
Boosting neural video codecs by exploiting hierarchical redundancy

Reza Pourreza, Hoang Le, Amir Said, Guillaume Sautière, Auke Wiggers
Qualcomm AI Research‡

{pourreza, hoanle, asaid, gsautie, auke}@qti.qualcomm.org

Abstract

In video compression, coding efficiency is improved by
reusing pixels from previously decoded frames via motion
and residual compensation. We define two levels of hierar-
chical redundancy in video frames: 1) first-order: redun-
dancy in pixel space, i.e., similarities in pixel values across
neighboring frames, which is effectively captured using mo-
tion and residual compensation, 2) second-order: redun-
dancy in motion and residual maps due to smooth motion in
natural videos. While most of the existing neural video cod-
ing literature addresses first-order redundancy, we tackle
the problem of capturing second-order redundancy in neu-
ral video codecs via predictors. We introduce generic mo-
tion and residual predictors that learn to extrapolate from
previously decoded data. These predictors are lightweight,
and can be employed with most neural video codecs in or-
der to improve their rate-distortion performance. Moreover,
while RGB is the dominant colorspace in neural video cod-
ing literature, we introduce general modifications for neural
video codecs to embrace the YUV420 colorspace and report
YUV420 results. Our experiments show that using our pre-
dictors with a well-known neural video codec leads to 38%
and 34% bitrate savings in RGB and YUV420 colorspaces
measured on the UVG dataset.

1. Introduction
Video traffic is predicted to reach more than 82% of all

internet traffic in 2022 [6]. As video resolution and fram-
erate demands have steadily increased over the years, there
is a strong need to develop algorithms that enable transmis-
sion of video data at low bit cost. Standard video codecs
such as AVC [34] and HEVC [27] were created exactly for
this purpose.

The goal of a codec is to trade off the number of bits
spent to transmit a message and the distortion between the
original data and its reconstruction. In the video setting,
standard codecs keep the bitrate low by using previously
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1Second-order redundancy: similarity in optical flow across time steps.

First-order redundancy: similarity in pixel values across time steps.

Frame 𝑡 − 1 Frame 𝑡

Flow 𝑡 + 1 → 𝑡Flow 𝑡 → 𝑡 − 1

Frame 𝑡 + 1

Figure 1: First- and second-order redundancy in video, here
shown for (backward) optical flow. First-order redundancy
exists between frames in pixel-space, second-order redun-
dancy exists between optical flow maps.

transmitted information as context. For example, to make
a prediction for a current frame, the previously transmit-
ted frame can be used. Instead of transmitting the current
frame, the motion between the previous reconstruction and
the current frame may be transmitted. This allows making
an initial prediction for the current frame using motion com-
pensation. Transmitting the motion typically has a lower bit
cost than transmitting the frame, as motion of pixels belong-
ing to the same object are strongly correlated. Similarly, an
additive correction or residual can be transmitted to refine
a receiver-side frame. If the residual is sparse, the cost of
transmitting a residual will be much lower than transmitting
the frame in isolation.

Standard codecs take this idea one step further and make
motion vector predictions. As motion vectors are typically
similar across timesteps due to smooth object motion in
video, an initial prediction can be made based on previous
motion. This means the codec only needs to transmit cor-
rections to this prediction, usually at low bit cost.

To distinguish these two approaches, we distinguish be-
tween two types of redundancy in videos. First-order re-
dundancy is redundancy in the pixel domain. Inter-frame
codecs exploit this using motion compensation and resid-
ual coding. Second-order redundancy is the redundancy in
flow and residual maps due to smooth motions in videos,
which can be exploited by making motion vector predic-
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tions. These are shown schematically for motion in Fig. 1.
Most modern neural video codecs exploit only first-order

redundancy using a two-step process [2, 11, 13, 17]: a
flow model transmits motion information (optical flow) and
residual model transmits residual maps. There are works
that exploit second-order redundancy as well. For example,
ELF-VC [23] predicts the flow, and Liu et al. [16] use flow
and residual prediction in latent space.

In this work, we exploit second-order redundancy via
pixel-space flow and residual predictors. We design generic
models that predict flow and residual using the history avail-
able in a frame buffer. This leads to easy-to-interpret predic-
tions compared to predictions in latent space, makes it pos-
sible to combine the predictors with many existing neural
codecs, and delivers significant performance improvement.

