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Abstract

As machine learning technology is increasingly adopted
into a variety of application domains, the potential risks of
data leakage are becoming more serious in certain cases
where the data contains highly sensitive information. While
some privacy-preserving learning mechanisms for image
data, such as SplitNN, enable the training of models with-
out sharing private data on a central server, there exists
a trade-off between security and computational cost to a
client device. We propose a new mechanism to achieve
higher level security and lower computational cost on a
client device while maintaining model performance. Our
approach, called Patch SplitNN, is based on SplitNN archi-
tecture that divides a CNN into two networks, called upper
and lower. The difference from that previous work is to in-
put individual image patches into multiple upper models,
before concatenating their outputs before the lower model.
For further improvement of the upper model training, we
introduce an additional network and a loss function into
the training process. We demonstrate our Patch SplitNN
can classify images as accurately as a ResNet18 on various
image classification datasets (CIFAR-10, CIFAR-100, and
PCam) under multiple conditions (e.g. patching patterns,
dropping patches).

1. Introduction
Preserving the privacy of individuals is a key challenge

when trying to solve many human-related problems. Dis-
tributed learning mechanisms as represented by Federated
Learning [8, 9, 25] or Split Learning [15, 22] can train ma-
chine learning models while retaining training data outside
a central training server, on a client, edge device, or edge
server. The central training server receives model param-
eters or gradient values instead of original data in order
to train a model. However, in these mechanisms, further
analysing or labeling original data is one of the issues, es-
pecially when a model accuracy is lower than the target.

Once gathering data on a central server, data must be
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Figure 1. Overview of Patch SplitNN architecture.

protected from leakage. Encryption is a standard approach
to reduce the risk of leakage. However, even if data is en-
crypted while storing, decrypted data is used in training and
it might be a possible attack surface.

Homomorphic encryption [1, 2, 3, 4, 6, 11] enables to
train ML models without decrypting the input data. How-
ever, it cannot be a reasonable solution to train a deep neu-
ral network due to its extremely high computational load.
Another option is to remove privacy-sensitive information
from collected data, however, this approach is not suitable
for some computer vision problems. For example, faces are
highly privacy-sensitive information, but we cannot remove
faces from data for training a face recognition model.

To achieve both privacy-preservation and computational
efficiency while maintaining the same performance as a
state-of-the-art computer vision model, we propose Patch
Split Neural Network (hereinafter abbreviated as Patch
SplitNN) architecture based on Split Learning (Figure 1).
Patch SplitNN can protect privacy by preventing informa-
tion leakage. Even if a patch image is leaked, it would not
be considered a privacy leak when the leaked patch is small
enough, and the amount of leaked information (number of
bits) is much smaller than the original image.

Patch SplitNN consists of three parts. The first part, in-
spired by Vision Transformer [5] and ConvMixer [20], is to
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split an image into patches which are small enough to make
privacy indistinguishable. These patches are uploaded se-
curely by using a common secure connection protocol such
as HTTS or TLS and stored in separate storage, and each
storage should be accessed by authorised servers or people.
Since generating patches is not encryption but has a similar
anonymizing effect, the computational effort is equivalent
to training a base model.

The second part, that is inspired by SplitNN, is to divide
CNN into two parts: an upper and a lower model. Multiple
upper models can be deployed according to the number of
patches. On the other hand, one single lower model is de-
ployed. Moreover, each upper and lower model should be
placed on separate machines to avoid having all the patches
in one place. If someone can access all the patches, the
original image can be reconstructed. Therefore the patches
are managed under strict access control. As a result of this
architecture, no single machine can see a complete input
image during training.

The third part is AdaptationNet that directly classifies
features extracted from the patches. Increasing the number
of upper models reduces its accuracy due to the difficulty
of training multiple upper models. To mitigate this adverse
effect and accelerate upper model adaptation, we place an
additional network, AdaptationNet, followed by all upper
models separately from a lower model, and introduce a new
loss function for AdaptationNet. Since this AdaptationNet
works only during training, the calculation of estimation is
unaffected by this change.

