This WACYV 2023 paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Serf: Towards better training of deep neural networks using log-Softplus ERror
activation Function

Sayan Nag*
University of Toronto
nagsayanll2358@gmail.com

Anuraag Mukherjee*
IISER Mohali

anuraag.ml07@gmail.com

Abstract

Activation functions play a pivotal role in determining
the training dynamics and neural network performance. The
widely adopted activation function ReLU despite being sim-
ple and effective has few disadvantages including the Dy-
ing ReLU problem. In order to tackle such problems, we
propose a novel activation function called Serf which is
self-regularized and non-monotonic in nature. Like Mish,
Serf also belongs to the Swish family of functions. Based
on several experiments on computer vision (image classi-
fication and object detection) and natural language pro-
cessing (machine translation, sentiment classification and
multi-modal entailment) tasks with different state-of-the-art
architectures, it is observed that Serf vastly outperforms
ReLU (baseline) and other activation functions including
both Swish and Mish, with a markedly bigger margin on
deeper architectures. Ablation studies further demonstrate
that Serf based architectures perform better than those
of Swish and Mish in varying scenarios, validating the ef-
fectiveness and compatibility of Serf with varying depth,
complexity, optimizers, learning rates, batch sizes, initial-
izers and dropout rates. Finally, we investigate the mathe-
matical relation between Swish and Ser £, thereby showing
the impact of pre-conditioner function ingrained in the first
derivative of Serf which provides a regularization effect
making gradients smoother and optimization faster.

1. Introduction

Activation functions are point-wise functions which play
a crucial role in introducing non-linearity in neural net-

“Denotes equal contribution

Mayukh Bhattacharyya*
Stony Brook University

mayukh.bhattacharyya@stonybrook.edu

Rohit Kundu*
UCR Riverside

rohit.kundu@email .ucr.edu

works. In a neural network, linear transformed inputs are
passed through an activation function giving rise to non-
linear counterparts. These non-linear point-wise activation
functions are hugely responsible for the performance of
neural networks. Thus, choosing a suitable activation func-
tion for better training and improved efficiency has always
been an interesting area of research. Activation functions
like tanh and sigmoid were widely used in previous works
[26, 27, 33, 19]. However, they had some disadvantages in-
cluding upper-boundedness. This paved the way for the de-
velopment of an activation function widely known as Rec-
tified Linear Unit (ReLLU) [35]. Being simple yet effective,
ReLU was not only easier to optimize compared to its con-
temporaries (sigmoid and tanh), but also showed better gen-
eralization and improved convergence properties, which led
to its wide adoption.

ReLU however has few disadvantages including the in-
famous Dying ReLU phenomenon [29, 32]. The absence of
any negative portion resulted in such a problem which can
be noticed through a gradient information loss caused by
collapsing the negative inputs to zero. On the other hand,
ReLU is also non-differentiable which can result in in-
consistencies during gradient-based optimization. Keeping
those in mind, researchers have propounded various acti-
vation functions including leaky ReLU [32], PReLU[12],
ELU [4], GELU [15], SELU [22], Swish [37], Mish [34],
etc. Out of the aforementioned activation functions, Mish
mostly outperforms its contemporaries including Swish.
Mish has a continuous profile which renders better infor-
mation propapagation as compared to ReLU. It was inspired
by the self-gating property of Swish. As opposed to Swish,
Mish possess a preconditioner which results in smoother
gradients and better optimization.

5324

In this work, we have proposed a novel activation func-
tion called Serf which is non-monotonic and is also in-
spired by the self-gating property of Swish. We define
Serf as f(z) = xerf(In(l + e*)) where erf is the er-
ror function [1]. Swish, Mish and Serf belong to the same
family of activation functions possessing self-gating prop-
erty. Like Mish, Serf also possess a pre-conditioner which
results in better optimization and thus enhanced perfor-
mance. Our experiments demonstrate that our proposed ac-
tivation function Ser f outperforms ReLLU, Swish and even
Mish for different standard architectures in a variety of tasks
including image classification, object detection, graph node
classification, machine translation, sentiment classification
and multi-modal entailment, involving varied datasets. We
have also conducted ablation studies on MNIST [25] and
CIFAR-10 datasets [24] to demonstrate the efficiency of
Serf over Swish and Mish.

2. Related Work

One of the mostly used activation functions is Recti-
fied Linear Units (ReLU) [35]. Originally proposed for
Restricted Boltzmann Machines, this activation function
gained prominence because of its simplicity and effective-
ness and eventually replaced the sigmoid and tanh units.
Despite being computationally efficient, it is not entirely
devoid of shortcomings. In order to address those, Leaky
ReLU (LReLU) was introduced which replaced the constant
zero portion of the ReLLU function with a linear function
thereby ’leaking’ some information [32]. LReLU showed
superior performance compared to ReLLU, and the perfor-
mance was further enhanced when the slope of the nega-
tive part was learnt as an extra parameter using Parametric
ReLU (PReLU) [12]. However, lower boundedness is im-
portant in order to render strong regularization effects which
was absent in both LReLLU and PReLLU. Furthermore, simi-
lar to ReLU, they are also not differentiable.

