs. Max. From Table

3, we can see that the SumLogit and Max variants mostly
work better than the original SumLog [53] for the two main
measures, i.e., AA and mAP. This is mainly because of
consistency with final classifier’s operation, which applies
argmax to the resulting logits. By comparison, the Sum-
Feat variants merely perform better than the original Sum-
Log for LUCIR in terms of AA and mAP. This might be be-
cause, different from LRCIL and iCaRL, it additionally ap-
plies the metric learning like loss (i.e., margin ranking loss)
and thus the resulting features might be more discriminative
for the aggregation to address the binary classification.

5.2. HARD and LONG Evaluations

We select the top-2 BC, MC and MT models in terms of
AA for LRCIL, iCaRL and LUCIR from the EASY evalua-
tion for bechmarking HARD and LONG.
EASY vs. HARD vs. LONG. As the LONG evaluation
includes both easy and hard tasks, the evaluated methods
generally get higher scores than those in HARD. Besides,
LONG’s overall AAs and mAPs are visibly worse than
those on EASY, meaning that incremental learning over a
longer sequence is more challenging. Interestingly, the AFs
are not clearly worse, showing the forgetting issue is not se-
rious in this context. By comparison, HARD’s overall AAs,
mAPs and AA-Ms are clearly lower than those of EASY
and LONG, because it contains more challenging tasks such
as WildDeepfake, WhichFaceReal that are from the wild
scenes and SAN that merely has a small data for training.
Memory Budget. As all the evaluated methods require a
memory to utilize an exemplar set of old samples to address
the forgetting problem, we evaluate the performance as a
function of the memory budget. Table 6 summarizes the
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CDDB-HARD1500 CDDB-LONG1500
Learning System Evaluated Method AA AF AA-M mAP AA AF AA-M mAP

Binary-class
LRCIL [59]-Sigmoid* 74.07 -5.43 NA 80.40 87.06 -4.79 NA 91.81
iCaRL [60]-Sigmoid* 80.52 -7.89 NA 87.76 87.12 -6.92 NA 91.68
LUCIR [28]-Sigmoid* 83.17 -4.45 NA 89.72 87.19 -6.91 NA 92.11

Multi-class

LRCIL [59] 74.22 -5.41 57.74 80.21 86.40 -4.65 62.32 91.28
iCaRL [60] 76.72 -7.79 67.46 85.05 82.50 -10.76 53.49 89.63
LUCIR [28]-LinFC 82.33 -3.12 66.27 86.73 86.95 -6.77 69.74 91.43
DyTox [20] 88.46 -0.72 79.68 88.06 93.34 -1.67 78.62 94.08

Multi-task

LRCIL [59]-SumLogit 77.28 -2.70 60.22 81.38 87.93 -2.99 65.60 92.45
iCaRL [60]-SumLogit 81.16 -7.84 69.00 90.22 88.68 -5.12 70.51 93.10
LUCIR [28]-SumLogit 83.42 -3.28 65.31 87.89 88.57 -5.78 71.55 92.83
DyTox [20]-SumLogit 88.60 -0.62 80.59 89.15 93.80 -1.41 78.86 92.47
LRCIL [59]-Max 76.93 -2.55 59.20 81.20 88.49 -2.64 65.67 92.49
iCaRL [60]-Max 81.28 -8.95 60.64 88.61 89.05 -5.24 71.35 94.03
LUCIR [28]-SumFeat 82.14 -2.90 65.59 87.39 88.40 -5.30 70.99 92.70
DyTox [20]-SumFeat 88.84 -0.76 80.57 89.45 94.04 -1.20 79.62 94.08

Joint Training
CNNDet [75]-Binary 85.29 NA NA 91.34 93.17 NA NA 94.69
CNNDet [75]-Multi 84.63 NA 70.59 90.10 92.30 NA 78.71 94.82
DyTox [20]-Multi 87.93 NA 75.46 87.53 95.31 NA 79.98 93.81

Table 5: Benchmarking results on CDDB’s HARD and LONG. AA: Average detec-
tion Accuracy , AF: Average Forgetting, AA-M: Average Accuracy for recognition.
mAP: mean Average Precision. green: LRCIL, blue: iCaRL, red: LUCIR, cyan: Dy-
Tox. Bold: best results, Underline: second best results.

Reduced Memory Budgets for CDDB-HARD
1000 500

Learning System Evaluated Method AA AF AA-M mAP AA AF AA-M mAP

Binary-class
LRCIL [59]-Sigmoid* 75.61 -6.35 NA 80.30 73.51 -8.96 NA 80.36
iCaRL [60]-Sigmoid* 76.99 -10.28 NA 85.46 72.91 -16.01 NA 81.34
LUCIR [28]-Sigmoid* 81.75 -6.12 NA 88.46 78.99 -9.43 NA 85.81

Multi-class

LRCIL [59] 76.39 -4.39 55.10 80.45 73.18 -9.01 46.69 79.90
iCaRL [60] 72.37 -13.04 41.43 85.25 71.75 -13.52 42.07 83.61
LUCIR [28]-LinFC 81.57 -3.09 65.96 85.97 78.57 -6.97 59.87 84.87
DyTox [20] 88.64 -0.86 80.02 89.41 87.27 -2.02 76.54 87.77

