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Abstract

In this paper, we present an end-to-end domain adapta-
tion technique that utilizes both feature distribution align-
ment and Self-Training effectively for object detection. One
set of methods for domain adaptation relies on feature dis-
tribution alignment and adapts models on an unlabeled tar-
get domain by learning domain invariant representations
through adversarial loss. Although this approach is effec-
tive, it may not be adequate or even have an adverse ef-
fect when domain shifts are large and inconsistent. An-
other set of methods utilizes Self-Training which relies on
pseudo labels to approximate the target domain distribu-
tion directly. However, it can also have a negative im-
pact on the model performance due to erroneous pseudo la-
bels. To overcome these two issues, we propose to generate
reliable pseudo labels through feature distribution align-
ment and data distillation. Further, to minimize the ad-
verse effect of incorrect pseudo labels during Self-Training
we employ interpolation-based consistency regularization
called mixup. While distribution alignment helps in gen-
erating more accurate pseudo labels, mixup regularization
of Self-Training reduces the adverse effect of less accurate
pseudo labels. Both approaches supplement each other and
achieve effective adaptation on the target domain which
we demonstrate through extensive experiments on one-stage
object detector. Experiment results show that our approach
achieves a significant performance improvement on multi-
ple benchmark datasets.

1. Introduction

Object detection is a significant task in computer vision.
With recent advances in deep learning and the availabil-
ity of large-scale datasets, the deep Convolutional Neural
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Figure 1. Illustration of the proposed method. Top: Applying
Feature Distribution Alignment to reduce domain shifts and Self-
Training with mixup. Bottom: Applying data distillation to gen-
erate pseudo labels and then using them during Self-Training to
compute detection loss on target domain samples.

Networks (CNNs) based object detectors [17, 8, 21] have
significantly improved the performance of the object de-
tection task on benchmark datasets [6, 16]. However, it is
challenging to directly utilize an object detector trained on
these benchmark datasets (source dataset) in an application
where the dataset (target dataset) has a significant domain
gap. This problem can be addressed with augmenting the
source dataset with annotated target dataset. However, ob-
taining object annotations for each new domain dataset is
time consuming, costly, and requires significant human ef-
forts.

Unsupervised Domain Adaptation (UDA) is an approach
to address the issue of domain shifts between label-rich
source domain dataset and label-scarce target domain. Var-
ious methods for UDA have been proposed, of which most
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aim to reduce domain shifts by aligning source and tar-
get domain feature distributions [7, 19, 26]. While these
methods focus on the classification task, UDA methods
for object detection have recently gained much attention
[4, 25, 14, 37, 27, 33, 2, 9, 32, 36]. These state-of-the-art
UDA methods for domain adaptive object detection attempt
to align feature distribution of source and target domain by
introducing adversarial loss. In this paper, training a model
with an adversarial loss is denoted as Feature Distribution
Alignment (FDA) step. Although these methods achieve
a considerable performance improvement in the target do-
main over baseline object detectors, it remains challenging
to further boost the performance when the domain gap is
large. Especially, in the case of object detection when in-
stance level, intra-domain variations are higher, feature dis-
tribution alignment can be ineffective or might even exhibit
an adverse performance.

Another approach to domain adaptive object detection is
Self-Training [23, 14, 22]. Self-Training utilizes a model
trained on label-rich source domain dataset to generate
pseudo labels for target domain. These labels are then
used to train a model on target domain to approximate real
data distribution. However, traditional approaches of Self-
Training can have a negative effect on the model perfor-
mance for multiple reasons. First, due to domain gap, gen-
erated pseudo labels are erroneous. Second, these incorrect
pseudo labels can reinforce themselves during the subse-
quent iterations of Self-Training and further amplify the er-
ror, resulting in the negative performance. Finally, these
labels are generated from model’s own predictions and may
not have any meaningful information for improving perfor-
mance on the target domain. These issues lead to rapid
degradation in the performance of the model when Self-
Training is applied for a longer period.

