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Abstract

We propose a novel learning-based formulation for vi-
sual localization of vehicles that can operate in real-time in
city-scale environments. Visual localization algorithms de-
termine the position and orientation from which an image
has been captured, using a set of geo-referenced images or
a 3D scene representation. Our new localization paradigm,
named Implicit Pose Encoding (ImPosing), embeds images
and camera poses into a common latent representation with
2 separate neural networks, such that we can compute a
similarity score for each image-pose pair. By evaluating
candidates through the latent space in a hierarchical man-
ner, the camera position and orientation are not directly re-
gressed but incrementally refined. Very large environments
force competitors to store gigabytes of map data, whereas
our method is very compact independently of the reference
database size. In this paper, we describe how to effec-
tively optimize our learned modules, how to combine them
to achieve real-time localization, and demonstrate results
on diverse large scale scenarios that significantly outper-
form prior work in accuracy and computational efficiency.

1. Introduction
Positioning systems are a necessary component for au-

tomated vehicles, mobile robots and augmented reality ap-
plications. The precise ego-position inside of a known en-
vironment can be recovered in multiple ways using a wide
range of sensors. Visual-based localization algorithms [29]
predict the 6 degrees of freedom camera pose of a query
image, given a set of reference images captured in the envi-
ronment and labeled with corresponding poses.

We aim to develop relocalization algorithms able to oper-
ate efficiently in embedded devices of autonomous vehicles

in a deployment scenario where the target area is wide and
collected datasets are large. This problem is challenging
due to kilometer-scale maps and dynamic outdoor environ-
ments. Most accurate visual localization methods [36, 57]
first retrieve a coarse localization (i.e. which area is de-
picted in the image) before computing an accurate camera
pose with geometric reasoning by connecting 2D image fea-
tures to 3D points stored in memory with their correspond-
ing descriptors. The resulting accuracy comes at the cost
of a high memory footprint and low latency which increase
with the environment size and the reference database. Di-
rect learning-based methods [18, 26, 7] circumvent this lim-
itation by learning the entire task with a single neural net-
work that directly regresses the camera pose from the im-
age. This solution is convenient for embedded deployment
: high throughput, low memory footprint and ability to ben-
efit from large amount of data during training without sacri-
ficing test time efficiency. On the other hand, image features
extraction and map memorization are entangled in the net-
work’s weights, resulting in a limited accuracy [39], slow
scene specific training and poor ability to adapt to large en-
vironments [7]. Our proposal improves the accuracy and
the scalability of direct learning-based methods while pre-
serving the computational efficiency properties.

The common approach to represent scenes in computer
vision is to use explicit representations such as point clouds,
octrees, voxels or meshes. However, all of them store dis-
crete information, while the underlying signal they repre-
sent is inherently continuous. As a consequence, these
representations involve a trade-off between resolution and
memory consumption. Recently, implicit neural repre-
sentations [54], that connect scene coordinates to latent
codes with a neural network, have shown great success
for many computer vision tasks thanks to their ability
to model continuous signals embedded into compact net-
work’s weights [25].
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In this paper, we propose a new direct approach for vi-
sual localization in large scenes that perform better than
pose regression methods by dissociating image and map en-
codings, while avoiding the computational cost and mem-
ory footprint of structure-based methods thanks to an im-
plicit map representation. The core idea is to connect image
and camera pose representations, which are learned sepa-
rately by two distinct neural networks, in a common latent
space. We use an implicit neural representation to encode a
specific viewpoint in the scene (i.e. a 6-DoF camera pose)
into a higher dimensional vector. With this formulation, the
continuous representation of any camera pose in the scene
(even a pose not observed in reference images) can be com-
puted in a single network forward pass. We take advan-
tage of this property to solve the localization task by search-
ing the poses candidates which are the most similar to the
learned image representation. To do so, we introduce a hier-
archical sampling process able to retrieve the correct cam-
era viewpoint using only a few batched queries on the pose
encoder network. Our localization method, called Implicit
Pose Encoding (ImPosing), provides real-time sub-metric
localization performances that can be rapidly deployed on
large areas.

