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Abstract

Camera-based physiological measurement is a growing
field with neural models providing state-of-the-art perfor-
mance. Prior research has explored various “end-to-end”
architectures; however these methods still require several
preprocessing steps and are not able to run directly on mo-
bile and edge devices. The operations are often non-trivial
to implement, making replication and deployment difficult
and can even have a higher computational budget than the

“core” network itself. In this paper, we propose two novel
and efficient neural models for camera-based physiological
measurement called EfficientPhys that remove the need for
face detection, segmentation, normalization, color space
transformation or any other preprocessing steps. Using an
input of raw video frames, our models achieve strong accu-
racy on three public datasets. We show that this is the case
whether using a transformer or convolutional backbone. We
further evaluate the latency of the proposed networks and
show that our most lightweight network also achieves a 33%
improvement in efficiency.

1. Introduction
Camera-based physiological measurement is a non-

contact approach for capturing cardiac signals via light re-
flected from the body [20]. The most common such signal
is the blood volume pulse (BVP) measured via the photo-
plethysmogram (PPG). From this, heart rate [33, 36], respi-
ration rate [26] and pulse transit times [29] can be derived.
Furthermore, there is promising evidence that the PPG sig-
nals can be used to measure signs of arterial disease [34].
Neural models are the current state-of-the-art for camera
PPG measurement [5, 10, 16]. These networks can learn
strong feature representations and effectively disentangle
the subtle changes in pixels due to underlying physiological

processes from those due to body motions, lighting changes
and other sources of “noise”.

While prior research has framed architectures as “end-
to-end” methods, those that achieve state-of-the-art perfor-
mance actually require several preprocessing steps before
data is used as input to the network. For example, [5] and
[10] use hand-crafted normalized difference frames and nor-
malized appearance frames as input to their convolutional at-
tention network. [24] and [19] use a complex schema to cre-
ate feature maps called “MSTmaps”, their process includes
facial landmark detection, extraction of several regions of
interest (ROI) using these landmarks, and then averaging
pixel values in both the RGB and YUV color spaces.

These preprocessing steps have several drawbacks: 1)
They make assumptions about optimal normalization or rep-
resentation without allowing the network to learn these fea-
tures in a data-driven manner. 2) They are computationally
costly and in many cases add a significant number of oper-
ations to the video processing pipeline. There are several
reasons why running camera-based physiological sensing on-
device is desirable: privacy preservation, the ability to use
raw (i.e., uncompressed) video and data cost and bandwidth
savings. Any additional computation needs to be justified by
improving model accuracy. Moreover, since camera-based
physiological sensing is a privacy-sensitive application, it
is preferable to store the data on local devices instead of
streaming both video and physiological data to the cloud.
The overhead from processing is not acceptable if we aim
to make the system accessible to low-end mobile devices.
3) Many of these steps are non-trivial to implement and
optimize in and of themselves. This makes it harder to de-
ploy real-time systems and to replicate the implementation
on different platforms. For instance, implementing exist-
ing methods on Android, iOS, or in JavaScript requires a
significant amount of effort. Some libraries, such as facial
landmark detection, are not even available on every platform.
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Thus, the last mile engineering using the existing methods
becomes especially challenging.

Ideally, a video-based physiological measurement method
would be able to run at a high frame rate even on mobile
devices, be simple to implement across different platforms,
and achieve state-of-the-art performance. Addressing the
aforementioned challenges would help achieve these proper-
ties. We propose a truly end-to-end network, EfficientPhys,
for which the input is unprocessed video frames without
requiring accurate face cropping (see Fig. 1). Due to recent
advancements in visual transformers, we propose both a con-
volutional and visual transformer architecture and compare
and contrast the performance of these two.

In summary, our key contributions are to: 1) propose two
novel one-stop neural architectures, a visual transformer and
a convolutional network, which do not require any prepro-
cessing steps, 2) evaluate the proposed methods on three pop-
ular benchmark datasets, 3) evaluate on-device latency across
both state-of-the-art machine learning-based approaches as
well as signal processing-based techniques. To the best of
our knowledge, this is the first paper that explores the visual
transformer in camera-based physiological measurement and
its comparison with convolutional networks. This is also the
first paper exploring a completely end-to-end on-device neu-
ral architecture for mobile devices.