We implement a prototype of our Patch SplitNN by using
ResNet18 as a base model, and evaluate the performance
of it with image classification tasks (CIFAR-10, CIFAR-
100, and PatchCamelyon). Experiments are conducted not
only for performance comparison between a base model and
Patch SplitNN, but also to clarify the effect of patch size
and the number of upper models. We also demonstrated the
patch drop approach that sets a patch to zero randomly at
each step in training process, that makes the computational
load lower and patch splitting approach more secure.

Our contributions can be summarised as follows:

• We implement a prototype of Patch SplitNN which
enables both privacy-preservation and lower computa-
tional cost on the client side.

• We show Patch SplitNN with AdaptationNet is very
competitive with a base model (ResNet18) for some
common image classification benchmarks. The Adap-
tationNet is shown to mitigate the adverse effect of in-
creasing the number of upper models.

• We find the process of splitting and concatenating
patches in the middle of the CNN is a highly effective
data augmentation. Patch SplitNN with single upper

model overcomes our base model’s (ResNet18) accu-
racy.

2. Related Work

In this section, we briefly review related works from the
areas of privacy-preserving neural network and patch repre-
sentation for a vision model.

2.1. Privacy-preserving neural network

Privacy-preserving GAN [16, 23] (PP-GAN) is a variant
of GAN (Generative Adversarial Network) designed for pri-
vacy preservation. The basic concept of this approach is that
the GAN is designed to erase the privacy-sensitive informa-
tion from an input image while maintaining useful informa-
tion for a target task. The PP-GAN shows good trade-off
between recognition utility and privacy protection even in
real data [24], however, it is pointed out that the PP-GAN
has a potential risk of the leakage of privacy-sensitive infor-
mation [13]. More than that, it is sometimes tough to run a
large neural network like GAN on a client device.

Federated learning [9] and split neural network
(SplitNN) [22] are two popular distributed learning ap-
proaches for privacy-preserving machine learning.

Federated learning copies a global model in the cen-
tral server to clients (called local model), trains the local
model at each client on their local data in parallel for cer-
tain epochs and sends back gradient updates computed on
each client to the server. The server creates a new global
model using the updated models and shares the new global
model with the clients again. This procedure continues until
the model converges. The privacy-sensitive information in
the input data is preserved because only model information
(gradients) is shared with the central server.

SplitNN splits a deep learning network into multiple
parts and these parts are trained on different devices. In
the simplest setting, the base network is split into two parts,
from the top to a certain layer called a cut layer, and from
the cut layer to the bottom. These parts are called the client-
side network and the server-side network, respectively. The
clients train only the client-side network using their local
data and send the output of the client-side network (an in-
termediate feature of the base network) to the server. The
server trains only the server-side network using the inter-
mediate features sent by the clients. The privacy-sensitive
information in the input data is preserved because only in-
termediate features are shared with the central server.

Both federated learning and SplitNN require high com-
putational power for the client because the clients need to
run the backpropagation step which is the most computa-
tionally expensive part of the training process.
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2.2. Using patches as input representation

While conventional convolutional neural network uses
a raw image as an input, some recent modern neural
networks, for example Vision Transformer (ViT) family
[5, 14, 19] and MLP-Mixer family [12, 17, 18, 20], use
patch representations as an input.

ViT family and MLP-Mixer family use patch embed-
dings which splits the whole input image into small regions
and generate embeddings from each small region. These
models achieve SOTA-level performance in the major vi-
sion tasks, like classification and object detection.

These facts imply that the patch embeddings approach is
useful for a neural network for vision and cannot be a bot-
tleneck of performance. The ConvMixer [20] also shows
the potential effect of the patch embeddings and supports
our approach. In this paper the patch embeddings approach
is used to make training more secure and reduce the com-
putational cost on clients.