We evaluate our system on a wide range of visual lo-
calization datasets, including several kilometers-scale road
environments with challenging conditions (seasonal and ap-
pearance changes, limited training data). We observe that
our method outperforms its regression-based competitors
in terms of accuracy and training efficiency, especially in
large-scale scenarios.

2. Related work
Image-based localization. Camera localization from
RGB images for real-time application can be tackled by dif-
ferent classes of prior methods discussed below:

Absolute pose regression addresses the problem
through end-to-end supervised regression between the in-
put image and the camera pose using deep neural networks.
PoseNet [18] is the pioneering work, and uses an encoder-
decoder architecture where the encoder is a CNN pretrained
on ImageNet and the decoder regresses the pose with fully
connected layers. Since then, many architectural improve-
ments have been proposed: notably, VidLoc [10] incorpo-
rates spatio-temporal constraints using consecutive video
frames, AtLoc [52] uses an attention-based module before
the decoding step, Xue et al. [55] model the problem with
graph neural networks, TransPoseNet [42] with transform-
ers, and CoordiNet [26] uses a fully-convolutional architec-
ture with geometrical inductive biases in the decoder lay-
ers. The main advantages of this class of methods are the
compatibility with real-time deployment thanks to fast in-
ference, low memory requirements and uncertainty estima-
tion [17, 26] which enables to filter out failure cases. The

localization accuracy exhibited by absolute pose regression
is limited compared to other methods [39], but has been ob-
served to be highly dependent on the quantity and diversity
of available training images, which can be improved with
novel view synthesis [27]. ImPosing does not not explicitly
regress the pose of the camera but learns a latent representa-
tion which connects the query image to an implicit map. In
the following, we show through experiments that this for-
mulation is better suited than absolute pose regression for
localization in large urban area.

Scene coordinate regression learns the correspondence
between the 2D image features and 3D scenes coordi-
nates of observable image patches. It enables to retrieve
the camera pose using projective geometry, by solving the
Perspective-N-Points problem robustly with RANSAC [14].
Seminal work on scene coordinate regression rely on RGB-
D images and use random forest to store the 3D coor-
dinates [43]. Since then, the scene coordinate regres-
sion pipeline has been adapted to RGB images processed
by fully convolutional networks [24, 6]. The RANSAC
step has been replaced by its differentiable counterpart
DSAC [5], and ESAC [7] uses mixtures of expert to improve
scaling to large environments. This class of methods exhibit
higher accuracy than absolute pose regression and the effi-
ciency enables real-time computation, however these meth-
ods are limited to relatively small environments [8]. By con-
sidering global image description instead of local features
extraction, ImPosing is able to scale up to larger scenes at
the cost of minor loss in localization performances.

Image retrieval algorithms for localization solve a
slightly different task: instead of computing a pose for
the query image, these methods retrieve the closest geo-
referenced image from the query within a large database [1,
15, 32, 30]. The top ranked images are used to define
a coarse localization of the query image. Poses averag-
ing [50] or specific re-ranking based on GPS informa-
tion [38] are used to improve the localization accuracy. Im-
age retrieval methods use global image descriptors obtained
by features maps pooling [1] or dense local features ex-
traction [49] to represent the discriminating content of the
image. Nearest neighbour search in the descriptor space
associates the query to the most similar examples in the
database. These methods naturally scale to very large en-
vironments [40] but their accuracy is bounded by the den-
sity and diversity of reference images in the scene. Such
a large database is difficult to collect and enlarging it lin-
early increases the memory footprint and the nearest neigh-
bour search computational cost. This property make image
retrieval an appealing solution for visual place recognition
but not convenient for camera pose estimation. Our method
share similarities with image retrieval: a global image de-
scriptor is matched against the map. In our case, the geo-
referenced image batabase is replaced by an implicit map
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Figure 1: Implicit pose encoding for hierarchical image localization. A set of initial map signatures is compared to the
image signature to determine the most probable localization of the camera. The similarity scores guides the selection of a
new batch of pose candidates that are used to compute the new map signatures for the second refined localization step. This
process is repeated multiple time to predict the final camera pose.

representation. As a result, we can compute the descriptor
of any camera pose in the map instead of being limited a
finite set of reference images. Morever, for a given scene,
larger datasets improve the resolution of the map represen-
tation without increasing the memory footprint of our map,
stored as network weights.