Multi-task

LRCIL [59]-SumLogit 75.14 -3.53 56.31 81.05 73.05 -9.08 49.99 80.71
iCaRL [53]-SumLogit 79.76 -8.73 66.66 87.75 73.98 -14.50 58.44 81.00
LUCIR [28]-SumLogit 82.53 -5.34 72.00 88.14 79.70 -8.18 65.86 88.08
DyTox [20]-SumLogit 87.39 -1.375 78.60 88.77 87.64 -1.92 77.65 88.14
LRCIL [59]-Max 74.52 -5.18 43.65 81.39 74.01 -8.62 49.59 78.72
iCaRL [53]-Max 78.55 -8.69 65.34 86.78 73.70 -14.65 58.85 81.06
LUCIR [28]-SumFeat 82.35 -4.76 71.22 88.93 80.77 -7.85 70.03 87.84
DyToX [20]-SumFeat 88.59 -1.27 80.57 89.70 87.73 -1.80 77.88 87.89

Table 6: Benchmarking results on reduced memories for the suggested CDDB’s
HARD evaluation. green: LRCIL, blue: iCaRL, red: LUCIR, cyan: DyTox. Bold:
best results, Underline: second best results.

100 Memory Budgets for DyTox
EASY HARD

Learning System Evaluated Method AA AF AA-M mAP AA AF AA-M mAP
Multi-class DyTox [20] 91.99 -6.33 74.22 89.41 84.53 -4.26 70.08 85.45

Multi-task
DyTox [20]-SumLogit 93.58 -4.33 76.45 90.30 86.38 -3.38 68.94 86.23
DyTox [20]-SumFeat 93.32 -4.61 74.67 91.37 85.23 -4.74 70.31 84.40
DyTox [20]-Max 93.47 -4.71 71.24 90.71 86.35 -2.68 70.85 86.47

Table 7: Benchmarking results on the reduced memory (memory=100) for DyTox’s
HARD and EASY evaluation. bold: best results, underline: second best results

Figure 2: Left: Radar plot (the bigger covering area the better) on AAs of the
evaluated methods for CDDB’s EASY1500, LONG1500, HARD1500, HARD1000,
HARD500. Right: Radar plot on AAs, AFs, mAPs and AA-Ms of the eval-
uated methods for HARD500. HARDm: HARD with memory budget= m,
BC/MC/MT: binary-class/multi-class/multi-task learning methods that have the high-
est AAs/mAPs, AA: Average Accuracy (detection), AF: Average Forgetting degree,
AA-M: Average Accuracy (recognition), mAP: mean Average Precision, i.e., the
mean of areas under the PR curve.

results for the HARD evaluation with memory budget be-
ing 1000 and 500. The results again demonstrates the sug-
gested MTs mostly outperform their competitors in terms
of AA, mAP, AA-M. The LUCIR-SumLogit and LUCIR-
SumFeat generally performs the best. The memory reduc-
tion from 1500 to 500 result in clear drops in the terms of
AAs, AA-Ms, AFs and mAPs, showing the memory budget
is one of the most essential factors for the CDD problem.
Table 7 studies the performances of DyTox and its variants
for the further reduced memory (memory=100). The results
demonstrate that most MT variants of DyTox clearly out-
perform its MC variant when the memory is very limited.

Overall Spotlight. Fig.2 shows a radar plot of the five
CDDB evaluations in terms of AAs, and a radar plot of
the HARD500 evaluations in terms of the suggested four
measures (i.e., AAs, AFs, mAP, AA-Ms). Our CDDB-
HARD uses more advanced CIL method (DyTox) to reach
the highest AA of around 86% when memory=100 (/500),
while the existing CDD benchmarks (GANfake [53] and
CoReD [36]) utilizes earlier CIL method (like iCaRL) to
get highest AAs of above 96% (memory=512) and 86%
(memory=0) respectively. The higher challenge is mainly
attributed to the suggested CDD benchmark on the col-
lection of known and unknown deepfakes, whereas they
proposed performing CDD on either pure GAN-generated
fakes or pure traditional deepfake-produced images. Be-
sides, the rest three measures (i.e., AFs, mAP, AA-Ms)
are overlooked by the two benchmarks, which however are
valuable to study CDD. The low scores on them further im-
ply that the suggested CDD benchmark is challenging and
thus will open up promising directions for more solid re-
search on the CDD problem.

6. Conclusion and Outlook

The continual deepfake detection benchmark proposed
in this paper attempts to bring attention to the real world
problem of detecting evolving deepfakes. In this front, dif-
ficult cases of deepfakes, long-term aspects of continual
learning, and the varieties of deepfake sources are consid-
ered. To invite novel solutions, their evaluation protocols
and several baseline methods are established by borrowing
the most promising ones from the literature. The proposed
dataset, evaluation protocol, and established baselines will
allow researchers to quickly test their creative ideas and
probe them against the existing ones. Additionally, through
our evaluations, we are able to provide empirical study
to analyze and discuss the common practices of continual
learning in the context of the CDD problem.

Our experiments show that the proposed CDDB is
clearly more challenging than the existing benchmarks.
Hence we believe it will open up promising new directions
of solid research on continual deepfake detection. As fu-
ture works, other essentials remain to be studied, includ-
ing 1) exemplar selection, 2) knowledge distillation, and 3)
data augmentation. Due to the nature of CDD, we recom-
mend using the new collection of deepfakes as an open set.
Accordingly, we welcome external contributions to include
any newly appeared deefake resources with the benchmark
to simulate the real-world scenarios.
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and Matthieu Cord. Dytox: Transformers for continual learn-
ing with dynamic token expansion. In CVPR, 2022.

[21] Nick Dufour and Andrew Gully. Contributing data to deep-
fake detection research. Google AI Blog, 2019.
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