3. Patch SplitNN
In Patch SplitNN, the main considerations are (i) how to

split an image to patches (patching strategy) and (ii) how
to mitigate a performance degradation due to increasing the
number of upper models. Patches should be small enough
to make privacy indistinguishable and must have enough in-
formation to build a model with competitive performance.
Increasing the number of upper models leads to decreasing
input data size or amount for each upper model, since the
number of patches basically corresponds to the number of
upper models for preserving privacy. This can cause dif-
ficulties when training the upper models. We present the
base architecture of Patch SplitNN, then propose the patch-
ing strategy to achieve both privacy-preserving and compet-
itive performance. In addition, for accelerating upper model
training, we introduce additional layers (named Adapta-
tionNet) into Patch SplitNN (named Patch SplitNN+) in
order to reduce a negative impact of increasing the number
of upper models.

3.1. Base Architecture

In Patch SplitNN, upper models are deployed in the same
number as patches. If the number of upper models is less
than the number of patches, the privacy level can be reduced
because one upper model can take multiple patches and it
can be possible to recover something closer to the original
image. Figure 2 shows a case where 9 patches have been
split from an original image. All outputs of upper models
are concatenated before the lower model. The concatena-
tion in Patch SplitNN is to place each patch in the same
position as an original image.

Patch size is a very important parameter as much as a
patch stride. If a patch size is almost the same as the orig-

inal image size, privacy information must be included. On
the other hand, if a patch size is too small, model perfor-
mance may be much lower than expected. In addition, when
a patch stride is less than a patch size, it means that a part
of a patch has been overlapped with other patches. We con-
sider a small overlap to be likely to help the model per-
formance, because convolution can apply for boundaries
among patches. To confirm our hypothesis, we propose
the patching strategy to generate multiple patching patterns
without any modification of a base model in Section 3.2.

Moreover, in Patch SplitNN+, all outputs of upper mod-
els can be input to AdaptationNet without any concate-
nation. As a result, AdaptationNet outputs 9 loss values
(named upper loss 1 to upper loss 9, respectively), then
upper loss is calculated based on those values. We explain
the architecture of AdaptationNet and details of this new
loss function in Section 3.3.

The prototype is a simple implementation to ensure the
performance of Patch SplitNN and verify our hypothesis.
For example, since all upper models and lower models are
deployed as a single model, there is no special communi-
cation among models. The details of our implementation is
presented in Section 3.4.

3.2. Patching Strategy

To minimize modification of a base model, we define 4
conditions to make patches from an original image.

• All patches are the same size.

• An aspect ratio of a patch is the same as an original
image. There is no padding for each patches.

• The number of vertical and horizontal patches is the
same. Therefore, the total number of patches becomes
the square of a certain number.

• As long as the above conditions are met, a part of the
patch may overlap with other patches, which is con-
trolled using a stride size.

Multiple patching patterns exist even if the all above
conditions are met. For example, if the parameters are an
original image size (Osize = (32, 32)), a patch image size
(Psize = 16) and a patch stride size (Pstride = 8), the number
of patches (Pnum) and an overlap size are 9 and 8 respec-
tively. Our experiments show how patch patterns impact
performance.

3.3. AdaptationNet

Increasing the number of upper models (M upper
num ) impacts

model performance negatively, because the amount of data
for each upper model can be decreased. To mitigate this ad-
verse effect and accelerate upper models training, we add
AdaptationNet after the upper model separately from lower
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Figure 2. Details of Patch SplitNN model. Normal Patch SplitNN has no AdaptationNet. Therefore, total loss is equal to lower loss. In
Patch SplitNN+, AdaptationNet works only training process, and total loss is lower loss plus upper loss.

Layer Parameters

AdaptiveAveragePooling ceil(output size/2)
Flatten -
Linear (prev output, 512)
BatchNorm1d 512
ReLU -
Linear (512, 256)
BatchNorm1d 256
ReLU -
Linear (256, num classes)
log softmax/sigmoid -

Table 1. AdaptationNet is composed of the above layers. The pa-
rameter of AdaptiveAveragePooling is the value obtained by divid-
ing the output size of each upper model by 2 and rounding up. The
first linear layer takes the value of a channel size of a patch multi-
plied by an output size of AdaptiveAveragePooling (prev output)
as an input parameter. Other parameters can be changed depend-
ing on the tasks. The dimension of the last layer depends on the
final task.

model (see Figure 2). Table 1 shows the layer configura-
tions of AdaptationNet. There are three linear layers after
the AdaptiveAveragePooling layer. An output of each upper
model is input to AdaptationNet without any concatenation,
therefore as many outputs as inputs are calculated.