Structure-based methods compare local 2D image fea-
tures to a 3D model to estimate the camera pose. 2D fea-
tures are extracted from the query image using a CNN such
as SuperPoint [11], and matched against the 3D model [35]
to establish robust 2D-3D correspondences, that enable
to compute the pose with PNP + RANSAC [34] or by
Levenberg-Marquadt optimization [51, 36]. The 3D model,
usually represented as a point cloud of descriptors, enables
to use geometric reasoning to solve the task. However,
in large dynamic environments, highly accurate 3D recon-
structions are challenging to make and memory demanding.
Relative pose regression [19, 3, 12] from nearest images can
alternatively be used to predict the pose, but the storage re-
quirement is even bigger. ImPosing does not rely on a 3D
model of the scene and operate only with images and refer-
ences poses.

Implicit representations. Neural networks performances
highly depend on the representation used for a given space.
Recent research has shown that using fully-connected neu-
ral networks to represent 3D data offers many benefits: the
representation is continuous, memory-efficient and conve-
nient to learn in any differentiable pipeline [54]. Successful
examples of neural representations include 3D shapes [28,
2], sound [44], neural rendering of static [25, 45, 16] and
dynamic scenes [23] or real-time RGB-D SLAM [47].

In this paper, we aim to learn an effective representa-
tion of the map for camera relocalization inside of a given
scene. The map is given as a set of images with 6D camera
poses: a 3D translation vector and a 3D rotation represented

by quaternions, euler angles, axis-angle or rotation matrix.
Zhou et al. [56] have demonstrated that none of these rota-
tion representations are continuous, in the sense of contin-
uously mapping coordinates to a latent space produced by
a neural network, which is precisely our problem of inter-
est. Zhu et al. [58] proposed a learned camera pose rep-
resentation which is beneficial for view synthesis and pose
regression. We propose to use a related camera pose repre-
sentation optimized to be directly matched against the input
image representation, enabling pose estimation by iterative
sampling and evaluation of pose candidates.

3. Method

Our method, ImPosing, estimates the 6-DoF camera
pose (t, q) ∈ SE(3) of a query image I , where t is a transla-
tion vector and q is a unit quaternion. We train our solution
using a reference dataset of posed images (Ik) collected in
the target area and we do not make use of an additional 3D
model of the scene.

The proposed algorithm, presented in figure 1, computes
a vector that represents the image through the image en-
coder. Then, the camera pose is searched by evaluating ini-
tial pose candidates distributed across the map. Poses are
processed by the pose encoder to produce a latent represen-
tation that can be matched against the image vector. Each
pose candidate receives a score, based on distance to camera
pose. High scores provide a coarse localization prior which
is used to select new candidates. By repeating this process
several times, our pool of candidates converges to the actual
camera pose.

3.1. ImPosing localization process

This section describes the localization process step by
step from the image to the final camera pose estimate, dis-
played in figure 1,
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1. Image encoder: we compute a global image features
vector fI(I) ∈ Rd from the input query I using our image
encoder. The encoder architecture consists in a pretrained
CNN backbone followed by a Global Average Pooling, and
a fully-connected layer with d output neurons. The feature
vector is one order of magnitude smaller than global image
descriptors commonly used in image retrieval (we use d =
256 whereas Revaud et al. [32] use d = 2048) in order to
efficiently compare it to a large set of pose candidates at
later steps.

2. Initial pose candidates: Our starting point is a set of
N camera poses (pn)0, sampled from the set of reference
poses (= training poses). Through this initial selection, we
introduce a prior for the localization process, similar to the
anchors poses in [33] or regression methods that compute
relative instead of absolute pose [13]. We observed that the
algorithm is robust to this choice: a 2D grid on the map
yield similar results.

3. Pose encoder: Pose candidates are processed by
a neural network which outputs latent vectors. This
implicit representation learns the correspondence be-
tween camera viewpoints in a given scene and fea-
tures vectors provided by the image encoder. First,
following Tancik et al. [48], each component of the
camera pose (tx, ty, tz, qx, qy, qz, qw) is projected to
higher dimension using Fourier features : x →
(x, sin(2kx), cos(2kx))0≤k≤10, as it helps networks with
low dimensional input to fit high frequency functions. Then,
we use a MLP fM with 4 layers of 256 neurons and ReLU
activations on hidden layers. Each set of pose candidates is
computed in a single batched forward pass.