In the proposed method we address these two issues.
First, as shown in Figures 1 and 2, we utilize FDA as a sup-
plement step which helps to generate reliable pseudo labels
for the Self-Training. Due to FDA, model learns domain
invariant feature representations which helps in generating
more accurate pseudo labels of target domain samples. In
FDA, we apply feature distribution alignment at multiple
feature levels of an object detector. Then we use model
trained with FDA to generate pseudo labels that aid the Self-
Training on the target domain. To further improve the ac-
curacy of pseudo labels, we utilize data distillation. Data
distillation by ensembling predictions of the same model on
multiple transformations of the input is a common strategy
to boost the performance of the model at a test time [20].
In the proposed Periodic Data Distillation (PDD), pscudo
labels are generated by ensembling the predictions of the
model on multiple transformations of the target domain im-
ages. These labels are periodically updated during the Self-
Training as the model with FDA gets better at predictions.

The combination of FDA, that reduces the domain gap be-
tween the source and target domain and PDD, helps in gen-
erating more accurate pseudo labels.

Further, to address the issue of less accurate pseudo
labels, we propose a consistency regularization of Self-
Training with mixup (STM) [35, 30]. Mixup is a regulariza-
tion technique using interpolation-based data augmentation
which provides robustness against incorrect pseudo labels.
We increase the strength of mixup interpolation to gener-
ate samples further from the real training samples to make
memorization of corrupt or random labels difficult for the
model. In contrast, when pscudo labels are correct and con-
sistent it is easier to learn from such samples. Further, it also
enforces consistent predictions on samples which lie on de-
cision boundary [31]. Therefore, in the proposed method
we employ mixup regularization to enforce consistent pre-
dictions and reduce memorization of incorrect pseudo la-
bels during Self-Training.

We demonstrate the effectiveness of the proposed
method on one-stage object detector SSD (Single Shot
MultiBox Detector) [17]. Simplicity and a higher frame
rate make one-stage object detectors more suitable for real-
world applications. Further, domain adaptation methods
based on one-stage detectors are limited. Therefore, we ap-
ply the proposed method to one-stage object detector. The
main contributions of this paper are summarized as follows:

* We propose a method to generate accurate pseudo la-
bels through Feature Distribution Alignment and Peri-
odic Data Distillation.

e We propose an end-to-end, Self-Training method with
interpolation-based consistency regularization called
mixup and confirm its validity in the context of domain
adaptation.

e We validate the proposed method on a one-stage de-
tector. We conduct extensive experiments and achieve
a comparable performance to state-of-the-art meth-
ods on the standard domain adaptation benchmark-
ing datasets such as Clipart1k, Watercolor2k, Comic2k
and challenging real-world scenario of domain adapta-
tion for the task of pedestrian detection.

2. Related Work

Domain Adaptation addresses the issue of domain shifts
between the source and target domain. State-of-the-art do-
main adaptation techniques for object detectors can broadly
be classified in three categories. First are domain trans-
fer techniques where source domain images are first trans-
lated into target domain and then the detector is fine-tuned
on both source and target domain dataset. Domain trans-
fer techniques were utilized in [10, 22] to perform two-step
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Figure 2. Illustrating components of the proposed method. (a) Feature Distribution Alignment (FDA) using domain classifier and adver-
sarial training. For simplicity, only one domain classifier is illustrated. (b) Self-Training with mixup regularization (STM) Top: Mixup is
performed only on a single eligible layer selected (among input, or hidden representations) randomly at each iteration. Bottom: Demon-
strating object class label mixup. For clarity, images with one object are illustrated. If images contain more objects, mixing of each object

class label is performed. Best viewed in color.

progressive domain adaptation on one-stage object detec-
tor SSD[17]. They adapt source images to target domain
using style transfer [38], afterward features are aligned to
reduce domain gap. The second set of methods, that aligns
distribution of source and target domain using an adversar-
ial loss, has been very effective in classification and object
detection tasks [14, 7, 4, 25, 18, 26, 33]. For example,
weak global alignment method proposed in [25] focuses
on aligning features of hard-to-classify samples in target
domain and Background Score Regularization (BSR) pro-
posed in [14] uses adversarial loss to train a feature extrac-
tor to extract discriminative features of target domain. Im-
plicit Instance-Invariant Network (I?Net) [3] is specifically
tailored for the one-stage detector, which considers intra-
class, intra-domain variations and object patterns to learn
instance invariant features.