According to the introduction of AdaptationNet, we de-
fine a new loss function for Patch SplitNN+. The loss func-
tion consists of total loss (Ltotal), lower loss (Llower), and
upper loss (Lupper). Lupper can be calculated using the fol-

lowing formula with the number of patches Pnum:

Lupper =

(
Pnum∑
i=0

Lupperi

)
M upper

num

Pnum
(1)

Lupperi denotes a loss value obtained by using an output of
corresponding upper model.

Llower can be computed in the normal process. Then,
Ltotal can be calculated with Llower and Lupper which is mul-
tiplied by coefficient α.

Ltotal = Llower + αLupper (2)

In Patch SplitNN, there is no AdaptationNet, thereby
Ltotal = Llower.

3.4. Implementation

A prototype implementation is based on ResNet [7] ar-
chitecture. Figure 3 shows the details of the upper and lower
model layers. In this configuration, the upper model is from
the top convolution layer to the first Residual Blocks, and
the lower model is the rest. This setting can be changed,
for example, the upper model is from the top layer to the
second Residual Block. However, the shallow upper model
may lead to weak data security for privacy-preserving and
the deep upper model may lead to higher computation loads
on a client machine. On the other hand, due to the advan-
tage of the simple splitting strategy, Patch SplitNN can be
implemented by using not only ResNet but also any other
neural network.
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Figure 3. The layer configurations for upper and lower model
based on ResNet in Patch SplitNN.

Ideally, the upper models and the lower model communi-
cate via a network interface, since they can be placed on dif-
ferent machines. Since we focus on the performance check,
our prototype deploys all upper and lower models into one
machine as a single model. As a result of this implementa-
tion, there is no communication among models.

4. Experiments
To show that Patch SplitNN and Patch SplitNN+ have a

competitive performance to a base model (ResNet18), we
evaluate for image classification task with several datasets
and settings. These experiments also present that Patch
SplitNN+ reduces the adverse effect of deploying multiple
upper models.

4.1. Datasets

We evaluate our approach on the following datasets:

CIFAR-10 [10] is a popular tiny dataset for the image
classification task. This dataset is composed of 60,000
(32 × 32) RGB images in 10 classes. Each class has
6,000 images. Training samples are a subset of 50,000
images (5, 000 × 10), and test samples are 10,000 im-
ages (1, 000× 10).

CIFAR-100 [10] is more difficult version of CIFAR-10.
This dataset is also composed of 60,000 (32 × 32)
RGB images in 100 classes. Each class has 600 im-
ages. Training samples are a subset of 50,000 im-
ages (500 × 100) and test samples are 10,000 images
(100× 100).

PatchCamelyon (PCam) [21] is a challenging image clas-
sification task bigger than CIFAR-10. This dataset is
composed of 327,680 (96 × 96) RGB images with bi-
nary labels indicating the presence of metastatic tissue.
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Figure 4. Overview of Patch SplitNN and Patch SplitNN+ if the
number of the upper model is one. All patches are input to the sin-
gle upper model sequentially, then all outputs of that upper model
can be used to calculate each Lupperi . Ltotal can be calculated from
Lupperi using Equation 1 and 2

Psize Pstride Pnum Overlap Concat
Size

Upper
MACs

(16, 16) 16 4 0 (0%) (32, 32) 38.52M
(16, 16) 8 9 8 (50%) (48, 48) 38.52M
(14, 14) 6 16 8 (57%) (56, 56) 29.50M
(11, 11) 7 16 4 (36%) (44, 44) 18.21M
(12, 12) 5 25 7 (58%) (60, 60) 21.67M

(8, 8) 8 16 0 (0%) (32, 32) 9.63M
(8, 8) 6 25 2 (25%) (40, 40) 9.63M
(7, 7) 5 36 2 (28%) (42, 42) 7.37M

Table 2. Patching patterns in CIFAR-10 and CIFAR-100.