4. Similarity scores: we obtain a similarity score s by
computing the cosine similarity between fI(I) and fM (p)
for each image-pose pair (I, p). We add a ReLU layer after
the dot product, such that s ∈ [0, 1]. Intuitively, we aim
to learn high scores for poses candidates close to the actual
camera pose. With this formulation, we can evaluate hy-
potheses on the camera pose and search for pose candidates
with high scores. Formally, our score is defined by:

s(I, p) =
⟨fI(I), fM (p)⟩
∥fI(I)∥∥fM (p)∥

1⟨fI(I),fM (p)⟩>0 (1)

5. Candidates proposer: new poses (pn)k are selected
for the kth iteration based on scores obtained with poses
(pn)k−1 at the previous iteration. First, we select the poses
with top B = 100 higher scores (hi)0≤i<B ⊂ (pn)k−1.
Then, new candidates are sampled from (hi) in a Gaussian

Mixture Model with density:

P (x) =

100∑
i=1

πiN (x|hi, v/k) where πi =
s(I, hi)∑100
l=1 s(I, hl)

.

(2)
v = [vtx, vty, vtz, vrx, vry, vrz] is the variance of the

sampling process, a hyperparameter composed of a trans-
lation vector and Euler angles.

6. Iterative pose refinement: we repeat K times the eval-
uation of pose candidates described in steps 3-4-5. After
each iteration, the noise vector v is divided by 2, such that
new candidates are sampled closer to previous high scores.
As a result, we can converge to a precise pose estimate
in kilometers-scale maps while only evaluating a limited
sparse set of poses. We evaluate each camera frame inde-
pendently at each time step, however one could use localiza-
tion priors from previous time steps to reduce the number of
iterations in vehicles navigation scenarios. An example of
selected poses at each iteration is shown in Fig. 2. By sam-
pling N candidates for initial poses, we preserve a constant
memory peak.

7. Pose averaging: our final camera pose estimate is a
weighted average of the 256 pose candidates with higher
scores, which exhibits better interpolation properties than
selecting the best score pose. We use scores as weighting
coefficients and 3D rotation averaging is implemented fol-
lowing [22].

Figure 2: Iterative candidates refinement. At each k step
of the localization process, top scored poses are selected to
sample the new candidate poses at step k + 1. From left to
right: top scored poses at k = 0 to k = 5, yellow points
are positions of the training example, blue arrows are pose
candidates and red arrows are the selected poses among the
candidates.

The entire inference procedure requires 1 forward pass
on the image encoder and K passes on the pose encoder.

3.2. Training procedure

We do not train the system by minimizing the error on
the final camera pose estimate. Instead, we apply our loss
function directly on the predicted scores. As a result, one
training iteration provides supervision on the K×N image-
pose pairs that contains more information than the single
localization error. We observed that this property results in
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superior training efficiency than regression approaches (see
4.4). We define target scores st based on translation and
rotation distances between the camera pose pI = (tI , qI)
and the candidate pose p = (t, q):

st(I, p) = ReLU (1− λt∥ti − t∥2 − λrG(qi, q)) (3)

where λt and λr are weighting parameters set to 5 and 0.1
and G is geodesic distance, defined as the minimal angle
between 2 rotations:

G(q1, q2) = cos−1

(
(tr(Mq1M

−1
q2 )− 1)

2

)
, (4)

Mq being the 3D rotation matrix associated with rotation q.
We train fI and fM by computing scores between ref-

erence images and pose candidates sampled at K different
resolutions as described in section 3.1. For training purpose,
we add to initial poses an uniform noise sampled in [−v, v]
as we observed that it reduces overfitting. We also use poses
associated with the top target scores in the candidates pro-
poser, in addition with top predicted scores in order to guide
training convergence in early iterations.