The third technique is based on Self-Training, which
uses pseudo labels to guide training over unlabeled target-
domain data. Self-Training has been used along with both, a
domain transfer technique [22, 10, 34] and adversarial train-
ing technique [14]. In general, the approach in these meth-
ods is to reduce domain gap for the purpose of generating
reliable pseudo labels and then using them to self-train the
object detector on target domain dataset.

Mixup is an interpolation-based regularization method
that has been used for both supervised [30, 35] and semi-
supervised learning settings [31, 1]. Input mixup [35] per-
forms an interpolation of input space, while manifold mixup
[30] performs an interpolation of hidden state representa-

tion to improve robustness against adversarial samples in
supervised learning settings. In semi-supervised learning
of image classification task, it is used [31] to enforce con-
sistent and low-entropy predictions [1] on interpolation of
unlabeled samples. Further, for the task of object detection,
[12] shows the effectiveness of interpolation-based regular-
ization in semi-supervised learning settings, where primary
objective is to improve performance of the detector on unla-
beled samples of the source domain dataset. In contrast, the
proposed method focuses on improving the performance of
the object detector on the target domain dataset which does
not have any labeled samples.

The proposed method primarily employs two techniques
for building a domain adaptive object detector, Feature Dis-
tribution Alignment (FDA) and Self-Training (ST). We uti-
lize FDA to reduce domain shifts and thus generate more
accurate pseudo labels of target domain samples. These
pseudo labels are then used in Self-Training of object de-
tector on the target domain. Self-Training can be highly un-
stable and can have detrimental effect on the performance
of the model in presence of incorrect pseudo labels. There-
fore, we apply mixup based consistency regularization to
reduce the adverse effect of incorrect pseudo labels.

3. Proposed Method

In Unsupervised Domain Adaptation setting of object
detectors, we are given a set of images X from the source
domain with labels Y and unlabeled set of images X; from
the target domain. (zs,ys) is a sample drawn from X,
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where z, is an image and y; = {(c;,l;)s %, are corre-
sponding m object labels, where ¢; is the class label and I;
is the location of the i*" object within image. Further, x;
is a sample drawn from X, and corresponding object labels
are not available. P(X;) and P(X;) denote source and tar-
get domain distributions respectively and P(X) # P(X,).
The illustration of components of the end-to-end proposed
method is shown in Figure 2.

3.1. Feature Distribution Alignment

The primary objective of the Feature Distribution Align-
ment is to reduce the large domain distribution gap between
P(X,)and P(X;). To achieve this objective, various meth-
ods have been proposed [7, 19] that align feature distribu-
tion by minimizing the distance between two domains. In
general, this is done through attaching domain classifiers to
feature extractor at various feature levels [25]. Then, the
feature extractor and domain classifiers are trained in an ad-
versarial way. This approach has been applied for various
vision applications such as image classification and object
detection. Recently, Saito et al. [25] proposed a Strong and
Weak domain adaptation for the two-stage detector Faster
RCNN [21]. They apply a Weak alignment to global fea-
tures to alleviate the negative effect of feature alignment
when domain shifts are large. For Weak alignment, they
utilize Focal Loss (FL) [15] instead of cross-entropy loss
as an objective for the domain classifier of global level fea-
tures. For local features, such as texture and color, at lower
layers of feature extractor, they apply Strong alignment by
employing least-squares loss as an objective for the domain
classifier. In the proposed method, FDA step is based on
this idea but for one-stage object detector Figure 2 (a). We
employ Weak alignment at global level features of the fea-
ture extractor. However, for the Strong alignment of local
level features, we employ two domain classifiers at two dif-
ferent lower layers of the feature extractor. This helps in
achieving alignment features not just at local level, but also
of features at intermediate level which might constitute ob-
ject features. By reducing the domain shifts, FDA helps
in generating more reliable pseudo labels for the target do-
main dataset as compared to the model that is trained only
on the source domain dataset. This is the primary moti-
vation behind adding this module in the proposed method.
The adversarial loss of FDA step is summarized as follows:

Lrpa = Lgiobal + Lioe; + Lioe, (D)

where, Lgiopq1 is same as proposed in [25]. As we have two
local classifiers at different layers, losses corresponding to
them are denoted as Lo, and L;,., and they are also as
proposed in [25].