Training samples are 262,144 images, and validation
and test samples are 32,768 images each.

We measure performance using Top-1 classification ac-
curacy for CIFAR-10 and CIFAR-100 and binary classifi-
cation accuracy (threshold is 0.5) for PCam. Regarding
PCam, we also measure AUC (Area Under Curve) as well.

4.2. Experimental Setup

Patching Patterns A patching pattern may affect the
model’s performance, especially depending on the level of
overlap with each patch. As we describe, the number of up-
per models may also affect performance due to the difficulty
of training. To confirm the difference among patching pat-
terns and the impact of AdaptationNet when training with a
large number of upper models, we prepare 8 patterns based
on 4 conditions in the patching strategy in Table 2 and Ta-
ble 3. Each patch size and patch stride of PCam are 3 times
those of CIFAR because the original image size of PCam is
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Psize Pstride Pnum Overlap Concat
Size

Upper
MACs

(48, 48) 48 4 0 (0%) (24, 24) 26.95M
(48, 48) 24 9 24 (50%) (36, 36) 26.95M
(42, 42) 18 16 24 (57%) (44, 44) 22.23M
(33, 33) 21 16 12 (36%) (36, 36) 14.82M
(36, 36) 15 25 21 (58%) (45, 45) 15.16M
(24, 24) 24 16 0 (0%) (24, 24) 6.74M
(24, 24) 18 25 6 (25%) (30, 30) 6.74M
(21, 21) 15 36 6 (28%) (36, 36) 6.52M

Table 3. Patching patterns in PCam.

3 times larger than the size of CIFAR.
We also calculate multiply-accumulate (MACs) for each

patch size. The number of MACs is quartered when patch
size is halved. Therefore, Patch SplitNN can reduce com-
putational cost on the client side.

Patch Dropping If some patches can be dropped in the
training process without any degradation, it would be very
helpful for further privacy preservation. Our idea is to select
patches randomly and zero-fill after splitting patches. The
number of patches to be dropped is the following ratio to
the total number: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7. We
evaluate the effect of dropping patches by using the best
combination of conditions for each dataset.

Model and Upper Model Combinations We hypothe-
size that the performance of Patch SplitNN can be reduced
when the number of upper models increases. AdaptationNet
has the potential to mitigate the adverse effect. To verify our
hypothesis and the effectiveness of AdaptationNet, our ex-
periment includes M upper

num = 1 and M upper
num = Pnum for all

patching patterns.
The model configuration for M upper

num = Pnum is different
from that for M upper

num = 1. While Figure 2 presents the for-
mer one, Figure 4 shows the later one. The only difference
is the number of upper models, while all else (the loss func-
tion and concatenation method) remains the same.

Parameters Table 4 shows the details of layer configura-
tions and parameters of ResNet18 for CIFAR-10, CIFAR-
100, and PCam. In CIFAR-10 and CIFAR-100, we re-
move MaxPooling, and change the first Conv2d parameters
from their original because the image size of CIFAR is very
small. On the other hand, for PCam, since the image size is
much larger than CIFAR, all parameters are kept the same
as a default ResNet18.

In addition, the parameters of AdaptationNet are pre-
sented in Table 1. Coefficient values are set as α = 1.0 in
CIFAR-10, α = 0.6 in CIFAR-100, and α = 0.3 in PCam,

Patch
SplitNN

ResNet18 Params. for
CIFAR

Params. for
PCam

Upper Conv2d k=3,s=1,p=1 k=7,s=2,p=3
BatchNorm2d 64 64
ReLU - -
MaxPooling NA k=3,s=2,p=1
Layer 1 c=64 c=64

Lower Layer 2 c=128,s=2 c=128,s=2
Layer 3 c=256,s=2 c=256,s=2
Layer 4 c=512,s=2 c=512,s=2
AveragePooling2d (1, 1) (1, 1)
Linear 512 512
Last Layer Log-softmax Sigmoid

Table 4. Parameters of Patch SplitNN for each dataset.

which were selected in prior experiments. Other training
parameters are as follows: for CIFAR-10 and CIFAR-100,
Learning Rate = 0.05, Batch Size = 256, Epoch =
200, Optimizer = SGD, and Scheduler = Onecycle,
and for PCam, Learning Rate = 0.01, Batch Size =
128, Epoch = 60, Optimizer = SGD, and Scheduler =
MultiStepLR (steps are [20, 35, 50] and gamma is 0.1).