Keeping these aspects in mind, researchers proposed ac-
tivation functions like Exponetial Linear Units (ELU) [4]
and Scaled Exponential Linear Units (SELU) [22]. ELU
and SELU possess better convergence characteristics along
with a saturation plateau in its negative region. However,
these activation functions have found to be incompatible
with Batch Normalization (BN) [18].

Finally, using self-gating property Swish was proposed
which addressed the aforementioned drawbacks to a greater
extent abreast demonstrating superior results compared to
the previous established activation functions [37]. Belong-
ing to the same class as Swish, another activation function
called Mish was proposed which performed equally well
or better than Swish in most of the computer vision tasks
[34]. Our proposed activation function, Serf, is also in-
spired from the self-gating mechanism and thus belongs to
the Swish-like class of functions. It has been shown exper-

imentally that our proposed Serf outperforms other acti-
vation functions in a variety of computer vision and natural
language processing tasks.

3. Serf
3.1. Motivation

Activation functions introduce non-linearity in the neural
networks and they play a very important role in the overall
performance of a network. ReLU has been the most widely
used activation function in neural networks. However, it suf-
fers from several disadvantages, the most noticeable one
being the dying ReLU phenomenon. This problem ensued
from the missing negative part in the ReLU activation func-
tion which restrains the negative values to zero. At the same
time, ReLU is not continuously differentiable. Furthermore,
ReLU is a non-negative function. This creates a non-zero
mean problem where the mean activation larger than zero.
Such an issue is not desirable for network convergence [4].

In order to address these aforesaid problems to some
extent, in the recent past several new activation functions
emerged including leaky ReLU, ELU, Swish, etc. Swish is
seemingly an ideal candidate for an activation function with
properties including non-monotonicity and ability to pre-
serve small negative weights abreast maintaining a smooth
profile. Similar to Swish, activation functions like GELU
[15] has gained popularity especially in the transformer
based architectures used both in the fields of Computer Vi-
sion (ViT [7] and MLP Mixer [43]), as well as Natural Lan-
guage Processing (GPT-2 [36] and GPT-3 [3]). Another ac-
tivation function which rose to prominence due to its perfor-
mance in state-of-the-art classification and object detection
tasks, is Mish. Mish has its roots in Swish and was devel-
oped by methodical analysis over the attributes that led to
the efficacy of Swish.

Taking inspiration from the development of Mish, we
propose an activation function called Serf. Serf is de-
fined as:

f(z) = zerf(In(l + %)) (1)
3.2. Properties

Serf is bounded below and unbounded above. Serf
is smooth, non-monotonic and differentiable. It also pre-
serves small portion of negative weights. Serf is inspired
by Swish and Mish where the self-gating property has been
used to multiply the output of a non-linear function of an
input with the same non-modulated input. Self-gating is
advantageous because it requires only a single-scalar in-
put, whilst normal gating requires multiple two-scalar in-
puts [37].

e Upper unboundedness: Activation functions like
tanh and sigmoid have upper bounds. So, initializa-

5325

Swish, Mish and Serf Activation Functions

First Derivaties of Swish, Mish and Serf

Second Derivaties of Swish, Mish and Serf

3.0 Swish 1.2 Swish 0.8 Swish
—— Mish —a— Mish EA,] —a— Mish
Vrd E St PR
25| —— serf 1.0 —m— serf T m-E-E o -/AP —m— Serf
/A . /A
2.0 0.8 ./ ./
A /A L}
0.a
1.5 0.6 -:l ./
/ /
1.0 0.a y 0.2 ,. .\A
/ d
0.5 0.2 /! y \\
0.0{ --= - |- -
0.0 0.0 e Ll \ SR
o > -
LT
-0.5 -0.2 -0.2
3 —=2 1 () 1 2 3 3 —2 -1) 1 2 3 3 —=2 -1) 1 2 3

Figure 1. Activation functions (Left), first derivatives (Middle) and second derivatives (Right) for Swish, Mish and Serf.

tion should happen in the linear regime of these activa-
tion functions. Such a property is not desirable since it
leads to saturation while training due to near-zero gra-
dients [10]. ReLU being unbounded above attempted
to avoid the saturation problem. This is a crucial at-
tribute which can be noticed in all the successors of the
ReLU function like leakyReLLU, GELU, Swish, Mish,
etc. Serf also possesses this feature, with its positive
side as an approximate linear function of the input (see
Figure 1). This makes Serf a good candidate for an
activation function.