3.2. Pseudo Labels using Periodic Data Distillation

As FDA reduces a distribution gap, model gets better
at predicting correct labels for the target domain images.
However, a single prediction from the model may not al-
ways be accurate. Moreover, misclassified samples with
high-confidence score may end up being pseudo labels.
Such pseudo labels can have a negative impact on the per-
formance as they have a capacity to amplify the error during
Self-Training. Accuracy of pseudo labels is of utmost im-
portant for effective and stable Self-Training. Therefore,
we propose a Periodic Data Distillation method where a
multi-transform inference [20] is applied on the model to
generate high-quality pseudo labels. Data distillation us-
ing multi-transform inference has been proven effective on
variety of vision applications[11, 13, 20] including object
detection. In data distillation, a trained model is applied on
the multiple transformations of unlabeled input image to get
predictions. The predicted bounding boxes for each object
from all the transformed images are ensembled to generate
a pseudo label. This process will help to have correct pre-
dictions as it is more likely to have bounding boxes in a
common region in most predictions.

Given a state of the model F, ' at epoch T — 1
with model parameters 6, and unlabeled target image
sample x; with its set of k& geometric transformations
{x},x?,...,2F}, where superscript 1 represents original
image without any transformations, then the pseudo label
is produced as follows:

y; = ensemble{ F} ~!(x}), Fy ~*(z?)..F} (=M} @)

Here, y; = {(c;, ;)¢ 1%, will be used as a pseudo label for
7, during Self-Training of the model state F} at epoch 7.

To generate pseudo labels, we first apply multi-transform
inference on the image x;. For each transformed image
there are N object predictions of class c. If the location
of the object is represented by bounding box coordinates,
then B, = {B;}-, is a set of all such bounding boxes in
the image. In the ensemble operation, we merge k predic-
tions B, = U§=1 B, = {B;}¥r of multi-transform infer-
ence. Because of the multi-transform inference, the gen-
erated boxes will be highly concentrated around the actual
objects of interest. We exploit this aspect in the ensemble
operation and then, the final bounding box coordinates B; P
is an average

’ Bi,c + ] B j,C
Bi = ZN(B,,,C) 7 (3)
’ 1 + count(N(B;..))

coordinates of each bounding box B, . € N(B; ) (where
N(B;,.) denotes the set of boxes in B, that overlap with
B; . by more than 0.5 on IoU metric).
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Figure 3. A visualization on Clipart1k feature representations (a) Top: Feature representations of Person (purple-colored dots) and Chair
class (olive-colored dots) learned by Baseline model at conv4_3 and conv7 layer. Bottom: Feature representation learned by FDA+STM
for same classes. It can be observed that Self-Training has improved discriminative capabilities of the model on target domain. (b) Singular
Value Decomposition of class specific representations at conv10_2 layer. With FDA+STM, it can be observed that it reduces the number of

directions with significant variance. Best viewed in color.

3.3. Consistency Regularization with Mixup

Even though FDA and PDD produce more accurate
pseudo labels, the problem of incorrect pseudo labels re-
mains. Just few of these labels can have a substantial
adverse effect on model performance as they can rein-
force themselves during the subsequent iterations of Self-
Training. To address this issue, we propose a consistency
regularization of Self-Training with mixup. We aim to
achieve two objectives through mixup regularization. First
is to reduce memorization of incorrect pseudo labels for
which we increase the strength of the mixup interpolation.
Second objective is to enforce consistent predictions on
boundary samples (which are most likely to be misclassi-
fied) in the target domain and improve generalization ca-
pability of the model which is achieved implicitly through
mixup of random unlabeled target samples and their cor-
responding pscudo labels. Perturbation by interpolation
have been proven effective for consistency regularization in
Semi-Supervised Learning settings [31]. In case of Self-
Training, mixup operation functions as a regularizer which
enforces consistent predictions on unlabeled samples even
after it has been augmented through interpolation.