2. Related Work
Camera-based Vital Measurement. There is a growing

community studying the use of cameras to sense physio-
logical vitals signs [38, 36, 12]. Prior work established the
fundamentals of how RGB images could be used to extract
the pulse signal using signal source separation techniques
(e.g., ICA) [26]. Other methods derived these parameters
from physically-based models to achieve elegant and fast
demixing (e.g., Plane Orthogonal-to-Skin (POS))[37]. By
calculating a projection plane orthogonal to the skin-tone
based on optical and physiological principles, the authors
were able to achieve a stronger BVP signal-to-noise ratio
(SNR).

Since the underlying relationship between the pulse and
skin pixels is complex, deep convolutional neural networks
have shown superior performance over the traditional source
separation algorithms. DeepPhys [5] was the first paper
that demonstrated that a deep neural network outperforms
all the traditional signal processing approaches. Liu et al.
have also proposed an on-device efficient neural architecture
called MTTS-CAN for camera-based physiological sensing,
which leverages a tensor-shift module and 2D-convolutional
operations to perform efficient spatial-temporal modeling
[10]. More recently, an adversarial learning approach, called
Dual-GAN, has also been studied to learn noise-resistant
mappings from video frames to pulse waveform and noise
distributions [19]. With two generative-adversarial networks,

they can promote each adversarial network’s representation
and further improve the feature disentanglement between
pulse and various noise sources.

However, DeepPhys and MTTS-CAN both require a few
preprocessing steps including calculating difference frames
and performing image normalization. Dual-GAN has a even
more complex preprocessing module called MSTMaps pro-
posed by [24]. The MSTMaps are a set of multi-scale spatial
temporal maps created by 1) cropping the facial region, 2)
extracting facial landmarks, 3) performing average pool-
ing for every color channel and every ROI combination for
each frame, 4) generating ROI combinations using all the
detected ROI regions and landmarks, 5) multiplying each
item in all ROI combinations with six channels. The final
size of the MSTMap is (2n − 1) × T × 6 where T is the
number of frames and n is the number of ROI regions. Such
a preprocessing module not only consumes large amounts
of memory but also introduces a large computational burden
to the entire pipeline. Moreover, stacking all of these extra
procedures makes development and deployment much more
difficult. Unlike these methods, the goal of our proposed
method EfficientPhys is to create a preprocessing-free neural
architecture that is simple to use and deploy, efficient on
mobile devices, and accurate on settings with various types
of noise.

Visual Transformers. Although convolutional neural net-
works have been widely studied and used in many computer
vision applications, vision transformers were first success-
fully used on the task of image classification. By training
on larger datasets, vision transformer (ViT) attains excellent
performance and can be used in downstream fine-tuning with
fewer amounts of data [7]. More recently, the state-of-the-art
Swin vision transformer was proposed as a way to construct
hierarchical feature maps and improve computational effi-
ciency by using a hierarchical representation and limiting
self-attention computation to non-overlapping local windows
while allowing for cross-window connection [14]. However,
transformer architectures have been barely studied in the
field of camera-based vitals measurement. The closest work
used transformers to detect remote photoplethysmography
(rPPG) for attack/spoofing detection [39]. However, this
paper did not evaluate the proposed vision transformer in the
task of heart rate estimation using any public datasets, which
is considered as the gold-standard benchmark for the field
of camera-based vital measurement. More recently, Yu et
al. recently proposed Physformer [41] which is also a visual
transformer based architecture 1. To our best knowledge,
our proposed vision transformer was the first architecture in
camera-based heart rate measurement with detailed evalua-
tion on multiple public datasets.

1Physformer was published after this manuscript was submitted for
review
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Figure 1. A high-level comparison of EfficientPhys and existing deep learning approaches for camera-based vitals measurement

3. Method

3.1. Convolution-based EfficientPhys

To enable simple, fast and accurate real-time on-device
camera-based vitals measurement, we propose a one-stop
solution architecture that takes raw video frames as the input
to the network and outputs a first-derivative PPG signal. The
convolution-based EfficientPhys is a one-branch network
that contains a custom normalization layer, self-attention
module, tensor-shift module and 2D convolution operation
to perform efficient and accurate spatial-temporal modeling
while making it simple to deploy.