* Lower boundedness: Activation functions must
posses lower bounds in order to provide strong regular-
ization effects. However, in the ReLLU activation func-
tion a neuron receiving negative input will always out-
put zero eventually become dead or inactive and hence
useless. This is referred to as the dying ReLU phe-
nomenon [29, 32]. It usually happens when the learn-
ing rate is high or if there is a large negative bias. By
preserving of a small portion of negative information,
Serf mitigates the aforementioned problem further-
more resulting in better expressivity and improved gra-
dient flow. The negative bound for Serf is approxi-
mately 0.3484 (see Figure 1).

* Differentiability: Unlike ReLU, Serf is continu-
ously differentiable. This is beneficial owing to the
fact that it avoids singularities and any concomitant ill-
effects during gradient-based optimization.

* Preconditioner: Serf is closely related to Swish
which can be noticed in its first derivative. The first
derivative of Serf is given as:

F(z) = le—ln((Hem))sz(x) + f(@)
T x
2
= p(z) swish(x) + fo)

I i b

Figure 2. Output landscapes of a randomly initialized 6-layered
neural network with ReLU (Left) and Serf (Right) activations.

Here, o is the sigmoid function and p(z) is a precon-
ditioner function. Preconditoners make the gradients
smoother and have been previously used extensively
in optimization problems. The inverse of a symmetric
positive definite matrix has been used as a precondi-
tioner in case of gradient descent. Application of such
preconditioners makes the objective function smoother
thereby increasing the rate of convergence [2]. There-
fore, the strong regularization effect contributed by
such preconditoner in case of Serf makes the gradi-
ents smoother and optimization faster, thereby outper-
forming Swish as can be noticed in the experiments.

Mish also has a precondtioner which makes it perform
better than Swish. The difference between Mish and
Swish is that in Serf we used the error function (erf)
whereas in Mish tanh function is used. Serf, how-
ever, outperforms Mish in most experiments (see Ex-
periments). We speculate that Serf’s preconditioner
function renders better regularization effects than that
of Mish.

¢ Smoothness: Smooth loss landscapes indicates easier
optimization with less local optima and hence better
generalization minimizing influence of initializations
and learning rates. The output landscapes of a ran-

5326

domly chosen 6-layered neural network with ReLLU
and Serf activation functions has been shown in Fig-
ure 2. It is to be noted that output landscape is indica-
tive of the loss landscape. We randomly initialize a 6-
layered neural network, where we pass the x and y co-
ordinates of each point in a grid as input, and plot the
scalar network output for each grid point. For ReLU
activation function, the output landscape of the neu-
ral network has sharp transitions in contrast to that of
Serf. This conforms to the enhanced performance of
Serf as compared to ReLU.

Please refer to Section 5 for more in depth analysis.

4. Experiments

In this section we will demonstrate and compare the per-
formance of our proposed activation function, Serf when
used in different state-of-the-art architectures on image, se-
quence and graph datasets for disparate tasks. All the scores
reported are averages of 3 distinct runs which ensures ro-
bustness of the results. The experiments were carried out on
a NVIDIA Tesla V100 with 32GB RAM.

We evaluate Serf on multiple tasks ranging from tradi-
tional image classification to Machine Translation. We also
perform a set of ablations to gauge the performances of the
activation functions on the basis of different configurations
of hyperparameters.

4.1. Image Classification

For image classification, we have considered different
standard architectures applied on CIFAR-10, CIFAR-100
and ImageNet. The experiments have been separated ac-
cording to type of architectures and datasets.

CIFAR-10/100: We have considered different deep
learning architectures (for CIFAR-10: SqueezeNet [17],
Resnet-50 [13], WideResnet-50-2 [46], ShuffleNet-v2 [30],
ResNeXt-50 [45], Inception-v3 [41], DenseNet-121 [16],
MobileNet-v2 [40] and EfficientNet-BO [42]; for CIFAR-
100: Resnet-164 [14], WideResnet-28-10 [46], DenseNet-
40-12 [16], Inception-v3 [41]) with three disparate activa-
tion functions, namely, ReLU (baseline), Mish and Serf
(proposed). This has been done for image classification task
on CIFAR-10 and CIFAR-100 datasets where for each net-
work we have only changed the activation functions and
have kept every other parameter constant for fair compar-
isons. Tables 1 and 2 show that Serf consistently outper-
formed both ReLU and Mish activation functions across all
the architectures used in the experiment for both CIFAR-10
and CIFAR-100 datasets.