Mixup operation, as described in [35, 31], for a pair of
target samples (¢, y?) and (z],y]) is as follows:

&= Az + (1 — Ny @
go=Ay; + (1 =Ny,

where A is a mixup factor which, following [35], is drawn
from the Beta(a, o) distribution. As discussed before, to

minimize the effect of incorrect pseudo labels we choose
higher value of « to increase the strength of the interpola-
tion. Value of « is a hyper-parameter, which we set to 16.0
in all our experiments as it gives the best results. Here, it
should be noted that the pseudo label y, = {(¢;,1;)}™, of
x; have m class labels corresponding to m objects. There-
fore, unlike mixup operations in classification task [35, 30]
where mixup is applied on image labels, we apply mixup
operation on object labels. Further, mixup is applied only
on the class labels of the objects and not on location labels.

3.4. Self-Training with Mixup (STM)

For the unlabeled target dataset, Self-Training enables
learning representations directly from the dataset with the
help of pseudo labels. During Self-Training we apply ran-
dom mixup in which mixup factor A is drawn randomly
from Beta(a, ) distribution for each iteration. Further,
instead of applying mixup only on a pair of target inputs
(xi, z]), following [30], we apply mixup on both inputs and
their hidden representations (2 (b)). These hidden represen-
tations are also selected randomly following [30]. During
Self-Training pseudo labels are periodically updated at ev-
ery epoch of the target dataset as the model gets better due
to the effect of FDA and Self-Training. Finally, with pseudo
label mixup the objective of the Self-Training is defined as
follows:

N
1 > i ] ~i
Lty =~ D Gi1log(d) — (1 37)log(1 = ;) (5)
=1
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Figure 4. Showing trends of mAP at various iterations during Self-
Training period. Self-Training without mixup regularization (or-
ange) has adverse effect on mAP when applied for a long dura-
tion. The proposed mixup regularization (blue) stabilizes the Self-
Training and mAP improves steadily.

where i = p(y|4¢) is a probability distribution of the class
prediction produced by the model on the input Z% and N is
the number of samples in a mini-batch. Please see our sup-
plemental material for the discussion on using localization
loss to regress bounding boxes during Self-Training.

3.5. Model Training

The training of the object detector happens in two
phases. In the first phase, the model is trained with FDA
to reduce the distribution shifts between the source and the
target datasets. Once the model has been stabilized after
training it for a certain number of iterations, in the second
phase we enable the Self-Training. In all our experiments,
Self-Training runs for 10k to 20k iterations. The overall
objective of the training is as follows:

L = Lget + ArpaLlrpa +AsrmLsrm (6)

where Agrps is set to 1 only during the Self-Training
otherwise set to 0, Lge; is SSD [17] objective on the
source dataset, Lrpp 4 is FDA loss as described in Equa-
tion 1, App 4 is a domain adaptation factor which gradually
changes from O to 1 during training, as described in [7].

4. Experiments

In this section we describe experiments and results of the
proposed method on three domain adaptation benchmarks
for object detection. We also present the effectiveness of the
proposed method in real-world domain adaptation scenario
for the application of pedestrian detection.

4.1. Implementation

For all experiments, we use one-stage object detector
SSD as a baseline detector. The baseline detector employs

a VGG16 [28] as a feature extractor pre-trained on the Im-
ageNet [24]. The input images are resized to 300x300. It is
trained with Stochastic Gradient Descent (SGD) optimizer,
with a momentum of 0.9 and a weight decay of 0.0005. The
base learning rate is set to 0.01 with the batch size of 8. For
all experiments we train the model for 120k iterations.

For training the model with FDA, global level features
are extracted from the first detection head of SSD which is
at conv4_3 layer in case of VGG16. These features are fed
to the global domain discriminator. The local level features
are extracted from shallow layers conv3_2 and conv3_3 of
VGG16 and fed to local domain discriminators. To apply
the adversarial training strategy, Gradient Reversal Layer
(GRL) is added before each of the domain discriminators.