Normalization Module. Existing neural methods all re-
quire different levels of preprocessing before providing the
visual representation to the network to learn the underlying
relationship between skin pixels and cardiac pulse signal.
For instance, The state-of-the-art networks Dual-GAN [19]
and CVD [24] proposed a hand-crafted spatial-temporal rep-
resentations called STMaps. These preprocessed representa-
tions are generated for each video frame and includes steps
of detecting 81 facial landmark points, extracting a set of
region of interest (ROI) combinations (2n − 1 where n is
the number of ROIs, n=6) using these landmarks, and aver-
aging pixel values in both the RGB and YUV color spaces,
multiplying the 63 ROI combinations with the six channels.
These modules not only add significant computational bur-
den (Table 4 shows that Dual-GAN’s preprocessing module
takes 275ms per frame) but also make the system more chal-
lenging to implement and deploy on real-world computing
systems such as mobile devices.

One of the goals of EfficientPhys is to remove these pre-
processing modules completely and provide a one-stop so-
lution. To achieve such simplicity and deployability, we
propose a custom normalization module, which can perform
motion modeling between every two consecutive RGB raw

frames and normalization to reduce the lighting and mo-
tion noise. More specifically, the proposed normalization
module includes a difference layer and a batchnorm layer.
The difference layer (e.g., torch.diff) computes the first for-
ward difference along the temporal axis of the raw video
frames, by subtracting every two adjacent frames. Perform-
ing motion modeling between every two consecutive frames
and normalization is more like a high-pass filtering and can
help reduce the global noise from lighting and motion noise,
while maintaining the subtle changes from PPG. To provide
optical basis in our work, equation 1 illustrates the optical
grounding of difference frame where DDDk(t) of every two
consecutive frames. I(t) is the luminance intensity which is
modulated by the specular reflection vvvs(t) and the diffuse
reflection vvvd(t) as well as the optical sensor’s quantization
noise vvvn(t).

DDDk(t) = (I(t) · (vvvs(t) + vvvd(t)) + vvvn(t))− (I(t− 1)

·(vvvs(t− 1) + vvvd(t− 1)) + vvvn(t− 1))
(1)

However, difference frames could be dramatically differ-
ent in scale and make it hard for the network to learn mean-
ingful feature representations, especially when the signal of
interest is hidden in subtle pixel changes along the temporal
axis and noise artifacts can cause significantly larger rela-
tive changes. To address this, we add a batch-normalization
(batchnorm) layer following the difference layer. Adding
a batchnorm layer provides two benefits: 1) it normalizes
the difference frames to the same scale within the batch dur-
ing training, 2) unlike fixed normalization in previous work
[5, 10], batchnorm provides two learnable parameters β and
γ for scaling (to a different variance) and shifting (to a differ-
ent mean) and two non-trainable parameters which are the
mean µ and the standard deviation σ. Through the learning
process, the batchnorm layer can learn the best parameters
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Figure 2. We present two novel architectures to enable simple, fast, and accurate camera-based vitals measurement: Convolution-based
EfficientPhys and Transformer-based EfficientPhys. N is the number frames of video clip inputting to the network.

for amplifying the pixel changes while minimizing the noise
as Equation 2 and Fig.3 show. Without a batchnorm layer,
directly applying a difference layer means the frames appear
“black”; because the subtle changes of skin pixels in every
two consecutive frames are relatively very small. On the
other hand, adding a follow-up batchnorm layer will help
it learn the normalization function to magnify the subtle
changes of skin pixels substantially. The result is not simply
a magnification of values but a normalization and magnifica-
tion. Moreover, we also compare the output batchnorm layer
to the hand-crafted normalized frame as shown in Fig.3. The
output of batchnorm layer contains more information and
qualitative analysis suggests it should be a better tool for
skin segmentation after the learning process.