We have also used two recent architectures namely
MLP Mixer [43] and Compact Convolutional Transform-
ers (CCT) [11] and evaluated the performance on these

Methods ReLU Mish Serf (Ours)
SqueezeNet 84.14 85.98 86.32
Resnet-50 86.54 87.03 88.07
WideResnet-50-2 86.39 86.57 86.73
ShuffleNet-v2 83.93 84.07 84.55
ResNeXt-50 (32 x 4d) 87.25 87.97 88.49
Inception-v3 90.93 91.55 92.89
DenseNet-121 88.59 89.05 89.07
MobileNet-v2 85.74 86.39 86.61
EfficientNet-BO (Swish) 78.26 78.02 78.41

Table 1. Top-1 % Accuracy values of different state-of-the-art
methods for different activation functions on CIFAR-10

Methods ReLU Mish Serf (Ours)
Resnet-164 74.55 75.02 75.13
WideResnet-28-10 76.32 77.03 77.54
DenseNet-40-12 73.68 7391 74.16
Inception-v3 71.54 7238 72.95

Table 2. Top-1 % Accuracy values of different state-of-the-art
methods for different activation functions on CIFAR-100

Model Activations Top-1 % Acc Top-5 % Acc

MLP-Mixer GELU 64.14 96.71
Serf 64.36 96.59
ReLU 79.05 97.72

CCT Mish 80.02 98.70
Serf 80.23 98.65

Table 3. Top-1 and Top-5 % Accuracy values (classification) after
10 epochs of training MLP-Mixer for GELU (SOTA) and Serf
activation functions on CIFAR-10 test dataset and 50 epochs of
training Compact Convolutional Transformer (CCT) for ReLU,
Mish and Serf functions on CIFAR-10 test dataset.

with a shorter training schedule. We have trained and evalu-
ated the MLP Mixer on CIFAR-10 with two different ac-
tivation functions, GELU (standard to MLP Mixer) and
Serf. The Top-1 % and Top-5 % Accuracy values (see Ta-
ble 3) suggest that Serf’s performance is comparable to
GELU’s (baseline) performance for MLP Mixer. We have
also trained and evaluated CCT on CIFAR-10 with three dif-
ferent activation functions - ReLU, Mish and Serf. Serf
clearly outperforms ReLU (baseline) and Mish in this case
(see Table 3). The results indicate that Serf is a better ac-
tivation function for transformer based architectures.

ImageNet: State-of-the-art architectures for ImageNet[5]
classification utilize ReLU [35] activation function. For
comparison purposes, we have selected 3 widely used ar-

5327

Model Activations Top-1% Acc Top-5% Acc
Resnet-50 ReLU 74.16 90.28
Serf (Ours) 75.34 91.71
ResNeXt-50 ReLU 75.84 92.32
Serf (Ours) 76.81 93.19
EfficientNet-BO Swish 75.42 91.55
Serf (Ours) 75.60 91.83

Table 4. Top-1% and -5% Accuracy values on the ImageNet
dataset.

chitectures, namely, Resnet-50 [13], ResNeXt-50 [45], and
finally Efficient-Net BO [42]. However, it is to be noted that
baseline activation function for Efficient-BO is Swish [37].
Results in Table 4 demonstrate that our activation function
outperforms the baseline in all the 3 cases suggesting that
Serf works well even with large datasets like ImageNet.

4.2. Object Detection

Object detection is considered one of the important vi-
sual scene understanding tasks. In our case, we have con-
sidered Pascal VOC and MS-COCO datasets for object de-
tection task using YOLOV3 [38] and tiny YOLOV3 architec-
tures. We have evaluated Serf against Leaky ReLU which
is intrinsic to the YOLOv3 framework. For fair comparisons
we have only changed the activation function keeping other
hyperparameters fixed as outlined in [38]. Mean Average
Precision (MAP) scores in Table 5 clearly indicate that our
proposed Serf outperforms the baseline leaky ReL.U based
architectures in the object detection task for both Pascal
VOC and MS-COCO datasets.

Dataset Model Activations MAP@.5 MAP@.5:.95
YOLOV3 LeakyReLU 74.0 47.3
vOC Serf (OUI'S) 76.6 50.1
YOLOV3 Tiny LeakyReLU 50.3 21.9
Serf (Ours) 514 22.7
YOLOV3 LeakyReLU 51.2 32.5
COCO Serf (Ours) 53.3 334
YOLOV3 Tiny LeakyReLU 32.7 15.2
Serf (Ours) 335 15.5

Table 5. Mean Average Precision scores for different object de-
tection models on the Pascal VOC and MS-COCO datasets.
LeakyReLU is instrinsic to YOLO framework.

4.3. Semi-supervised Node Classification

Following the implementations outline in [21], we have
considered 3 different datasets, namely CITESEER, CORA
and PUBMED for semi-supervised node classification us-
ing three disparate activation functions, namely, ReLU

(baseline), Mish and Ser £ (proposed). All training param-
eters and hyper-parameters have been kept same as men-
tioned in [21] for fair comparisons. Table. 6 shows that
Serf either performed equally well or better than both
ReLU and Mish activation functions across the three differ-
ent datasets, thereby indicating versatility of the proposed
activation function.

Dataset ReLU Mish Serf (Ours)
CORA 81.5 81.7 81.7
CITESEER 70.3 71.3 71.7
PUBMED 79.0 793 79.4

Table 6. Top-1 % Accuracy values of different state-of-the-art
GNN semi-supervised node classification methods for different
activation functions on CORA, CITESEER and PUBMED.