Self-Training is enabled between 70k-90k iterations of
training. During Self-Training pseudo labels are updated at
every epoch of the target dataset. In data distillation, we set
k = 5 to ensemble predictions from original image and 4
geometric transformations on the same image. These trans-
formations are horizontal-flip, vertical-flip, down-scale, and
up-scale.

4.2. Datasets

For adaptation, PASCAL VOC [6] has been used as the
source domain dataset. This dataset has object class an-
notations of 20 classes and their bounding boxes. We use
PASCAL VOC 2007 and 2012 training and validation splits
for training. The target domain consists of Clipartlk [10],
Comic2k [10] and Watercolor2k [10] datasets. Clipartlk
contains 1k images in total, which have the same 20 cate-
gories as PASCAL VOC. 500 images were used for training
and 500 for testing. Watercolor2k and Comic2k contains 6
categories in common with PASCAL and 2k images in to-
tal. Tk training images were utilized during training and 1k
images are used as test images.

To test the effectiveness of our proposed method in real-
world scenario, we also show results of domain adaptation
from COCO [16] to Caltech [5] for the task of pedestrian
detection. Caltech dataset is a pedestrian detection bench-
mark dataset having 16k train samples and 2.24k test sam-
ples. For the task of pedestrian detection, detectors are
trained only on a person class therefore we use images hav-
ing person class from the COCO, resulting in around 45k
train samples. For more details on Caltech dataset, please
see our supplemental material.

4.3. Results

We employ COCO evaluation [16] protocol to measure
the mAP of the model, where we set the confidence thresh-
old to 0.05 and the IoU threshold to 0.5. We compare the
proposed method with the Source only model [17] which is
trained only on the source dataset, DANN [7], Background
Score Regularization and Weak Self-Training [14] (denoted
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Table 1. Results on the Clipartlk test dataset and comparison of various methods in terms of mAP (%). To adapt SSD [17] on Clipartlk,

PASCAL VOC is used as a source dataset.

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
Source Only[17]]27.3 60.4 17.5 16.0 14.5 43.7 32.0 10.2 38.6 15.3 245 16.0 184 495 30.7 30.0 23 23.0 351 299 26.7
DANN[7] 24.1 52.6 27.5 185 203 59.3 374 3.8 351 32.6 239 13.8 225 509 499 363 11.6 31.3 48.0 358 318
BSR+WST[14] |28.0 64.5 23.9 19.0 21.9 643 435 164 422 259 305 79 255 676 545 364 103 31.2 574 435 357
I®Net[3] 30.0 67.0 32.5 21.8 29.2 62.5 41.3 11.6 37.1 394 274 193 250 674 552 429 19.5 362 50.7 39.3 378
DBGLI[2] 232 65.5 30.1 183 24.6 67.6 439 15.1 38.7 364 31.3 202 250 743 551 382 125 41.0 49.1 43,9 37.7
ST™M 282 652 148 179 3.1 324 39.1 58 454 78 355 158 238 445 552 364 50 23.6 35.1 37.7 28.6
FDA 285 63.1 244 22.0 18.8 35.1 38.0 2.5 47.7 435 237 84 313 494 503 329 127 329 35.0 394 32.0
FDA+STM 26.9 76.7 30.7 348 32.9 52.0 49.5 6.3 46.8 554 45.1 21.5 41.0 663 700 420 11.7 264 51.8 43.8 41.6

Table 2. Results on Comic2k test dataset in terms of mAP(%).

Method bike bird car cat dog person mAP
Source Only[17] | 433 94 236 98 109 342 219
DANN [7] 333 113 197 134 196 374 225
BSR+WST [14] | 50.6 13.6 310 75 164 414 268
I*Net [3] 475 199 332 114 194 491 30.1
DBGL[2] 454 159 248 115 294 551 30.4
STM 422 112 155 175 8.7 40.1 22.5
FDA 51.1 159 121 248 253 504 299
FDA+STM 51.8 164 131 346 326 638 354

Table 3. Results on Watercolor2k test dataset in terms of mAP(%).