Furthermore, we provide evaluations for multiple input
colorspaces. Most literature on neural video codecs only
provides solutions and evaluations for the RGB colorspace,
with some exceptions [7, 24]. However, standard codecs
were designed to operate with YUV420 input. YUV420 is
a color format that subsamples the chroma channels of the
YUV colorspace which is closer to how humans perceive
images and leads to bandwidth saving in compression ap-
plications. To gauge progress in learned video compression
compared to standard codecs, we train our codecs on both
RGB and YUV420 input formats. We demonstrate that neu-
ral codecs can excel in both domains, and that only minor
architectural modifications are needed to handle the differ-
ence in input resolution between colorspaces.

In summary, the contributions of this paper are:

1. We define the framework of hierarchical redundancy in
video in order to categorize neural codecs, and observe
that most neural codecs only address the first type of
redundancy.

2. To exploit second-order redundancy, we introduce
generic flow and residual predictors that can be paired
with existing inter-frame codecs and deliver strong
performance improvements.

3. We show that simple modifications enable codecs to
run on YUV420 inputs, and report both RGB and
YUV420 performance.

2. Related work
2.1. Learned compression

The focus of this work is a so-called learned codec,
meaning each component is a learned model. Neural
network-based codecs have been successfully applied to
data compression in many domains, including the image
[3, 28, 30] and video [2, 9, 11, 13, 17, 23] domain. In
these systems, a neural encoder takes the data x and pro-
duces a quantized latent variable z, and a neural decoder

produces a reconstruction px given this latent. A neural prior
or context model is used to learn the distribution of latent
variables ppzq. Using this prior and an entropy coding algo-
rithm, Shannons source-coding theory tells us that the latent
z can be losslessly compressed using ´ log ppzq bits.

Neural codecs are typically trained to minimize a rate-
distortion loss consisting of two terms:

LRD “ Ex„ppxq rβLratepzq ` Ldistortionpx, pxqs . (1)

The rate term corresponds to the number of bits needed
to transmit the quantized latent variable z, and a distortion
term corresponds to the distance between the reconstruction
px and the ground truth x.

Neural codecs promise several advantages over hand-
crafted codecs. First, as they learn to identify redundan-
cies from example data, they have shown a strong abil-
ity to specialize to a domain [9] or even a single data-
point [25, 31, 32]. For example, if the codec will only
be used to code animated content, it can easily be fine-
tuned to this domain. Second, neural codecs benefit from
advances in general-purpose neural hardware, where most
video codecs require dedicated hardware to run in real time
on device. Third, they have shown to be able to hallucinate
desirable textures, leading to improved perceptual quality
compared to traditional codecs in user studies [18, 19, 38].

2.2. Neural video compression

In the video setting, neural codec design has been in-
spired by techniques from handcrafted codecs. Where
early works used frame interpolation [35] or predicted en-
tire blocks of frames jointly [9], more recent neural video
codecs exploit similarity between frames using motion
compensation and residual coding. Having neural networks
learn to perform these steps end-to-end, as introduced by
[17], has led to major bitrate savings in both the low latency
[2, 11, 13, 23, 24], and streaming setting [14, 22].

As consecutive frames often contain continuous motion,
both motion information and residuals are predictable given
previous frames. Recent neural video codecs exploit this
fact, for example, by adding components that predict the
flow [23] or predict the motion and residual latents [16].

In this work, we use simple predictors for both flow and
residual. By only incorporating context from the past two
timesteps, and avoiding statefulness and recurrent compo-
nents, we avoid instabilities due to aggregating error. Un-
like ELF-VC [23], our codec requires no normalization lay-
ers anywhere in the network, which makes the codec easier
to deploy to hardware [1, 21]. Unlike Liu [16], we make
predictions in pixel-space. This makes predictions easy to
interpret, and enables combining our predictors with differ-
ent base models.
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2.3. YUV420 colorspace

Most neural video codecs are trained to maximize PSNR
or MS-SSIM in the RGB colorspace. However, when visual
quality according to human observers is important, other
colorspaces may be better suited. Distance in the YUV col-
orspace is known to match human perception more closely
than distance in the euclidean RGB space [29].

Most standard codecs were designed to maximize PSNR
in the YUV420 input domain. This is a subsampling of
YUV, where chroma components are subsampled by 4ˆ

to reduce bitrate and to meet bandwidth constraints. For
a H ˆ W input, this subsampling results in one H ˆ W
luma channel, and two H

2 ˆ W
2 chroma channels.