Data Augmentation The following data augmentation
methods are applied for each dataset before splitting orig-
inal images into patches: for CIFAR-10 and CIFAR-100,
RandomCrop (size = 32 and padding = 4) and Ran-
domHorizontalFlip (p = 0.5), and for PCam,RandomCrop
(size = 96 and padding = 12), RandomHorizontalFlip
(p = 0.5), RandomVerticalFlip (p = 0.5), ColorJitter
(b = 0.2, c = 0.2, s = 0.2, and h = 0.2), and Ran-
domGrayscale (p = 0.1).

4.3. Results

Overall The quantitative results for all datasets CIFAR-
10, CIFAR-100, and PCam, and all combinations of patch-
ing patterns, models, and M upper

num are summarized in Table 5,
Table 6 and Table 7. We highlight in bold any improved per-
formance over ResNet18. These results show that the per-
formance can be degraded from M upper

num = 1 when M upper
num

increases in Patch SplitNN. On the other hand, in Patch
SplitNN+, that degradation can be reduced thanks to Adap-
tationNet. Our approach, especially Patch SplitNN+, has
a highly competitive performance with a base model while
reducing privacy-sensitive data.

Figures 5, 6, and 7 show that when dropping patches,
model performance changes almost linearly with drop rate,
where the error bars in these figures represent 1 sigma. De-
pending on the dataset, even with some patches dropped it
still has roughly the same performance as ResNet because
patches have overlaps. However, especially for PCam in
M upper

num = 1, dropping patch can be improve the accuracy
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(Psize, Pstride) Model M upper
num Top-1 Acc.

- ResNet18 - 94.32
(16, 16) Patch SplitNN 1 94.12

4 93.59
Patch SplitNN+ 1 94.38

4 93.56
(8, 8) Patch SplitNN 1 93.59

16 92.97
Patch SplitNN+ 1 94.15

16 93.76
(16, 8) Patch SplitNN 1 94.74

9 93.68
Patch SplitNN+ 1 94.80

9 94.34
(14, 6) Patch SplitNN 1 94.71

16 93.84
Patch SplitNN+ 1 94.75

16 94.67
(11, 7) Patch SplitNN 1 94.70

16 93.71
Patch SplitNN+ 1 95.20

16 94.54
(12, 5) Patch SplitNN 1 94.73

25 93.66
Patch SplitNN+ 1 95.14

25 94.81
(8, 6) Patch SplitNN 1 94.50

25 93.42
Patch SplitNN+ 1 95.01

25 94.33
(7, 5) Patch SplitNN 1 94.46

36 93.38
Patch SplitNN+ 1 94.81

36 93.93

Table 5. CIFAR-10 Top-1 Classification Accuracy. (Average of 5
trials)

due to removing extra information. As a result, the drop-
ping patch approach may be able to strengthen privacy-
preserving in Patch SplitNN.

4.4. Discussion

Both Patch SplitNN and Patch SplitNN+ in M upper
num = 1

and Psize > Pstride are considered to be one of the powerful
data augmentation methods because concatenated features
have more data than original. For example, if a patching
pattern is (Psize, Pstride) = (11, 7) in CIFAR, the concate-
nated feature size is (44, 44) while original output size of
layer1, is (32, 32). One evidence is that Patch SplitNN with
(Psize, Pstride) = (16, 16) or (Psize, Pstride) = (8, 8) which
has same concatenated feature size (32, 32) as an original
size is lower performance than ResNet18. For further im-
provements in privacy preservation, it is possible to deploy
multiple lower models.

(Psize, Pstride) Model M upper
num Top-1 Acc.