Method bike bird car cat dog person mAP
Source Only[17] | 77.5 46.1 44.6 30.0 260 586 471
DANN [7] 73.4 41.0 324 286 221 514 415
BSR+WST [14] | 75.6 458 493 34.1 303 641 499
IPNet [3] 81.1 493 462 350 319 657 515
DBGL[2] 84.0 46.7 455 362 357 637 520
STM 91.8 50.6 344 47.1 373 727 557
FDA 83.1 46.6 295 370 326 674 494
FDA+STM 99.3 527 445 491 388 733  59.6

as BSR+WST), I*Net [3] and DBGL[2]. BSR+WST, I3Net
and DBGL are implemented on SSD and have evalua-
tion protocol identical to ours. The results of DANN and
BSR+WST are cited from [14], results of I3Net are cited
from the original paper [3] and results of DBGL are cited
from the original paper[2]. We also demonstrate the effec-
tiveness of individual components of the proposed method
which are Feature Distribution Alignment (FDA) and Self-
Training with mixup regularization (STM). They are de-
noted as FDA and STM in the result tables. In results,
FDA+STM indicates both components are used in training
the model.

Clipartlk. As shown in Table 1 the mAP of the pro-
posed FDA+STM is 41.6%, which is an improvement of
+14.9% over the Source only model. When only FDA is
applied the mAP is 32.0% and applying STM improves the
performance of the model by +9.6%. This is a significant
improvement and shows the effectiveness of the proposed
Self-Training method. The proposed method also outper-
forms BSR+WST [14], I?Net [3] and DBGL|[2] by con-
siderable margin. Further, it can be observed that even
when STM is applied without FDA, mAP is improved.
This shows that mixup is effective in regularizing the Self-
Training and it reduces the adverse effect of incorrect

Table 4. Results on Caltech dataset for the task of pedestrian de-
tection in terms of mAP (%).

Method Person
Source Only[17] 27.1
DANN [7] 26.8
STM 32.7
FDA 28.6
FDA+STM 32.4

pseudo labels.

Comic2k. As shown in Table 2, on Comic2k dataset
mAP of FDA+STM is 35.4%. In comparison to BSR+WST
[14], I*Net [3] and DBGL[2], the proposed method outper-
forms them by a significant margin of +8.6%, +5.3% and
+5% respectively. Overall improvement in mAP is 13.5%
over the Source only model.

Watercolor2k. Results on Watercolor2k dataset are
shown in Table 3. When only FDA is applied, there is
a marginal improvement in mAP. After employing STM
along with FDA, the mAP is further increased by +10.2%.
We also observe that when only STM is applied, the mAP
is improved by +8.6% over the Source only model. It sug-
gests that when FDA is not very effective due to high intra-
domain variance, STM is helpful to boost the performance.
The proposed method significantly outperforms state-of-
the-art BSR+WST [14], I*Net [3] and DBGL[2] method
and achieve the best mAP.

Caltech Pedestrian Benchmark. In this case, we exam-
ine the effectiveness of the proposed method in real-world
domain adaptation scenario. We use COCO [16] dataset as
a source domain and train SSD [17] on it to detect objects
of only a person class. The mAP obtained is 61.6%. When
the test dataset of Caltech is evaluated with the Source only
model, it gives a mAP of 27.1%. COCO is a large-scale
dataset in which images are collected {rom various sources
and have high intra-domain variance. Therefore, it can be
observed in Table 4, that the adaptation by FDA is not help-
ful. Employing STM along with FDA is very effective and
improves a mAP by +5.3% to 32.4%. These results show
that the STM is effective in challenging real-world scenar-
10s too.
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Table 5. mAP (%) of target test sets for different mixup strength.

Method Clipartlk  Comic2k  Watercolor2k
Source Only[17] 26.7 219 47.1
FDA+4STM (a = 2.0) 40.0 324 54.0
FDA+4STM (a = 4.0) 399 31.6 57.1
FDA+4STM (a = 8.0) 40.2 354 57.4
FDA+4STM (a = 16.0) 41.6 354 59.6

4.4. Discussion and Ablation Studies

In this section, we present the analysis of the pro-
posed method. We conducted the ablation studies on
Self-Training, analyze the hyper-parameter sensitivity of o
which controls the mixup ratio, and study the effect of dis-
abling data distillation during Self-Training.