NNNk(t) =
(βt ∗DDDk(t) + γt)− µDDDk

σDDDk

(2)

Self-Attention-Shifted Network. To efficiently cap-
ture the rich spatial-temporal information, we propose a
self-attention-shifted network (SASN). SASN is built on
top of the previous state-of-the-art method for on-device
spatial-temporal modeling in optical cardiac measurement
- temporal-shift convolutional attention network (TS-CAN)
[10]. TS-CAN has two convolutional branches, one of which
takes a preprocessed difference frame representation and one
of which takes a normalized appearance frame. The motion
branch performs the main spatial-temporal modeling and
estimation, and the appearance branch provides attention
masks to guide the motion branch to better isolate the pix-
els of interest (e.g., skin pixels). However, we argue that
the attention masks do not have to be obtained through a
separate appearance branch and they can be also learned
with a single branch end-to-end network. As Fig. 2 illus-
trates, our proposed self-attention-shifted network starts with
the custom normalization module discussed in the previous
section and then continues with two tensor-shifted convolu-
tional operations. After the second and fourth tensor-shifted
2D convolutional layers, we add a self-attention module to

help the network minimize the negative effects introduced
by temporal shifting as well as motion and lighting noise.
The self-attention layers are softmax attention layers with
1D convolutions followed by a sigmoid activation function.
Then, normalization is applied to remove the outlier values
in the attention mask, and the final normalized attention
mask is element-wise multiplied with the output from the
tensor-shifted convolution. Equation 3 summarizes how our
self-attention mechanism works where ts(.) denotes tempo-
ral shift operation, ωt

c denotes the 2D convolutional kernel
followed by the temporal shift module, σ is the sigmoid
activation and ωt

a is the 1 × 1 convolutional kernel for self
attention.

(ωt
cts(NNNk(t)) + btc)⊙

HtWt · σ(ωt
aXt

α + bta)

2 ∥ σ(ωt
aXt

α + bta) ∥1
(3)

3.2. Transformer-based EfficientPhys

Efficient Spatial-Temporal Video Transformer. Due
to the recent success of visual transformers for image and
video understanding and the importance of attention mech-
anisms for this task [40, 5, 27, 10], we also present a vi-
sual transformer version of EfficientPhys. For this task, we
need a visual transformer to learn both spatial and temporal
representations. Several existing video-based visual trans-
formers are based on 3D-embedding tokens and input all
the frames into 3D encoder and spatial-temporal attention
modules [1, 16]. However, the computational complexity
makes these unfavourable for real-time efficient modeling
on mobile devices. In the convolutional version we used
tensor-shifted 2D convolutions which have been shown to
achieve comparable performance as 3D convolutions [10].
Inspired by this, our proposed transformer-based Efficient-
Phys is based on a 2D visual transformer, Swin transformer
[15], but with additional components that we will describe
below.

Since the 2D Swin transformer is only able to learn spa-
tial features that map raw RGB values to latent representa-
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Figure 3. Outputs of diff and batchnorm layers and comparison with normalized frames generated via the hand-crafted process in prior
work [5]. The output from the diff layer is almost black because the difference in skin pixels of consecutive frames is very subtle.

tions between a single frame and the target signal (pulse),
it does not have ability to model temporal relationships be-
yond consecutive frames. One of the main contributions of
the Swin transformer is the shifted window module which
has linear computation complexity and allows cross-window
connection by shifting the window partition and limiting self-
attention computation to non-overlapping local windows. In-
spired by the idea of shifting of spatial window partitions,
we propose to add a tensor-shift module (TSM) [9] before
every Swin transformer block to facilitate information ex-
change across the temporal axis. The TSM first splits the
input tensor into three chunks, shifts the first chunk to the left
by one place (advancing time by one frame) and shifts the
second chunk to the right by one place (delaying time by one
frame). All shifting operations are along temporal axis and
are performed before the tensor is fed into each transformer
block as shown in Fig. 2. By adding the TSM module to
the Swin transformer, the new transformer architecture now
has the ability to perform efficient spatial-temporal model-
ing and attention by combining shifting window partitions
spatially and shifting frames temporally. It is worth noting
that TSM does not introduce any learnable parameters, thus
the proposed transformer architecture has the same number
of parameters as the original Swin transformer. Finally, to
enable truly end-to-end inference and learning, we also add
the same normalization module proposed in the convolution
EfficientPhys to this architecture.

In summary, the transformer-based EfficientPhys is the
first end-to-end transformer architecture for camera-based
cardiac pulse measurement that leverages tensor-shift mod-
ules and window-partition shift modules to perform efficient
spatial-temporal modeling and attention to learn the underly-
ing physiological signal from skin pixels.