Finally, our optimization objective is:

L =
1

N

K∑
k=0

N−1∑
n=0

|s(I, pn,k)− st(I, pn,k)| (5)

An analogy can be made with content-based image re-
trieval [1, 32]: global descriptors are usually trained using
image triplets composed of a query image, a positive and
a negative example. Positive samples are data close to the
query, in metric or semantic domain depending on the final
application, and negative samples are images with unrelated
content to the query. Global descriptors can be trained by
minimizing a triplet margin loss [1]. In our case, positive
examples are the poses with a non-zero score whereas neg-
ative examples are candidates farther from the camera pose
than an arbitrary threshold. Instead of binary classification
(positive or negative example), we rank the relative impor-
tance of the positive samples according to their distance to
the ground truth label.

4. Experiments
We compare our approach against recent methods on

several datasets covering a wide range of autonomous driv-
ing scenarios in large scale outdoor maps. This task is
highly challenging due to the dynamic part of outdoor en-
vironments (moving objects, illumination, occlusions, etc.).
We verify that our formulation enables accurate localization
in 9 different large outdoor scenes. Then we show that our
method can be naturally extended to multi-map scenarios
and we report results using this setup. We also compare

the computational efficiency of our method with competi-
tors and finally present an ablation study on hyperparame-
ters of ImPosing. Video displaying trajectories is included
in the supplementary material.

Implementation details: ImPosing is implemented in
PyTorch. Images are computed at a small resolution
135 × 240. The image encoder uses a ResNet34 back-
bone pretrained on ImageNet. N = 4096 pose candi-
dates are evaluated at each of the K = 6 refinement
steps. For candidates sampling, the noise vector is set to
v = [8.0m, 0.2m, 8.0m, 1◦, 5◦, 1◦] where y is the altitude
axis, and we use 100 GMM components. We train the image
encoder and pose encoder for 250 epochs with Adam opti-
mizer at a constant learning rate of 1e−4. We did not tune
these parameters specifically for each scene, suggesting that
they should work for any autonomous driving scene. More
details are provided in supplementary materials, including
datasets configuration.

Baselines: Our first aim is to compare ImPosing to its
direct learning-based methods competitors. We use Co-
ordiNet [26] that report state-of-the-art results for absolute
pose regression on Oxford Dataset as a baseline. We re-
port previously published results on this dataset, and our
own implementation for other datasets. We replace the
EfficientNet backbone by ResNet34 for a fair comparison
with ImPosing. As outlined in section 2, we share simi-
larities with image retrieval by matching a global descrip-
tor against the map. To compare ImPosing to retrieval,
we use NetVLAD [1] (VGG16 backbone) and Revaud et
al. [32] (GeM pooling, Resnet101 backbone) publicly avail-
able implementations1. Full sized images are used to com-
pute global image descriptors followed by cosine similar-
ity for features comparison, then we perform pose averag-
ing on poses of top 20 database images as in [39]. Scene
coordinate regression [7, 8] can not scale to large environ-
ments thus is not considered for evaluation. We did not con-
duct experiments with structure-based methods [34, 36, 57].
These methods are more accurate than ours thanks to ge-
ometric reasoning with a 3D model, but also operate at a
different computation scale than ours (see figure 3) mak-
ing embedded deployment difficult. In scenarios where it
can be afforded, ImPosing can be considered as a coarse
localization step, followed by refinement with a 3D model,
similar to HLoc[34] architecture.

4.1. Single scene localization

Oxford RobotCar [21] contains images recorded by a
vehicle in Oxford over a year. We reproduce experiments

1https://github.com/Nanne/pytorch-NetVlad and
https://github.com/naver/deep-image-retrieval
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Pose regression Image retrieval
ImPosing

Dataset CoordiNet [26] AtLoc [52] NetVLAD [1] GeM [32]

Oxford Full
Median 3.55m/1.1° 11.1m/5.3° 1.42m/1.4° 1.36m/1.3° 1.90m/1.3°
Mean 14.96m/5.7° 29.6m/12.4° 4.47m/2.4° 3.49m/2.3° 4.25m/4.3°

Oxford Loop
Median 2.27m/0.9° 5.36m/2.1° 2.16m/1.1° 2.39m/1.0° 1.93m/1.0°
Mean 4.15m/1.4° 8.73m/4.6° 4.16m/1.9° 6.92m/3.1° 3.03m/1.8°