Effect of mixup regularization during Self-Training.
We investigate the effectiveness of mixup regularization
during Self-Training. While training SSD with FDA and
Self-Training on adaptation from PASCAL VOC to Cli-
partlk, we measure the mAP of the model on Clipartlk
at iterations during Self-Training period. As we can see
in Figure 4, with mixup regularization, Self-Training is
highly stable without adverse impact on the performance
even when it runs for very long duration. In contrast, with-
out mixup regularization during Self-Training, the perfor-
mance improves momentarily for few iterations and then it
rapidly degrades due to reinforcement of incorrect pseudo
labels. This shows mixup is useful in minimizing the im-
pact of incorrect pseudo labels.

Effect of mixup parameter «. The hyper-parameter o
controls the mixup ratio drawn from A ~ Beta(c, o) distri-
bution. Increasing the value of v will increase the strength
of interpolation and will generate the interpolated samples
further from the real samples. In effect, if labels of such
samples are random or corrupt then it becomes difficult for
the network to learn such associations. Thus, minimizing
the effect of incorrect pseudo labels. We trained the model
with different values of mixup « and results are shown in
Table 5 on Clipartlk, Comic2k and Watercolor2k datasets.

Effect of Periodic Data Distillation. To analyze the ef-
fectiveness of PDD, we disable it and train the model with
FDA and STM on Clipartlk, Comic2k and Watercolor2k
datasets. In this experiment, we do not use multi-transform
inference on the model to generate pseudo labels and pre-
dictions only from the original target samples are used as
pseudo labels. As shown in Figure 5, we observe that dis-
abling the data distillation reduces the performance of the
model on all three benchmarks. It shows that Periodic Data
Distillation is beneficial in generating more accurate pseudo
labels and helps in achieving the optimal performance.

Feature Visualization. Figure 3 (a) presents the visual-
ization of t-SNE [29] feature representations of two classes
learned by Baseline and FDA+STM model. Baseline model
has lower discriminative ability on target domain classes.

70 | ™= FDA+STM without PDD
I FDA+STM with PDD

Clipartlk

Comic2k
Datasets

Figure 5. Comparison of FDA+STM mAP(%) in two differ-
ent settings. FDA+STM with PDD (orange bars) outperforms
FDA+STM without PDD (blue bars) on all three benchmarks.

Watercolor2k

Feature representations at both conv4_3 and conv7 layers
have overlapping space due to which detector has low clas-
sification accuracy. On the other hand, after Self-Training
with mixup regularization, both classes have a separate fea-
ture space which improves discriminative capability of the
model on target domain.

Reducing directions of variance. In Figure 3 (b) we an-
alyze flattening property of mixup regularization. Authors
of [35, 30] show that mixup regularization leads to flatten-
ing: a reduction in the number of directions with variabil-
ity [30]. Reducing directions of variability improves ob-
ject classification ability of the detector. To investigate flat-
tening, we compute Singular Value Decomposition of class
specific representation at layer convl0-2. As compared to
Baseline, in FDA+STM, we observe that large singular val-
ues are concentrated at lower indices which means that class
specific representation has lower variance.

5. Conclusion

In this paper, we proposed a domain adaptation method
using FDA and Self-Training for one-stage object detec-
tor. Our method consists of two major components. First is
FDA, which utilizes adversarial loss to reduce the domain
shifts between source and target domain. As domain shifts
reduce, the model gets better at predictions on target domain
samples. Taking advantage of this property, we use PDD to
generate more accurate pseudo labels of the target domain.
In the second component, STM, we use pseudo labels to
guide the Self-Training of an object detector and regularize
Self-Training with mixup. These two enable a stable and
effective Self-Training and achieve state-of-the-art perfor-
mance on domain adaptation benchmarks. Further, we val-
idate the application of the proposed method in real-world
scenario for the task of pedestrian detection where it shows
a significant improvement in the performance.
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