4. Experiments
Training Data. To help create a robust and generaliz-

able model for cross-dataset evaluation we use two datasets.
The first is AFRL [8], which includes 300 videos from 25

subjects (17 males and 8 females). For each video, the raw
resolution is 658x492 and the sampling rate of the synchro-
nized pulse measurement is 30Hz. The dataset includes
videos with a range of head motions. Every participant was
instructed to remain stationary for the first two tasks, and
then to perform head motions with increasing rotational ve-
locity in the next four tasks (turning from left to right). Along
with the AFRL dataset, we also leverage a synthetic avatar
video dataset introduced by [21, 22] where each synthetic
video is parameterized and generated with a custom pulse
signal, background, facial appearance, and motion. More
specifically, the input pulse signal is used to augment skin
color and the subsurface radius of skin pixels to mimic the
effect of the blood volume pulse on the skin’s appearance.
Synthetic data such as this introduces greater diversity into
the training set and has been shown to effectively help reduce
disparities in performance by skin type. All the video data
are resized into a resolution of 72×72 with resampling using
pixel area relation (cv2.INTER AREA).

Testing Data. We use three popular benchmark datasets
to evaluate the accuracy of the proposed EfficientPhys.
UBFC [3] is a dataset of 42 videos from 42 subjects, and
the raw resolution of each video is 640x480 in an uncom-
pressed 8-bit RGB format. The sampling for synchronized
pulse signal is 30 Hz. All of the tasks collected in UBFC
are stationary. MMSE [42] is a dataset including 102 videos
from 40 subjects, and the raw resolution of each video is
1040x1392. The ground-truth waveform for MMSE is blood
pressure signal instead of blood-volume pulse signal, and
the sampling rate is 25 Hz. It is worth noting that MMSE
contains a diverse distribution of skin types in Fitzpatrick
scale (II=8, III=11, IV=17, V+VI=4). PURE [32] is a dataset
containing 60 videos from 10 subjects. The raw resolution of
each video is 640x480, and the sampling rate of the ground-
truth pulse signal is 60 Hz. PURE includes a diverse set
of motion tasks such as steady, talking, slow/fast transla-
tion between head movements and the camera plane, and
small/medium head rotation.
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Implementation & Experiment Details. We imple-
mented both convolution-based and transformer-based Effi-
cientPhys in PyTorch [25]. We used an AdamW optimizer
to train both networks instead of Adam by introducing ad-
ditional regularization to reduce the effects of over-fitting
through weight decay [17]. The learning rate we used for
Convolutional model was 0.001 while the rate for trans-
former model was 0.0001. Based on empirical studies, we
used the mean squared error (MSE) loss for training the
transformer models and negative Pearson loss [35] for the
convolutional model. We trained both models for ten epochs
with a fixed random seed. We implemented TS-CAN based
on the open-sourced code [11, 10] and used the Deep Phys-
iological Sensing Toolbox [13] for the experiments on the
UBFC and PURE datasets. To calculate the performance
metrics, we first applied a band-pass filter to the signal with
a cutoff frequency of 0.75 and 2.5 Hz (45 beats/minute to
150 beats/minute). We then followed Dual-GAN’s evalua-
tion scheme using peak detection and FFT to get estimated
heart rate on each video of UBFC and PURE datasets [18]
and MetaPhys’s evaluation scheme on MMSE [11]. We
conducted video-level evaluation where we calculated an av-
eraged heart rate for each single video. We calculated three
standard metrics for each video: mean absolute error (MAE),
root mean squared error (RMSE) and Pearson correlation (ρ)
in heart rate estimations and the corresponding ground-truth
heart rates from the blood volume pulse collected via contact
oximeter sensor.

To explore the efficiency of different architectures on mo-
bile devices, we also conducted experiments on a quad-core
Cortex-A72 Raspberry Pi 4B to evaluate the model’s perfor-
mance on an edge device. We performed inference 10 times
to get a reliable averaged on-device inference latency for
EfficientPhys and TS-CAN. Due to the lack of open-source
implementation of Dual-GAN, we were only able to find the
implementation of STMaps which is the preprocessing mod-
ule of Dual-GAN. Thus, we only evaluated the on-device
latency for the preprocessing module in Dual-GAN. We also
evaluated the latency of POS, CHROM, and ICA as they
are traditional signal processing methods and don’t have a
separate preprocessing module.