4.4. Machine Translation, Sentiment Classification
& Multi-modal Entailment

In this section, we have demonstrated the effectiveness of
our proposed Ser f activation function in Machine Transla-
tion and Sentiment Classification tasks. We have considered
3 different architectures and datasets.

For Machine Translation we have used a sequence-to-
sequence Transformer [44] Encoder-Decoder based model
trained (for 20 epochs) on the the Multi30k dataset for
German-English translation [9]. For comparison purposes,
we have considered ReLU, GELU, Mish and Serf (pro-
posed) and observed that Ser £ outperformed the remaining
three activation functions as suggested by the BLEU scores
shown in the Table 7.

For sentiment classification, we have considered two
datasets, namely imdb movie review sentiment and Pol Emo
2.0 sentiment datasets. For the imdb movie review senti-
ment dataset [31], we have considered: (i) a simple archi-
tecture consisting of a 1D conv net with a text embedding
layer which we have trained using three different activation
functions and noticed that Serf outperformed the other
two activation functions (ReLU and Mish) suggesting that
Serf also works well with simple architectures (see Table
8), and (ii) a 4-layer Transformer model which we have also
trained for 20 epochs for each of the three activation func-
tions eventually obtaining the best results for the proposed
Serf function (see Table 8). For the Pol Emo 2.0 sentiment
database [23], we have used a BERT based model [6] with
a classification head for two different activation functions,
Mish and Serf. The Precision, Recall and Fl-scores sug-
gest that Ser f performed equally well or better than Mish
for this task (see Table 9).

For multi-modal entailment task, we have used the
multi-modal entailment database, recently introduced by

5328

the Google Research '. We have used a smaller variant of
the original BERT model. The code used for this purpose
is available at 2. We have used two activation functions for
comparison purposes: GELU and Serf. Table 10 shows the
accuracies on test dataset averaged over 5 runs (each trained
for 10 epochs). The accuracy values suggest that Serf per-
forms marginally better than GELU in this case.

Score ReLU GELU Mish Serf (Ours)

BLEU 3555 3562 3536 36.06

Table 7. BLEU scores of seq2seq Transformer model (after train-
ing for 20 epochs) for different activation functions on Multi30k
test dataset.

Model ReLU Mish Serf (Ours)
1D conv with text-embedding 85.36 85.99 86.18
4-layer Transformer model 88.82 88.99 89.03

Table 8. Top-1 % Accuracy values of 1D conv net with a text em-
bedding layer and 4-layer Transformer model for ReLU, Mish and
Serf on imdb movie review sentiment dataset.

Activation Precision Recall F1-score
Mish 0.8374 0.8329 0.8346
Serf (Ours) 0.8377 0.8330 0.8342

Table 9. Precision, Recall and Fl-scores for different activation
functions for sentiment classification using BERT on Pol Emo 2.0
sentiment database.

Metric GELU Serf (Ours)

Mean Accuracy 85.28 85.42

Table 10. Mean Accuracy values of GELU and Serf based archi-
tectures for multi-modal entailment task.

4.5. Ablations

Model hyperparameters play an important role in the
training and optimization of neural networks thus having
direct consequences in the generalizability of a network.
Such hyper-parameters include network depths, network
widths, type of weight initializations, dropout rates, batch
sizes, learning rates, and optimizers. Here we analyze and
compare the impacts of different hyper-parameters on our
chosen networks with three different activation functions
namely Swish, Mish, and Serf. We have used MNIST and
CIFAR-10 datasets for this purpose.

Ihttps://github.com/google-research-datasets/recognizing-multimodal-
entailment
Zhttps://github.com/sayakpaul/Multimodal-Entailment-Baseline

4.5.1 MNIST

* Dense Units: The number of dense units refers to the
number of neurons present in a dense layer. In this
case we have used a 4 layered architecture with one
dense layer followed by a Batch Normalization Layer
and SGD [39] as an optimizer. We observe that as the
number of dense units increases, the model complex-
ity increases and Serf outperforms Swish and Mish
(Fig 3). This suggests that Ser £ works well with com-
plex models. This has also been noticed in other exper-
iments.

* Dropout Rates: As the dropout rate increases, the
overall performance for all three activation functions
drop, however, the performance degradation for Serf
is relatively less than Swish and Mish (Fig 3).

* Initializers: The performance of Serf is better than
both Swish and Mish in all except for random uniform
initialization (Fig 3). This suggests that Serf is a bet-
ter candidate compared to its contemporaries.

* Learning Rates: With varying learning rates, Serf
performs better than both Swish and Mish (Fig 3). Par-
ticularly, with higher learning rates, the degradation is
quite pronounced in Swish and not that much in Mish
and Serf. We have used SGD [39] as an optimizer in
this case.

¢ Optimizers: In this case, with varying optimizers, the
overall performance of Serf is equal or marginally
better than Swish and Mish (Fig 3). Performance drop
can be noticed for all three activation functions in case
of Adagrad optimizer [8].