There exist a few learned video codecs that support the
YUV420 color format [7, 24], or have been trained to op-
timize metrics in the YUV domain [23]. However, as of
yet, no learned video codec has shown competitive PSNR
or MS-SSIM in the YUV420 domain.

3. Method

3.1. Base codec

In this work, we introduce flow and residual predictors
to capture second-order redundancy in the low-delay neural
video coding setting. Although the introduced predictors
can potentially be added to any neural video codec, here,
we build upon the well-known video codec scale-space flow
(SSF) [2] due to the simple and efficient network design and
the straightforward training schedule. The block-diagram
of SSF in shown is Figure 2, where pft indicates scale-space
flow and Warp indicates scale-space warping.

Figure 4 (a) shows two consecutive video frames, and
the associated optical flow and residual maps are shown in
Figure 4 (b) and (c), respectively. Of course the flow and
residual for the first timestep depend on a previous frame,
which is omitted here for brevity. As can be seen from these
figures, optical flow maps and residuals are much less de-
tailed than video frames, making them easier to compress.
Additionally, due to the smooth motion in this video, opti-
cal flow and residual maps are highly correlated across the
two time steps.

3.2. Predictors

Here, we build a neural video codec on top of SSF where
we keep the intra-frame codec as well the flow-block and
residual-block in the inter-frame codec unchanged. We add
flow and residual predictors to the base inter-frame codec as
shown in Figure 3.

Inter-frame coding is done via a four-step process as fol-
lows: 1) flow prediction, 2) flow compression, 3) residual
prediction, 4) residual compression. These four steps are
explained below:
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Figure 2: Base inter-frame codec architecture performing
motion compensation and residual coding. W indicates a
scale-space warp.
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Figure 3: Architecture for our inter-frame model. W+ indi-
cates a scale-space warp followed by a summation.

1. Flow prediction: as the name suggests, we predict the
flow for the current time step fpt using a history of de-
coded frames, pxt´1 and pxt´2, and the previous flow
pft´1, as follows:

fpt “ Flow-Predppxt´2, pxt´1,pft´1q (2)
Here, Flow-Pred is a lightweight network that directly
predicts fpt using the provided inputs. The predicted
flow fpt is then used to generate a prediction of the cur-
rent frame xp

t . This operation is done only on the trans-
mitter side.

xp
t “ Warpppxt´1, f

p
t q (3)

2. Flow compression: in this step, the predicted flow fpt
is corrected using delta flow ∆pft that is measured and
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transmitted via Flow-AE:

∆pft “ Flow-AEpxp
t ,xtq (4)

pft “ ∆pft ` Warppfpt ,∆
pftq (5)

Here, Flow-AE is a hyperprior network identical to
the one in SSF. The motion compensated frame xw

t is
generated using the corrected flow pft:

xw
t “ Warpppxt´1,pftq (6)

3. Residual prediction: we predict the residual for the
current time step rpt based on the motion compensated
frames xw

t and xw
t´1 as well as the previous decoded

frame pxt´1:
rpt “ Res-Predpxw

t ,x
w
t´1, pxt´1q (7)

Here, Res-Pred is a lightweight network that directly
predicts rpt using the provided inputs. Given that rt “

xt ´ xw
t , the rationale is that Res-Pred should be able

to predict rt by looking at pxt´1 and xw
t´1. Next, rpt is

applied to xw
t :

xr
t “ xw

t ` rpt (8)

4. Residual compression: in this step, the predicted resid-
ual rpt is corrected using delta residual ∆prt that is
transmitted via Res-AE::

∆prt “ Res-AEpxt ´ xr
t q (9)

Here, Res-AE is a hyperprior network identical to the
one in SSF. Finally, the decoded frame pxt is generated
as follows:

pxt “ xr
t ` ∆prt (10)

The following points are worth emphasizing:

• All the used flows are scale-space flow and all the warp
operations are scale-space warp [2].

• Both Flow-Pred and Res-Pred have hourglass archi-
tectures. The decoders of Flow-AE and Res-AE are
conditioned on the bottleneck features of Flow-Pred
and Res-Pred, respectively.