5. Results and Discussion
EfficientPhys vs. State-of-the-Art. In Table 1 and Ta-

ble 2, we present results from our proposed EfficientPhys
models and the current state-of-the-art neural and signal pro-
cessing methods. The learning models are all trained on
the same datasets (AFRL + Synthetic) and tested on three
dataset (UBFC, PURE and MMSE) to test if the model can
generalize to videos with a different facial appearance, back-
ground, and lighting. To investigate how the depth of the
network impacts the Transformer architecture, we created
two version of Transformer-based EfficientPhys: T1 and T2.
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Figure 4. Accuracy-Latency Trade-off in eight different methods.
Y-axis denotes the MAE error, and X-axis denotes the latency. The
methods in the left-top corner have the best accuracy-latency Trade-
off.

T1 uses the same depth as the Swin Transformer reported
in [15] ([2, 2, 6, 2]). Each number indicates the number of
Swin Transformer blocks as illustrated in Fig. 2. T2 is a
more lightweight architecture to enable real-time on-device
inference and has a depth of [2, 1]. EfficientPhys-C denotes
the Convolution-based EfficientPhys as shown in the Fig.2.
For UBFC and PURE, as Table 1 illustrates, EfficientPhys-C
and EfficientPhys-T1 outperform all the existing methods.
As Table 2 demonstrates, all the neural methods outperform
the signal processing methods. EfficientPhys-T1 and TS-
CAN achieved slightly better results than EfficientPhys-C
and EfficientPhys-T2. Unfortunately, due to the lack of open
source implementation or released models (e.g., Dual-GAN
[19]), we could not successfully replicate their complicated
model architecture and conduct cross-dataset evaluation on
this comparison.

To conduct a fair comparison with the current state-of-
the-art methods, we followed Dual-GAN [19] to train our
models only on PURE and to test on UBFC as Table 3
shows. Although Dual-GAN outperforms all of other meth-
ods, we argue that the margin is relatively small as both
Dual-GAN and EfficientPhys-C achieve a Pearson correla-
tion of 0.99. Moreover, according to American National
Standards Institute (ANSI) and Consumer Technology As-
sociation’s standard [2], MAPE of ±5 is an acceptable error
rate. Various studies have also used this standard to validate
FDA approved sensors and systems [23, 30, 28, 4]. All the
methods in Table 3 have met this recommended bar.

Computational Cost and On-Device Latency. Fig. 4
and the Table 4 summarize the computational cost of the
existing neural methods. Again, due to the lack of open
source implementation and complex algorithm design, we
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Table 1. Cross-dataset heart rate evaluation on UBFC and PURE (beats per minute).

UBFC [3] PURE [32]
Method MAE↓ MAPE↓ RMSE↓ ρ ↑ MAE↓ MAPE↓ RMSE↓ ρ ↑

EfficientPhys-C 1.14 1.16% 1.81 0.99 1.33 1.71% 5.99 0.97
EfficientPhys-T1 2.08 2.53% 4.91 0.96 1.11 1.30% 5.94 0.97
EfficientPhys-T2 3.07 3.41% 4.78 0.96 2.67 3.22% 9.08 0.92

TS-CAN[10] 1.70 1.99% 2.72 0.99 2.23 2.25% 3.71 0.98
POS[37] 3.52 3.36% 8.38 0.90 1.68 1.56% 9.60 0.92

CHROM[6] 3.10 3.83% 6.84 0.93 6.23 10.04% 17.18 0.71
ICA[26] 4.39 4.30% 11.60 0.82 5.70 5.69% 18.10 0.70

MAE = Mean Absolute Error in HR estimation, MAPE = Mean Absolute Error Percentage in HR estimation, RMSE = Root Mean Square Error in HR estimation, ρ = Pearson Correlation in HR estimation.

Table 2. Cross-dataset heart rate evaluation on MMSE (beats per
minute).