* Number of layers: In this case, each dense layer was
followed by a Batch Normalization layer. As the num-
ber of dense layers increases, models become complex
and optimization becomes difficult. The degradation in
the performances for all the three different activation
functions conforms the aforementioned fact. However,
Serf maintained a significantly higher accuracy as
compared to Swish and Mish (Fig 3). 3.

4.5.2 CIFAR-10

We have used a ResNet-18 model with a dense layer and a
classification head in tandem. The results are obtained with
training the model over multiple runs for 20 epochs, which
gives a decent convergence point.

* Batch Size: We observed that with decreasing training
batch sizes, the performance for all the competing ac-
tivation functions drop (Fig 4), however, Serf holds

3Code: https://anonymous.4open.science/r/Se r £-3630/

5329

__—" ess !—'_.\ 98.8 swish — /"
98.7 - —m —a— Mish a
98.4 A*A‘ \l\
> A N 98.6| —m— Serf il L~
v ||
© 98.6 A/ \ 98.2
.
=] A
9 98.0 98.4
< 98.5
o 97.8 of
£] 98.2
E 98.4 97.6]
i i]
- S\tvlsh 97.4 S\tvlsh 98.0 /
08.3 == Mish 972 == Mish &
—m— Serf 2| —m— Serf N
97.8
100 250 500 1024 0.2 0.25 0.4 0.5 0.75 al o™ “a\ a\ cot™
Dense Units Dropout Rates m,“°ﬂ“ muﬂ“:ﬁ“o‘)“ ‘0‘5@‘“‘ o anit®
and @0® g\° Q¥
Initializers
100 100
| | [] [| l———.—i——._...
E/ \. 99.00 i — , |
90]
20 98.75
b [
Y %
© 98.50(& 80
3 80
8 98.25
< 70
o 'y
e 70 98.00
=] 60
)
a2 N : 97.75 A B
F &0 Swish Swish 50 Swish
A == Mish 97.50| == Mish == Mish
—m- Serf —m— Serf —m— Serf
50 97.25 T 40
le-05 0.001 0.1 10.0 SGD RMSProp Adagrad Adam Nadam 15 17 19 21 23 25
Learning Rates Optimizers Number of Layers

Figure 3. Ablations for MNIST dataset. Top: Testing Accuracies vs Dense Units (Left), Dropout Rates (Middle) and Initializers (Right)
for Swish, Mish and Serf. Bottom: Testing Accuracies vs Learning Rates (Left), Optimizers (Middle) and Number of Layers (Right) for

Swish, Mish and Serf.

the better position out of all three over all the batch
sizes. Adam [20] is used as the optimzer here.

* Optimizers: In this case, with varying optimizers, the
overall performance of Serf is equal or marginally
better than Swish and Mish (Fig 4). Performance drop
can be noticed for all three activation functions in case
of [8] and SGD optimizers [39].

* Learning Rates: Serf is observed to be performing
better or equal to both Mish and Swish on all of the
learning rates evaluated barring 0.1 where a steeper
drop is observed in Serf compared to the other two
activation functions (Fig 4). Adam [20] is used as the
optimzer here.

5. Analysis

Typically first derivatives of activation function are re-
sponsible for parameter updates, for instance, in a stochastic
gradient-based optimization scheme. The value of a gradi-
ent plays an important role in this regard. Final update of
a parameter is dependent on this value multiplied with a
learning rate which determines the speed of convergence.
Furthermore, in deep neural networks Batch Normalization

(BN) is used in conjunction with activation functions. Con-
sidering the best practices, that is, normalized input, BN at-
tempts to maintain the mean output close to 0 and the out-
put standard deviation close to 1. This ensures that almost
around 87% of the values are within 1.5 standard deviation
of the mean. Considering this range in the Fig 1, we can ob-
serve that the first derivative for Serf lies above Mish which
lies above Swish. Therefore, we can consider that the first
derivative of Serf is p(> 1) times more than that of Mish.
Therefore, the effective learning rate is increased for Serf
which leads to faster and better convergence.

Moreover, the pre-conditioner equation from the Equa-
tion (2) can be re-written as:

eZ(ln(l-{-em)) 41

2 z\\2
—(In(1+e™))
¢ O\ niren)) — 1

Nz

g(z) 3)

) x
/() = g(a) Mish(x) + L2
where g(x) acts as a pre-conditioner. Mish has been
shown to have a pre-conditioning effect over Swish which
actually helped in the performance. Here, similarly we show
that Serf has a preconditioning effect over Mish making the

“4)

5330

77.5
B— R [| 1
LSS, Swish] 75 ———n
77 C ; 75.0
] == Mish :
z —m— Serf 72.5 70
76 u
E [| 7y
3 70.0 65
g 75
< n 67.5 60
2) g
74 65.0 55] &
0
= 7 625 SV-\IISh 50 Sv_wsh Y
s == Mish == Mish
] 60.0
v [] —u— Serf a5| —m— Serf
72 i []
16 32 64 128 256 512 SGD RMSProp Adagrad Adam Nadam le-05 0.0001 0.001 0.01 0.1
Batch Sizes Optimizers Learning Rates

Figure 4. Ablations for CIFAR-10 dataset. Testing Accuracies vs Batch Sizes (Left), Optimizers (Middle) and Learning Rates (Right) for

Swish, Mish and Serf.

gradient even smoother and thereby providing stronger reg-
ularization effect.