• We always encode the first frame in a sequence as an
intra-frame and the subsequent frames as inter-frames.
For the first inter-frame x1, note that pxt´2, pft´1, and
xw
t´1 are not available. They are set as follows:

pxt´2 “ xw
t´1 “ pxt´1 (11)

pft´1 “ 0 (12)

• To construct the total flow ∆pft in step 2, we choose
to warp the predicted flow, which we observed to lead
to better performance than additive operations. Other
schemes have been used as well, such as letting by the
Flow-AE output a scale-and-shift [23].

(d)

Predicted 

flow 𝐟𝑡
𝑝

(e)

Delta 

flow Δ መ𝐟𝑡

(b)

Flow መ𝐟𝑡

(f)

Predicted  

residual 𝐫𝑡
𝑝

(g)

Delta 
residual Δො𝐫𝑡

(c)

Residual ො𝐫𝑡

(a)

Frame 𝐱𝑡

Figure 4: Illustration of video (a), flow (b) and residual (c),
flow prediction and delta flow (d, e), and residual prediction
and delta residual (f, g). Screenshot from Tango video from
Netflix Tango in Netflix El Fuente* [36]

Figure 4 (d) and (f) show the predicted flow and residual,
respectively. The associated delta flow and delta residual
are shown in Figure 4 (e) and (g). As can be seen here,
the predicted flow and residual maps are very close to the
actual maps, leaving much less correlated delta flow and
delta residual.

3.3. RGB and YUV420 architecture

Most literature on neural video codecs provides solutions
for the RGB colorspace. Since the R, G, and B channels
share the same resolution, working with RGB videos is triv-
ial as the networks can conveniently concatenate them in the
network input and output. However, standard codecs were
designed to operate with YUV420 input mainly due to the
resemblance with human vision. Since the chroma channels
in the YUV420 colorspace are in a subsampled space, some

*Video produced by Netflix, with CC BY-NC-ND 4.0 license:
https://media.xiph.org/video/derf/ElFuente/Netflix_Tango_Copyright.txt
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Bottleneck

E1

RGB Input

conv, c1, 5×5, ↓2

conv, c2, 5×5, ↓2

E2

conv, c3, 5×5, ↓2

conv, c4, 5×5, ↓2

D1tconv, t1, 5×5, ↑2

tconv, t2, 5×5, ↑2

D2

tconv, t3, 5×5, ↑2

tconv, t4, 5×5, ↑2

RGB Output

E1

conv, c1, 5×5, ↓2 conv, c1, 3×3, ↓1

conv, c1, 1×1, ↓1

Luma Input Chroma Input

concat

D1

tconv, t1, 5×5, ↑2 tconv, t1, 3×3, ↑1

dconv, 2*t1, 1×1, ↓1

Luma Output Chroma Output

split

(a)

(b)

(c)

Figure 5: a) Network architecture for the RGB colorspace,
b) YUV420 input head, c) YUV420 output head. c* and
t* indicate the number of filters in the convolutional and
transposed-convolutional layers, respectively.

modifications to the network architecture are needed to ac-
commodate YUV420 videos. Figure 5 (a) shows the general
architecture we used in the predictors and the autoencoders
of our network for the RGB colorspace. The input is parsed
by an encoder input head E1 and passed through an encoder
backbone E2. The decoder consists of a backbone D2 and
a decoder output head D1. At the bottleneck, the predic-
tors simply pass the encoder outputs directly to the decoder.
Components that transmit information will quantize the la-
tents before passing these to the decoder.

To enable the codec with accommodating YUV420 in-
puts/outputs, we update the input/output heads E1/D1 in all
the components of the network as shown in Figure 5 (b)/(c).
E1 and D1 handle the luma (Y) and chroma (U and V) chan-
nels separately, and only the luma channels are down- or up-
sampled. Lastly, for the YUV420 codec, warping is applied
for the luma and chroma channels separately. This ensures
warping is always performed on the highest available spatial
resolution.

4. Experiments

4.1. Network architecture

All of the components in our codec follow the architec-
ture shown in Figure 5. The the number of filters in convo-

Module c1 & t2 c2 & t3 c3 & t4 c4

Image-AE 128 128 128 192
Flow-AE 128 128 128 192
Res-AE 128 128 128 192

Flow-Pred 16 32 64 128
Res-Pred 16 32 64 128

Table 1: Network architecture details. For all components,
t1 depends on the number of output channels.