MMSE [42]
Method MAE↓ MAPE↓ RMSE↓ ρ ↑

EfficientPhys-C 3.48 4.02% 7.21 0.86
EfficientPhys-T1 3.04 3.91% 5.91 0.92
EfficientPhys-T2 3.51 3.96% 6.98 0.88

TS-CAN[10] 3.04 3.41% 6.55 0.89
POS[37] 3.79 4.28% 8.47 0.82

CHROM[6] 3.61 4.50% 7.43 0.85
ICA[26] 7.96 9.20% 14.02 0.51

MAE = Mean Absolute Error in HR estimation, MAPE = Mean Absolute Error Percentage in HR estimation, RMSE =
Root Mean Square Error in HR estimation, ρ = Pearson Correlation in HR estimation.

Table 3. Cross dataset evaluation with models trained on PURE
only and tested on UBFC (beats per minute).

Method MAE↓ MAPE↓ RMSE↓ ρ ↑
EfficientPhys-C 2.13 2.35 % 3.00 0.99

EfficientPhys-T1 3.83 4.32% 5.62 0.87
EfficientPhys-T2 3.97 4.35% 5.91 0.94

TS-CAN[10] 1.16 1.42% 2.78 0.99
Dual-GAN[19] 0.74 0.73% 1.02 0.99
PulseGAN[31] 2.09 2.23% 4.42 0.99

MAE = Mean Absolute Error in HR estimation, MAPE = Mean Absolute Error Percentage in HR estimation, RMSE =
Root Mean Square Error in HR estimation, ρ = Pearson Correlation in HR estimation.

Table 4. On-Device data preprocessing latency and model inference
latency per frame (ms).

Preprocessing Model Total
Method (ms) ↓ (ms) ↓ (ms) ↓

EfficientPhys-C 0 40 40
EfficientPhys-T1 0 300 300
EfficientPhys-T2 0 40 40

TS-CAN[10] 3 60 63
Dual-GAN[19] 275 N/A > 275

POS[37] 0 27 27
CHROM[6] 0 28 28

ICA[26] 0 31 31
ms = Preprocessing and model latency on Raspberry Pi 4B per frame.

were not able to replicate every architecture to benchmark
its on-device latency. The results show that EfficientPhys-C

Table 5. Ablation study on EfficientPhys-C (Top) an EfficientPhys-
T1 (Down). Models are trained only on PURE and tested on UBFC.

Self-Attention Diff BatchNorm MAE

✓ ✓ ✓ 2.13
✗ ✓ ✓ 2.43
✓ ✓ ✗ 16.06
✓ ✗ ✗ 16.06

TSM Normal. Module MAE

✓ ✓ 3.83
✓ ✗ 16.10
✗ ✓ 11.52

only takes 40ms to process a single frame and it does not take
any extra computational time to perform preprocessing. On
the other hand, due to the complex model architecture and
additional time for calculating hand-crafted normalized raw
and difference frames, TS-CAN takes 63ms per frame. As
mentioned earlier, Dual-GAN has a complicated preprocess-
ing procedure for facial landmark detection, segmentation,
color transformation and augmentation. We implemented
this and benchmarked the preprocessing module on our plat-
form, and it took 275ms per frame, which is already 7x
than the entire computational time of EfficientPhys-C. The
estimation network in Dual-GAN also includes 12 2D convo-
lution operations and numerous 1D convolution operations.
Thus, we believe it would add a significant amount of com-
putational time on top of the 275ms preprocessing time per
frame. The default Transformer-based EfficientPhys (T1)
has an unfavorable inference time due to its deep architec-
ture design and takes 300ms to process every single frame.
After reducing the depth to EfficientPhys-T2, it can achieve
the same inference time as the EfficientPhys-C. However,
EfficientPhys-T2 has the poorest performance on all three
benchmark datasets.