The same p(x) (pre-conditioner of Serf over Swish) from
the Equation (2) can also be re-written as:

p(z) = r(z)A(z) (5)

6(7ln(1+e‘7”))2 (62ln(1+ew) + 672ln(1+ew) + 2)

N

r(xz) =

o(In(1+e7)?
=5 (1+e")?+(1+e") 2 +2)
elin(14+¢))?
> 7(2 +2) (Young’s inequality) (6)
> % (since e(m(1+e")? > 1)
>1

where A(z) is the pre-conditioner of Mish over Swish
and r(x) > 1 (in the operating range) which indicates p(x)
is better.

6. Computational Time Efficiency

We performed computational efficiency study for the
prominent activation functions used in the community. Re-
sults presented in Table 11 show that despite its superior
performance across a variety of tasks, the computational
time of Serf is more as compared to ReLU, whereas, it
is comparable with GELU, Mish and Swish. We have used
system with a NVIDIA Tesla V100 GPU and 32 GB RAM
to perform these experiments.

7. Conclusions and Future Works

In this paper, we proposed a novel activation function
which has demonstrated properties such as upper unbound-

Activation Forward Pass Backward Pass
ReLU 541 +042ps 572 £ 1.59 ps
LeakyReLU 5.63 £0.74ps 6.08 £ 0.89 ps
GELU 891 +1.22us 931+ 1.56 ps
Swish 852 £ 1.37us 10.85 £2.23 us
Mish 7.59 £2.66 us 9.03 +2.92 us
Serf(Ours) 7.62+ 1.54pus 10.91 + 1.68 pus

Table 11. Computational time comparison for different activation
functions for a 32 x 32 x 3 input in a PreActResnet-18 model.

edness, lower boundedness, non-monotonicity and smooth-
ness which are the desired for an activation function. Exper-
imental results with different state-of-the-art architectures
on varied datasets for multiple disparate tasks demonstrate
that the proposed Serf outperforms the baseline ReLLU
performance and as well as other activation functions like
Swish, Mish and GELU by a good margin. The results can
be improved with desired hyperparameters for Ser £ which
can be obtained with a hyperparameter search.

Serf opens up a plethora of opportunities to move for-
ward. Probable future works include (1) the understanding
of the importance and contribution of pre-conditioner as a
regularizer and how modifying it can have an impact on the
final results; this can lead to the development of more ef-
fective activation functions, (2) the development and explo-
ration of probabilistic version of Serf as shown in [28],
(3) the development of parameterized Serf like PReLU,
and finally (4) comparison the performance of Serf with
other contemporary activation functions for tasks such as
image super-resolution, image reconstruction, etc. Overall,
Serf is a simple, effective and versatile activation function
which can be incorporated in any neural network for better
training and performance gains.

5331

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

(13]

(14]

Larry C Andrews. Special functions of mathematics for en-
gineers, volume 49. Spie Press, 1998.

Owe Axelsson and Gunhild Lindskog. On the rate of con-
vergence of the preconditioned conjugate gradient method.
Numerische Mathematik, 48(5):499-523, 1986.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. arXiv preprint
arXiv:2005.14165, 2020.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochre-
iter. Fast and accurate deep network learning by exponential
linear units (elus). arXiv preprint arXiv:1511.07289, 2015.
Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pages 248-255, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive sub-
gradient methods for online learning and stochastic opti-
mization. Journal of machine learning research, 12(7),2011.
Desmond Elliott, Stella Frank, Khalil Sima’an, and Lucia
Specia. Multi30k: Multilingual english-german image de-
scriptions. In Proceedings of the 5th Workshop on Vision
and Language, pages 70-74. Association for Computational
Linguistics, 2016.

Xavier Glorot and Yoshua Bengio. Understanding the diffi-
culty of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on artifi-
cial intelligence and statistics, pages 249-256. JMLR Work-
shop and Conference Proceedings, 2010.