Module Parameters KMACs / pixel

R
G

B

Image-AE 9.414M 30.4% 198.2 30.6%
Flow-AE 10.038M 32.4% 210.2 32.4%
Res-AE 10.028M 32.5% 207.8 32.0%
Flow-Pred 0.748M 2.4% 16.2 2.5%
Res-Pred 0.748M 2.4% 16.2 2.5%

Y
U

V
42

0

Image-AE 9.496M 30.4% 208.0 30.5%
Flow-AE 10.124M 32.4% 225.7 33.0%
Res-AE 10.111M 32.3% 217.6 31.9%
Flow-Pred 0.751M 2.4% 16.3 2.4%
Res-Pred 0.750M 2.4% 15.3 2.2%

Table 2: Parameters and MACs per pixel of our RGB (top)
and YUV420 (bottom) codecs.

lutional and transposed-convolutional layers is specified by
c1, ..., c4 and t1, ..., t4, respectively. More details are
provided in Table 1. In the main autoencoders – including
Flow-AE, Res-AE, and Image-AE (used for intra-frame
coding) – the prior model follows the SSF design.

We report the computational complexity of our codec
in Table 2, where we show number of parameters and the
number of multiply-and-accumulate operations (MACs) per
module. The MAC count is normalized by number of input
pixels to enable comparison across input modalities and res-
olutions. We also show the corresponding percentage to put
these numbers in context.

We emphasize that for each I-frame, only the Image-AE
is used, and this model is not used for P-frames. For exam-
ple, for a sequence of length 10, the total number of MACs
for the RGB codec would be 1 ¨198.2`9 ¨ p210.2`207.8`

16.2 ` 16.1q KMACs per pixel.

Using MACs as a proxy for computational complex-
ity, we observe that receiver-side predictors incur a small
computational cost of only 2.5% of the entire model. Ad-
ditionally, for each P-frame, both predictors incur 12ˆ

fewer MACs than the P-frame autoencoders. Although the
YUV420 input has fewer dimensions than the RGB input
due to the subsampled chroma components, the fact that the
YUV420 codec processes luma and chroma channels using
separate layers results in a higher parameter count and MAC
count than that of the RGB codec.
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4.2. Dataset

Training is performed on the Vimeo90K dataset [37], a
diverse set of 89,800 video sequences of resolution 256 ˆ

448 in RGB. We evaluate on three common video compres-
sion benchmark datasets: UVG [20], MCL-JCV [33], and
class B of HEVC (Common Test Conditions) [5], all avail-
able in raw YUV420 format. UVG contains 7 full-HD (i.e.,
1920 ˆ 1080) videos at framerates of up to 120 fps. MCL-
JCV contains 30 full-HD videos at 30 fps. HEVC class B
contains 5 full-HD videos at various framerates.

4.3. Training

We train codecs with batch size of 8, where each se-
quences has 4 frames of size 256 ˆ 256, resulting in one I-
frame and three P-frames. We optimize our codec on MSE
and MS-SSIM. Specifically, we initially train all models
for 1,000,000 gradient updates on MSE, then trained the
MS-SSIM models for extra 200,000 gradient updates on
MS-SSIM, and finally finetuned all the models for 100,000
gradient updates. Training is done on 256 ˆ 256 patches
with learning rate 10´4, and finetuning is done on 256ˆ384
patches with learning rate 10´5, using the Adam optimizer.

For the RGB codec training, Video90k is used in the na-
tive RGB colorspace, and both MSE and MS-SSIM are av-
eraged over the R, G, and B channels.

For the YUV420 codec training, Video90k is converted
to YUV420 using ffmpeg, and we weigh the MSE and
MS-SSIM for the luma component by a factor 6

8 and the
chroma components by a factor 1

8 , consistent with the eval-
uation procedure used for standard codecs [26].

4.4. Evaluation

We evaluate all models in terms of rate-distortion per-
formance. The PSNR metric in RGB weighs all color-
channels equally. For YUV420 input, the luma channel is
weighed by a factor 6

8 , and both chroma channels by a fac-
tor 1

8 . This is consistent with the way this metric is used in
standard codecs [26]. As there is no commonly agreed-upon
way to measure MS-SSIM for YUV420 inputs, we simply
follow the same procedure as for PSNR, re-weighting the
MS-SSIM for the luma and chroma components.

As the evaluation datasets are available in raw YUV420
format, they are used in the native colorspace for the
YUV420 codec evaluation, see Figure 6 (a). However, eval-
uating in RGB requires a conversion from YUV420 to RGB
using ffmpeg as shown in Figure 6 (b).