Average
Median 2.91m/1.0° 8.23m/3.7° 1.79m/1.2° 1.88m/1.1° 1.92m/1.1°
Mean 9.56m/3.4° 19.17m/8.5° 4.32m/2.1° 5.20m/2.7° 3.64m/3.0°

Daoxiang Lake
Median 6.82m/0.4° – 8.92m/0.8° 27.13m/1.1° 1.62m/0.3°
Mean 25.18m/1.0° – 152.2m/15.5° 328.8m/19.5° 8.40m/0.5°

Table 1: Localization error on Oxford RobotCar and Daoxiang Lake datasets.

commonly reported for learning-based methods [26, 52,
55]: we evaluate on the Loop and Full scenes, using only
2 sequences for training. Results are reported in Table 1.

First we observe that image retrieval performs better than
pose regression. Previous learning-based methods strug-
gle due to the low-data regime [26, 27] and the decrease
of the regression accuracy in large maps. Oxford city is
an environment with rich features similar to visual place
recognition training datasets, that make NetVLAD [1] and
GeM [32] strong baselines in this scenario. ImPosing ex-
hibits state-of-the art accuracy on Oxford Loop scene, as
well as the best mean error in average. These results are
obtained by reducing a lot the number of large failure cases
that occur with prior methods.

We also observe that despite newly provided RTK
ground truth provided by the authors [20], the reference
poses are largely inaccurate in some areas. As a result, eval-
uation metrics are not significant at a centimeter level and
models training might be impacted by this erroneous pose
labels. For this reason, we conduct a benchmark on two
recently released datasets with more reliable ground-truth.

Daoxiang Lake [57] has been collected in a 12km loop
in Beijing during 4 months. 8 recordings are available, we
use 7 for training and 1 for testing with images from the
front camera only. This scene contains the largest map and
training dataset of our experiments. Median and mean er-
rors are shown in Table 1. Daoxiang Lake is a more chal-
lenging dataset than Oxford because of repetitive areas with
few discriminative features and various environments (ur-
ban, peri-urban, highways, nature, etc.). As a result, image
retrieval performs worse than pose regression. ImPosing
is way more accurate and exhibits a median error 4 times
smaller than competitors.

4 seasons [53] contains data recorded in Munich area
in various scenes (city, residential neighborhoods, coun-
trysides) with varying seasonal conditions. We selected 6
scenes where at least 3 different recordings are provided:
we use 1 for testing and others as training images. This

benchmark is highly challenging due to extreme appearance
changes between sequences, small data regime for some
scenes, featureless environments (see illustration in supple-
mentary materials) and kilometers-scale maps. Results are
reported in table 2.

First, absolute localization accuracy is very heteroge-
neous between different scenes. We note that scenes with
few training images are the most challenging. In particu-
lar, Countryside include navigation around fields and City
Loop is a 10km map where the training dataset is composed
of a winter sequence with snow and a rainy sequence with
blur on camera lens. In these extreme cases, both pose re-
gression and image retrieval fail to estimate reliable poses,
whereas ImPosing is able to provide a coarse localization.
With sufficiently large training datasets, our method still ex-
hibits the more precise pose estimation.

4.2. Multi-scene localization

Learning-based methods for relocalization require scene
specific training, inducing heavy computation for poten-
tial deployment in several areas at a large scale. Recent
work [4, 41] has extended absolute pose regression to multi-
scene scenarios. The core idea is to train a system with im-
ages from several maps while sharing image encoder pa-
rameters that could learn to extract features in a generic
way. As our method separate image and map representa-
tion, ImPosing naturally extends to multi scenes scenarios.
To adapt ImPosing to a multi-map scenario, we perform
the following modifications: the image encoder backbone
is shared between all maps, whereas one specific pose en-
coder is learned for each scene. We also learn scene specific
parameters for the final linear layer of the image encoder, to
facilitate image features projection to the desired map rep-
resentation. We train a multi-scene model on the 6 maps
of 4 seasons [53]. Results are reported in Table 2. The
model has been trained for 20 epochs only because of com-
putational constraints, but still outperform all competitors
except single scenes ImPosing models. While the conver-
gence for a single scene is slower in the multimap formu-
lation (but training a multiscene on n maps is faster than
performing n different trainings on each map, see supple-
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Dataset details Image retrieval
CoordiNet [26]

ImPosing

Road length Runs Images NetVLAD [1] GeM [32] Single sc. Multi sc.