Ali Hassani, Steven Walton, Nikhil Shah, Abulikemu
Abuduweili, Jiachen Li, and Humphrey Shi. Escaping the
big data paradigm with compact transformers. arXiv preprint
arXiv:2104.05704, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. In Proceedings of the
IEEE international conference on computer vision, pages
1026-1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770-778, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Identity mappings in deep residual networks. In European

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

[29]

(30]

5332

conference on computer vision, pages 630-645. Springer,
2016.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus). arXiv preprint arXiv:1606.08415, 2016.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4700—4708, 2017.
Forrest N Iandola, Song Han, Matthew W Moskewicz,
Khalid Ashraf, William J Dally, and Kurt Keutzer.
Squeezenet: Alexnet-level accuracy with 50x fewer pa-
rameters and; 0.5 mb model size. arXiv preprint
arXiv:1602.07360, 2016.

Sergey loffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In International conference on machine learn-
ing, pages 448-456. PMLR, 2015.

Kevin Jarrett, Koray Kavukcuoglu, Marc’ Aurelio Ranzato,
and Yann LeCun. What is the best multi-stage architecture
for object recognition? In 2009 IEEE 12th international con-
ference on computer vision, pages 2146-2153. IEEE, 2009.
Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Thomas N Kipf and Max Welling. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Giinter Klambauer, Thomas Unterthiner, Andreas Mayr, and
Sepp Hochreiter. Self-normalizing neural networks. In Pro-
ceedings of the 31st international conference on neural in-
formation processing systems, pages 972-981, 2017.

Jan Kocon, Monika Zasko-Zieliriska, and Piotr Mitkowski.
Polemo 2.0 sentiment analysis dataset for conll. 2019.

Alex Krizhevsky, Vinod Nair, and Geoftrey Hinton. Cifar-10
(canadian institute for advanced research).

Yann LeCun. The mnist database of handwritten digits.
http://yann. lecun. com/exdb/mnist/, 1998.

Yann LeCun, Bernhard Boser, John S Denker, Don-
nie Henderson, Richard E Howard, Wayne Hubbard, and
Lawrence D Jackel. Backpropagation applied to handwrit-
ten zip code recognition. Neural computation, 1(4):541-551,
1989.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
Joonho Lee, Kumar Shridhar, Hideaki Hayashi, Brian Kenji
Iwana, Seokjun Kang, and Seiichi Uchida. Probact: A prob-
abilistic activation function for deep neural networks. arXiv
preprint arXiv:1905.10761, 5:13, 2019.

Lu Lu, Yeonjong Shin, Yanhui Su, and George Em Karni-
adakis. Dying relu and initialization: Theory and numerical
examples. arXiv preprint arXiv:1903.06733, 2019.
Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.
Shufflenet v2: Practical guidelines for efficient cnn architec-
ture design. In Proceedings of the European conference on
computer vision (ECCV), pages 116-131, 2018.

(31]

(32]

(33]

(34]

(35]

[36]

(37]

(38]

[39]

(40]

(41]

[42]

[43]

[44]

(45]

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan
Huang, Andrew Y. Ng, and Christopher Potts. Learning
word vectors for sentiment analysis. In Proceedings of the
49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages 142—150,
Portland, Oregon, USA, June 2011. Association for Compu-
tational Linguistics.

Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rec-
tifier nonlinearities improve neural network acoustic models.
In Proc. icml, volume 30, page 3. Citeseer, 2013.

José Mira and Francisco Sandoval. From Natural to Arti-
ficial Neural Computation: International Workshop on Ar-
tificial Neural Networks, Malaga-Torremolinos, Spain, June
7-9, 1995: Proceedings, volume 930. Springer Science &
Business Media, 1995.

Diganta Misra. Mish: A self regularized non-monotonic neu-
ral activation function. arXiv preprint arXiv:1908.08681,
4:2,2019.

Vinod Nair and Geoffrey E Hinton. Rectified linear units
improve restricted boltzmann machines. In Ieml, 2010.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei, Ilya Sutskever, et al. Language models are unsu-
pervised multitask learners. OpenAl blog, 1(8):9, 2019.
Prajit Ramachandran, Barret Zoph, and Quoc V Le.
Searching for activation functions. arXiv preprint
arXiv:1710.05941, 2017.

Joseph Redmon and Ali Farhadi. Yolov3: An incremental
improvement. arXiv preprint arXiv:1804.02767, 2018.
Herbert Robbins and Sutton Monro. A stochastic approxi-
mation method. The annals of mathematical statistics, pages
400-407, 1951.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 4510-4520, 2018.

Christian Szegedy, Vincent Vanhoucke, Sergey loffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception archi-
tecture for computer vision. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
2818-2826, 2016.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International
Conference on Machine Learning, pages 6105-6114. PMLR,
2019.

Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lu-
cas Beyer, Xiaohua Zhai, Thomas Unterthiner, Jessica Yung,
Daniel Keysers, Jakob Uszkoreit, Mario Lucic, et al. Mlp-
mixer: An all-mlp architecture for vision. arXiv preprint
arXiv:2105.01601, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Fukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998-6008, 2017.
Saining Xie, Ross Girshick, Piotr Dolldr, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1492-1500,
2017.

[46] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-

5333

works. arXiv preprint arXiv:1605.07146, 2016.