Most standard codecs were designed to work in the
YUV420 input domain. To enable a fair comparison to
standard codecs, we always feed them YUV420 inputs
and always operate them in the YUV420 colorspace. The
YUV420 output is converted to the target colorspace (if
needed) as shown in Figure 6 (a) and (b) for comparison
with our codecs in YUV420 and RGB, respectively.

Neural Codec (YUV)

Standard Codec (YUV)YUV420

Neural Codec YUV Distortion

Standard Codec YUV Distortion

YUV420

YUV420

Neural Codec (RGB)

Standard Codec (YUV)YUV420

RGB

RGB

RGB

Neural Codec RGB Distortion

Standard Codec RGB Distortion

YUV420

(a)

(b)

Figure 6: Evaluation procedure for YUV420 (a) and RGB
(b). Color-space conversions are performed using ffmpeg.

4.5. Results

We measure rate-distortion performance on the UVG,
MCL-JCV and HEVC-B datasets. We use PSNR and
MS-SSIM as distortion measures, and measure bitrate in
bits per pixel. We compare our RGB and YUV420 codecs
to the reference implementation of HEVC called HM-
16.25 [10] as well the the ffmpeg implementation of HEVC
and AVC. We always use Group of Pictures size “infinite“,
even if some neural baselines use different GOP size. HM
is used in the low-delay-P configuration, and ffmpeg is
used with all the default parameters but with B-frames dis-
abled. Please see appendix 6.2 for the used HM and ffm-
peg commands. We compare our RGB codec with repre-
sentative neural video coding methods including DVC [17],
SSF [2], M-LVC [15], FVC [13], ELF-VC [23], RDAE [9],
FRAE [8], and C2F [12]. The RGB and YUV420 rate-
distortions results are shown in Figures 7 and 8, respec-
tively. Here, SSF-YUV is a re-implementation of SSF with
the required YUV420 modifications.

UVG HEVC-B MCL-JCV

Average -38.01% -26.51% -16.48%

Table 3: BD rate savings for RGB PSNR with with respect
to the SSF base model. Lower is better.

UVG HEVC-B MCL-JCV

Y -28.34% -28.50% -21.85%
U -47.32% -44.38% -34.63%
V -55.68% -43.72% -36.51%

Average -34.13% -32.39% -25.28%

Table 4: BD-rate savings for YUV420 PSNR with respect
to the SSF-YUV model. For the average results, the luma
and chroma BD-rates are weighed by 6

8 and 1
8 respectively.

Lower is better.

65360



0.0 0.1 0.2 0.3 0.4 0.5 0.6
Rate (bits per pixel)

32

33

34

35

36

37

38

39

40

41

RG
B 

PS
NR

 (d
B)

UVG

ELF-VC[23]
SSF[2]
M-LVC[15]
FVC[13]
DVC[17]
C2F[12]
AVC(FFMPEG-x264)
HEVC(FFMPEG-x265)
HEVC(HM)
Ours

0.0 0.1 0.2 0.3 0.4 0.5
Rate (bits per pixel)

30

31

32

33

34

35

36

37
HEVC-B

M-LVC[15]
DVC[17]
C2F[12]
AVC(FFMPEG-x264)
HEVC(FFMPEG-x265)
HEVC(HM)
Ours

0.0 0.1 0.2 0.3 0.4 0.5
Rate (bits per pixel)

32

34

36

38

40

42
MCL-JCV

ELF-VC[23]
SSF[2]
FVC[13]
C2F[12]
AVC(FFMPEG-x264)
HEVC(FFMPEG-x265)
HEVC(HM)
Ours

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Rate (bits per pixel)

0.93

0.94

0.95

0.96

0.97

0.98

0.99

RG
B 

M
S-

SS
IM

UVG

ELF-VC[23]
SSF[2]
M-LVC[15]
FVC[13]
DVC[17]
RDAE[9]
FRAE[8]
C2F[12]
AVC(FFMPEG-x264)
HEVC(FFMPEG-x265)
HEVC(HM)
Ours

0.0 0.1 0.2 0.3 0.4 0.5
Rate (bits per pixel)

0.93

0.94

0.95

0.96

0.97

0.98

0.99
HEVC-B

M-LVC[15]
DVC[17]
C2F[12]
AVC(FFMPEG-x264)
HEVC(FFMPEG-x265)
HEVC(HM)
Ours

0.0 0.1 0.2 0.3 0.4 0.5
Rate (bits per pixel)

0.94

0.95

0.96

0.97

0.98

0.99

MCL-JCV

ELF-VC[23]
SSF[2]
FVC[13]
C2F[12]
AVC(FFMPEG-x264)
HEVC(FFMPEG-x265)
HEVC(HM)
Ours

Figure 7: RGB rate-distortion curves for the UVG, HEVC Class-B, and MCL-JCV datasets.