Neighborhood 2000 6 16520 0.72m/0.9° 0.69m/0.9° 0.74m/0.6° 0.53m/0.7° 0.82m/1.0°
Office loop 2600 5 20915 6.85m/3.0° 6.39m/2.8° 6.25m/1.5° 0.99m/1.1° 1.58m/1.3°
Countryside 6200 3 19804 32.24m/1.2° 30.87m/1.3° 47.33m/2.9° 2.61m/0.9° 5.46m/1.1°
Bus. campus 1000 2 6132 1.19m/1.3° 1.96m/1.2° 22.57m/6.0° 1.16m/1.3° 1.70m/1.6°
City loop 10000 2 17427 61.60m/3.5° 317.4m/6.9° 584.4m/14.4° 5.32m/2.4° 10.53m/2.5°
Old Town 4500 3 13959 3.45m/1.2° 4.46m/1.6° 50.83m/3.8° 2.59m/1.2° 3.71m/1.3°
Average - - - 17.67m/1,8° 60.30m/2,4° 118.7m/4.9° 2.2m/1.3° 3.97m/1.5°

Table 2: Median localization error on 4Seasons dataset.

mentary materials), it enables to localize in huge areas with
minimal memory storage requirements (see section 4.3).

4.3. Efficiency comparison

Storage footprint. Our method only needs to store neural
networks weights and initial pose candidates in device. It
represents 23MB for the image encoder, less than 1MB for
the pose encoder and 1MB for the initial poses candidates.
We also report in figure 3 the scaling law of memory foot-
print w.r.t. reference database size for different classes of vi-
sual localization methods. This is an important aspect in au-
tonomous driving scenarios where large amounts of data are
available. For a given map, learning-based methods have a
constant memory requirement because the map information
is embedded in the networks weights. To estimate storage
requirement of retrieval methods, we consider the size of
the database image descriptor (2048 for GeM and 4096 for
NetVLAD) along with the size of the image encoder. Stor-
age requirement of retrieval methods exceed 1 GB for large
scale scene with more than 100k reference images. To es-
timate the memory requirement of structure-based methods
we consider the numbers given in [34]: a 3D model built
from 4328 images is composed of 685k 3D points. If we
consider one local descriptor of size 128 by 3D points, we
can derive a linear rule to determine the 3D model size ac-
cording to the number of reference images. This is a rough
estimation but we can estimate that structure based method
require at least 3 times more storage capacity than image
retrieval methods. Compressing techniques exist to make

Algorithms In device storage Scalability Latency Accuracy
IR+2D-3D matching 3D model + IR DB + NN (5-100GBs) High Low High
IR+Relative PR IR DB with images + NN (5-100GBs) High Low Medium
IR IR DB + NN (2-50GBs) High Medium Low
APR NN (≈ 25MB) Medium High Low
SCR NN (≈ 25MB) Low High High
ImPosing (ours) NN (25MB) High High Medium

Table 3: Qualitative comparison between methods. We
compare the properties of visual localization class of meth-
ods w.r.t. storage requirement, capability to operate in large
maps (scalability), latency and accuracy. IR stands for Im-
age Retrieval, PR for Pose Regression, SCR for Scene Coor-
dinate Regression, DB for database and NN for neural net-
works weights. Storage of IR databases are detailed in [46].

these methods more tractable [37, 9], however compressed
maps still represent gigabytes and are less accurate.
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Figure 3: In-device memory usage. Structure-based meth-
ods (black) and image retrieval (blue and purple) use more
memory when the reference dataset grows whereas pose re-
gression methods and ImPosing (pink and cyan) storage re-
quirement does not depend on dataset size.