- ResNet18 - 74.02
(16, 16) Patch SplitNN 1 74.36

4 73.68
Patch SplitNN+ 1 74.22

4 73.83
(8, 8) Patch SplitNN 1 72.98

16 71.80
Patch SplitNN+ 1 73.87

16 72.54
(16, 8) Patch SplitNN 1 74.72

9 74.00
Patch SplitNN+ 1 75.01

9 74.27
(14, 6) Patch SplitNN 1 74.16

16 73.40
Patch SplitNN+ 1 74.45

16 74.13
(11, 7) Patch SplitNN 1 74.59

16 73.77
Patch SplitNN+ 1 75.52

16 74.60
(12, 5) Patch SplitNN 1 74.03

25 73.11
Patch SplitNN+ 1 74.90

25 74.06
(8, 6) Patch SplitNN 1 74.41

25 72.84
Patch SplitNN+ 1 75.23

25 74.18
(7, 5) Patch SplitNN 1 74.42

36 72.26
Patch SplitNN+ 1 75.49

36 74.53

Table 6. CIFAR-100 Top-1 Classification Accuracy.(Average of 5
trials)

Figure 5. Patch dropping in CIFAR-10. (Average of 5 trials)

Regarding the results of patch dropping, the performance
of CIFAR-100 has been more degraded than CIFAR-10.
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(Psize, Pstride) Model M upper
num Acc. AUC

- ResNet18 - 86.48 95.39
(48, 48) Patch SplitNN 1 86.74 95.69

4 86.87 95.71
Patch SplitNN+ 1 86.88 95.65

4 87.13 95.88
(24, 24) Patch SplitNN 1 86.30 95.30

16 83.95 93.70
Patch SplitNN+ 1 85.56 95.22

16 86.83 95.44
(48, 24) Patch SplitNN 1 87.09 95.79

9 87.16 95.56
Patch SplitNN+ 1 86.63 95.46

9 87.09 95.77
(42, 18) Patch SplitNN 1 87.78 96.05

16 86.73 95.24
Patch SplitNN+ 1 87.01 95.95

16 87.13 95.86
(33, 21) Patch SplitNN 1 86.93 95.83

16 86.75 95.24
Patch SplitNN+ 1 87.00 95.84

16 87.28 95.83
(36, 15) Patch SplitNN 1 87.15 95.83

25 86.37 95.11
Patch SplitNN+ 1 87.19 95.93

25 87.73 95.95
(24, 18) Patch SplitNN 1 86.46 95.48

25 83.90 93.67
Patch SplitNN+ 1 86.06 95.21

25 87.01 95.71
(21, 15) Patch SplitNN 1 86.65 95.68

36 83.69 93.64
Patch SplitNN+ 1 87.31 95.91

36 87.13 95.66

Table 7. PCAM Accuracy and AUC. (Average of 3 trials)

Figure 6. Patch dropping in CIFAR-100. (Average of 5 trials)

This is probably because the number of training data for
each class in CIFAR-100 is smaller than CIFAR-10. There-
fore, one possible improvement is to train more epochs for

Figure 7. Patch dropping in PCam. (Average of 3 trials)

CIFAR-100.

In addition, most results are straightforward, however,
a part of the results in PCam is not as expected. This is
probably because the number of training data in PCam is
much larger than CIFAR and the standard deviation of the
results is larger than CIFAR. Learning longer epochs may
be necessary to avoid this.

5. Conclusion

We proposed Patch SplitNN for preserving privacy in
vision tasks. Our experimental results show that Patch
SplitNN and Patch SplitNN+ have competitive performance
compared to ResNet18, which is used as a base model. In
particular, Patch SplitNN+ outperforms both Patch SplitNN
and ResNet18 in almost all patching patterns thanks to
AdaptationNet, which can mitigate the negative impact of
increasing the number of upper models. In addition, spec-
ifying Pnum = 1 in Patch SplitNN is effective as a strong
data augmentation method.

We focused on image classification in this paper, how-
ever, our approach can be extended to other tasks which
use deep neural networks. Thus, adopting Patch SplitNN
to other vision tasks, such as face recognition, object detec-
tion, and action recognition, is an interesting direction for
future work.
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