In RGB colorspace, we outperform almost all of the
compared methods in terms of both PSNR and MS-SSIM,
except the very recent C2F [12]. In YUV420 colorspace,
classical codecs dominate on YUV PSNR, but our codec
obtains much better MS-SSIM on all the datasets.

Many modern neural codecs use motion compensation
and residual coding, and we emphasize that our method is
often applicable to those codecs as well. Here, we applied
our method to the SSF architecture and therefore measured
the performance improvement with respect to a (reimple-
mented) SSF and SSF-YUV baseline in Tables 3 and 4, re-
spectively. We see that performance improvements are sub-
stantial, e.g., more than 30% on the UVG dataset. Hence,
although we are not generating state-of-the-art results in the
RGB colorspace, our method has the potential to be added
to a stronger base method and improve the state-of-the-art.

4.6. Ablations

To separate the effect of each component of our method,
we perform ablation studies. We incrementally add the
flow predictor, residual predictor, and connections be-
tween the bottleneck of the predictors and autoencoders
(`conditions). The corresponding Bjontegaard-Delta [4]
(BD)-rate gains are shown in Table 5. Each addition leads to
strong BD-rate gains, and the flow predictor has the biggest
effect for the high-framerate UVG dataset.

Component UVG HEVC-B MCL-JCV

base model 0.0% 0.0% 0.0%
+flow predictor -29.60% -9.24% -9.88%
+res predictor -33.73% -20.37% -10.34%
+conditions -38.01% -26.51% -16.48%

Table 5: BD rate savings for RGB PSNR with respect to the
SSF base model. Lower is better.

Additionally, we measure bitrate savings for the flow and
residual bitstreams individually to demonstrate that both
Flow-AE and Res-AE benefit from our method. To mea-
sure BD-rate per component, we use the output PSNR as
distortion and use the individual bitstream sizes per compo-
nent as rate. The BD-rate gains versus PSNR for the UVG,
HEVC class B, and MCL-JCV datasets are shown in Fig-
ure 9. Here, it can be observed that the predictors deliver
significant rate savings on both flow and residual bitstreams
across all PSNR values.

For completeness, we list two training techniques that
did not work for us in early experiments and were therefore
abandoned. Training with auxiliary losses for reconstruc-
tions resulting from flow and residual prediction, xp

t and
xr
t , did not work better than using only a distortion loss de-

fined on the reconstructions pxt. Temporal loss modulation
as in [23] resulted in ă 1% rate savings, so we omitted it
for simplicity.
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Figure 8: YUV420 rate-distortion curves for the UVG, HEVC Class-B, and MCL-JCV datasets.
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Figure 9: BD-rate savings versus RGB PSNR for flow and residual bitstreams and in-total for a SSF baseline. Lower is better.

5. Conclusion

In this work, we demonstrate that improved use of
receiver-side information substantially improves the rate-
distortion performance of neural video codecs. By hav-
ing the decoder predict the flow and residual at a current
timestep based on previously transmitted information, our
codec only needs to transmit a correction, saving bits in
the process. This results in Bjontegaard-Delta rate sav-
ings of up to 30% compared to a Scale-Space Flow base-
line on common video benchmark datasets. The required
architectural modification is straightforward, requires only
lightweight components, and is applicable to other neural
video codecs as well.

Furthermore, we train our model on both the RGB and

YUV420 input domains with only minor architectural mod-
ifications, and show strong performance in both settings
compared to neural and standard baselines. As standard
codecs were designed to optimize YUV420 PSNR, our
codec does not outperform HM on this metric in the low
bitrate regime, but substantially outperform the HM codec
on YUV420 MS-SSIM. Ablations show that both the flow
and residual predictors contribute to the final performance.

Impact statement It is possible that learned codecs exac-
erbate biases present in the training data. Nevertheless, we
believe that improved video coding efficiency has a net pos-
itive impact on the world by reducing bandwidth and stor-
age space needs, and by improving visual quality for video
applications such as video conferencing.
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