Computational complexity. Our algorithm complexity
depends on the image encoder backbone (3.6 billion FLOPs
for ResNet34) and the hierarchical decoding process with
the pose encoder. With the default hyperparameters, it in-
volves 4.8 billion FLOPs. We measured a total inference
time of 41ms for a single image using a NVIDIA RTX 2080
GPU. The complexity is linear w.r.t. the number of refine-
ments K, the number of pose candidates N and the number
of layers in the MLP. It is quadratic w.r.t. the latent dimen-
sion D. It should be noted that parallel computations reduce
the impact of N and D on the inference time. Consider-
ing these properties and the ablations provided in 4.4, one
can choose the corresponding hyperparameters that match
its computational requirements.

Summary. ImPosing exhibits very compact storage re-
quirements and fast inference time coupled with state-of-
the-art accuracy. Notably, neither memory footprint and
computational complexity depends on the number of im-
ages in the reference database, which is a great advantage
over image retrieval methods [1, 32]. We also observe em-
pirically that our method converges approximately 2 times
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Figure 4: From left to right: median localization errors depending on number of refinements, pose candidates, and final
number averaged poses. Training time comparison between pose regression [26] and ImPosing.

faster than pose regression competitors [26] w.r.t. the num-
ber of training iterations (see figure 4).

4.4. Ablation study

We report the influence of several hyperparameters on
the localization accuracy of ImPosing in figure 4. We eval-
uate the number of refinement steps K, the number of pose
candidates N and the number of best candidates used for
pose averaging. We use the model trained on Daoxiang
Lake and change the parameters at test time. Increasing
the number of refinements and candidates improves local-
ization accuracy, at the cost of a higher computational cost.
We use a reasonable trade-off with K = 6 and N = 4096
as our default setup. We observe that pose averaging has a
positive impact on accuracy, but the number of selected can-
didates is not critical. Additional ablation studies on num-
ber of layers in the pose encoder and computation of the
similarity score are provided in supplementary materials.

5. Discussion
What does the pose encoder learn? In the pose regres-
sion approach, image and camera pose are connected by be-
ing the respective input and output of a single feedforward
neural network. This formulation entangles features extrac-
tion, map memorization and camera pose prediction in a
single model. While deep neural networks are known to
perform well for the first, they have been observed to be in-
accurate for pose prediction [39]. Our solution circumvents
this problem by ”inverting” the decoder layers with the pose
encoder. We don’t try to predict the pose from features but
to connect a given pose to its respective latent features. We
let the network learn the optimal latent space to connect im-
ages and camera poses, with a single constraint: pose can-
didates close to the actual camera pose must have a vector
relatively similar to the image representation. This property
enables to search the best pose candidates in a coarse to
fine manner, and interpret the resulting scores has a multi-
modal distribution of positions across the map. We provide
visualizations of these distributions and of the latent space

structure in supplementary materials.

Benefits, limitations and future work. Our method
keeps the main advantages of direct learning-based meth-
ods: we obtain the pose efficiently with neural networks in-
ference, we do not use a 3D model of the scene or a retrieval
database, resulting in a very compact memory footprint. We
observe that the accuracy our method highly depends on
the quantity of training data available. Similar to regres-
sion, our method does not extrapolate to camera positions
far from trainings examples. However, recent approaches
has shown that these limitations can be overcome with syn-
thetic datasets [27]. Moreover, in the driving scenario, a
coarse localization estimate can be sufficient because hor-
izontal localization (road lane) can be recovered thanks to
perception [31]. The new paradigm we propose could be
improved in many ways. It includes exploring better archi-
tectures for the pose encoder, inspired from recent work on
coordinate-based representations [58]. Another interesting
direction is to extend the implicit map representation to lo-
cal features instead of global image signatures, by finding a
way to represent implicitly a 3D model.

6. Conclusion
We have proposed a new formulation for visual local-

ization that perform state-of-the art accuracy for direct
learning-based methods in large environments. By using
an implicit representation of the map, we connect camera
poses and image features in a latent high dimensional man-
ifold well suited for localization. We have shown that with
a simple pose candidates sampling procedure, we are able
to estimate the absolute pose of an image. Our proposal
can be directly applied in autonomous driving systems, by
providing an efficient and accurate image-based localization
algorithm that can operate at large scales in real-time. We
believe that, beyond our work, implicit scene representa-
tions, by their ability to model complex continuous signals
in a fixed size neural network, are a promising research di-
rection for camera pose estimation.
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