Convolution vs. Transformer in Camera-Based Vitals
Measurement. Although visual transformers have begun to
achieve state-of-the-art performance in some vision tasks,
it is not the case for the task of video-based vitals measure-
ment. Based on the results shown in Table 1 and Table 2,

75014



Efficient-C outperforms both Efficient-T1 by 45% of MAE
in UBFC and similar performance in MMSE and PURE,
while Efficient-C is more than 7x faster in terms of latency.
When we shrink the Transformer-based EfficientPhys to a
similar complexity as Convolution-based EfficientPhys, the
performance is significantly diminished. The errors from the
lightweight Transformer-based EfficientPhys-T2 increased
48% of MAE in UBFC, 141% of MAE in PURE and 15% of
MAE in MMSE. These results indicate a shallow transformer
architecture struggles to model subtle changes of skin pixels
in the video. These finding suggest two potential insights.
First, further optimizations will be necessary for transform-
ers to outperform, even relatively shallow, convolutional
models in this domain, this is possibly especially true when
there is not a large amount of high-quality data available.
As previous studies have shown [7], Transformers usually
require more pre-training samples to obtain state-of-the-art
accuracy. Unfortunately, currently the amount of data in the
field of camera-based vital measurement is limited compared
to other visual tasks. Our experiments in Table 3 also sup-
port this hypothesis where EfficientPhys-C surpasses both
EfficientPhys-T1 and T2 with training only on PURE. We
believe synthetic data is one way to help address this issue.
Second, the good accuracy-efficiency trade-off for visual
transformer might not be scaled to on-device architectures
without further work. Since many on-device neural networks
require significantly less amount of computing resources to
perform real-time operations, scaling the Transformer ar-
chitecture down is not ideal as our experimental results of
EfficientPhys-T2 have shown.

Ablation Study. We provide ablation studies on various
parameters in EfficientPhys-C and EfficientPhys-T1 in Table
5. Without the self-attention module, MAE of EfficientPhys-
C is increased by 14%. Without the Normalization Module,
in both EfficientPhys-C and EfficientPhys-T1, the MAEs
increased by 753% and 420%. As Figure 3 illustrates, the
output of the difference layer contains almost black pixels
and these results indicate that neural methods are sensitive
to the magnitude of pixel values and whether they are zero
centered. Finally, without the tensor shift module (TSM)
in transformer-based models, the error increased by 300%
which indicates TSM plays an important role in exchanging
temporal information and dynamics.

Simplifying Last-Mile ML Deployment. Numerous
real-world applications are driven by novel machine learning
algorithms. However, deploying these algorithms on differ-
ent computing platforms has been extremely challenging for
various reasons. One of these is that researchers sometimes
only pay attention to the accuracy of the model and ignore
the complexity of the last-mile engineering efforts. In this
paper, we address this important issue through our one-stop
architecture that takes the unprocessed raw frames and di-
rectly outputs the desired signal. This elegant and simple

design will not only reduce the burden of engineering re-
quired for cross-platform implementations, but also will help
the research community to replicate and reproduce results.

Extensible to Other Signal. Finally, as another potential
upside of our end-to-end design and the low latency, we envi-
sion EfficientPhys being applied to various other video-based
applications. Since the input of our model is raw frames, we
believe EfficientPhys can be easily extended to other tasks
such as video-based blood pressure measurement and video
understanding & recognition etc. On the other hand, most of
the baseline methods we compared with (e.g., Dual-GAN,
PulseGAN) require many custom preprocessing operations
for video-based measurement which are less useful in other
applications.

6. Broader Impacts and Ethics Statement

During the development of EfficientPhys, we wanted to
ensure the innovations would not create larger disparities
between different populations. By achieving state-of-the-art
accuracy and efficiency as well as our simple and elegant de-
sign, we believe EfficientPhys will help make camera-based
vitals measurement more widely available to the medical
research community and broader community in comput-
ing. We also believe that this technology can have an espe-
cially strong impact in low-resource settings where there are
greater barriers to accessing healthcare. We envision our pro-
posed method could, with the appropriate clinical validation
and regulatory approval, eventually be used in healthcare
applications (e.g., real-time vitals measurement in telehealth
appointments). During the COVID-19 pandemic the need
for such technology has been clearly highlighted. We contex-
tualize our contributions within the scope of democratizing
technology for social good and helping to reduce health
disparities with advanced AI technology. However, we are
aware that machine learning systems are biased and can prop-
agate inequalities. Before technology such as that presented
in this paper is ready for deployment we need to make sure
that that is not the case.

7. Conclusion

In this paper, we present a novel method called Efficient-
Phys to enable simple, fast, accurate camera-based contact-
less vitals measurement. We achieved strong performance
with using significant less computational power. With the
simple and elegant one-stop design, EfficientPhys also helps
address the issue of last-time machine learning deployment
and reduces health disparity.
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