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Abstract

Single image reflection removal has attracted lot of inter-
est in the recent past with data driven approaches demon-
strating significant improvements. However deep learn-
ing based approaches for multi-image reflection removal
remains relatively less explored. The existing multi-image
methods require input images to be captured at sufficiently
different view points with wide baselines. This makes it
cumbersome for the user who is required to capture the
scene by moving the camera in multiple directions. A more
convenient way is to capture a burst of images in a short
time duration without providing any specific instructions to
the user. A burst of images captured on a hand-held device
provide crucial cues that rely on the subtle handshakes cre-
ated during the capture process to separate the reflection
and the transmission layers. In this paper, we propose a
multi-stage deep learning based approach for burst reflec-
tion removal. In the first stage, we perform reflection sup-
pression on the individual images. In the second stage, a
novel reflection motion aggregation (RMA) cue is extracted
that emphasizes the transmission layer more than the re-
flection layer to aid better layer separation. In our final
stage we use this RMA cue as a guide to remove reflections
from the input. We provide the first real world burst images
dataset along with ground truth for reflection removal that
can enable future benchmarking. We evaluate both quali-
tatively and quantitatively to demonstrate the superiority of
the proposed approach. Our method achieves ~ 2dB im-
provement in PSNR over single image based methods and
~ 1dB over multi-image based methods.

1. Introduction

Many modern day cameras, especially those present in
smart phones have shown significant advances in terms of
achieving good image quality in different lighting condi-
tions. Low level computational imaging tasks such as image
de-noising [7], high dynamic range (HDR) imaging [10]
[12], have shown tremendous improvements in the recent
past with the advent of data driven approaches. However,
high-level computational imaging tasks such as image in-
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Figure 1. Illustration of the proposed method. (a) A typical multi-
image capture process (large baseline). (b) Our proposed burst
capture process for reflection removal that is very convenient to
the user. (c,f) A typical image containing transmission and re-
flection layers. (d,g) Reflection Motion Aggregation (RMA) cue
with reflection layer de-emphasized. (e,h) Recovered transmission
layer using RMA cue.

painting, removing obstructions, reflections, shadows, etc.,
still pose significant challenges in terms of achieving ac-
ceptable image quality. More recently, deep learning based
approaches have shown tremendous amount of progress in
reflection removal [30] [35] [34] [14] [22] compared to the
traditional computationally expensive optimization based
methods [25] [16] [17] making them a viable choice to be
deployed on consumer products such as smart phones.

An image I € R™*" that is corrupted by reflections can
be modeled as a combination of two layers: desirable trans-
mission layer B € R™*" and, the undesirable reflection
layer R € R™*" [25]. Removing reflections involves re-
covering the clear transmission layer B corrupted by re-
flections which is significantly ill-posed [17]. Traditional
optimization based approaches typically make strong prior
assumptions [13] [25] to reduce the ill-posed nature of the
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problem. A few other methods impose additional hand-
crafted constraints such as gradient smoothness [33], ghost-
ing cues [25], sparsity priors [26], relative smoothness [17].
More recently, data driven methods adopt learning based
approaches that automatically capture the necessary priors
required to recover the clear transmission layer. Reflec-
tion removal algorithms, can be further classified depend-
ing upon the type of inputs that are used, namely single im-
age based approach or multi-image based approach. While
there has been steady progress in single image based deep
learning approaches [5], [35], [31], [34], [30], [14], [22],
multi-image based deep learning approaches is still rela-
tively less explored. While separating reflection layer and
transmission layer using a single input image is severely ill-
posed, the multi-image input reduces the ill-posed nature.

Recent methods such as [32] [18] uses multiple images
captured at different view points to remove reflections. The
method in [32] uses conventional optimization based ap-
proach while the more recent [18] deploy a hybrid approach
of learning and online optimization to estimate optical flow
fields followed by layer reconstruction. This method itera-
tively optimizes dense motion estimation and layer recon-
struction in a coarse to fine manner. Both these methods
require a set of images to be captured with different view
points to ensure a large baseline between the images. While
such methods provide strong cues for reflection removal, it
has the following disadvantages. These methods are signif-
icantly inconvenient for the end user (see Figure 1(a)) who
typically expects an image to be captured instantaneously
with a click of a single button. Typically the performance
of such a method depends on how well the user follows
the capture instructions. Hence, there is a need to devise
a method that incorporates the convenience of single image
based approaches along with the superior reflection removal
capability of multi-image based methods. A burst capture
method provides us with this capability.

In this paper we propose a multi-stage burst reflection
removal comprising of three stages: (a) Pre-processing, (b)
Cue extraction and (c) Guided Reflection removal stages.
The first stage individually suppresses the reflections in the
burst images. Next we explicitly generate a distinguishing
cue from a burst input that is later utilized to guide reflection
removal. We propose to extract a cue based on the observa-
tion that difference in relative motion between transmission
and reflection layers during a burst capture can be leveraged
for layer separation. We call this cue as Reflection Motion
Aggregation (RMA), the extraction of which is non-trivial
and requires careful design consideration. A pictorical rep-
resentation of the proposed Reflection Motion Aggregation
cue is demonstrated in Figure 1. The motion that belong
to the reflection layer is identified and aggregated in such
a way that the relative smoothness between reflection and
transmission layers are made more discernible. The reflec-

tion layer is de-emphasized compared to the transmission
layer as shown in Figure 1(g).
To summarize, the main contributions are as follows:

(a) A multi-stage deep learning based approach for burst
reflection removal that initially performs reflection suppres-
sion on individual images followed by extraction of a novel
reflection motion aggregation cue that is used to guide the
reflection removal. (b) The proposed reflection motion ag-
gregation emphasizes the transmission layer more than the
reflection layer to further distinguish the two layers that can
aid better layer separation. (¢) We provide a large scale real
world burst image dataset with ground truth for reflection
removal captured using a smartphone camera in different
indoor and outdoor environments for future benchmarking.
(d) We have performed extensive qualitative and quantita-
tive evaluation along with ablation studies to verify the su-
periority of the proposed methods over the existing state of
the art methods.

2. Related Work

Reflection removal can be categorized into (a) Single Im-
age (b) Multi Image methods [28].
Single Image Reflection Removal: Several past meth-
ods use traditional optimization that rely on priors such as
gradient sparsity depending upon edges [13], corners [2],
layer smoothness [33], different probability distributions to
model transmission and reflection layers [17]. A Gaussian
mixture model patch based prior with an image formation
model comprising of reflection and its spatial shifts was
used in [25]. More recently, single image deep learning
methods have seen good amount of progress. An end-to-
end single image deep learning architecture was proposed
in [5]. Usage of perpetual loss was introduced in [35] and a
multi scale guided concurrent neural network was proposed
in [29]. A non-linear blending model was used to model re-
alistic reflections in [31]. A bi-directional approach where
an estimated reflection layer is used to refine the transmis-
sion layer was proposed in [34]. An alignment invariant
loss function was introduced in [30] that relaxes the con-
straint of perfect alignment between ground truth and input
pairs. A recent method [36] proposes a teacher-student net-
work where the teacher network learns reflection dynamics
from multiple view images and a student network is taught
to remove reflections from single image during inference.
Multi-Image Reflection Removal: Traditional optimiza-
tion based approaches use discriminating cues between the
two layers present in multiple images. Edge separation cues
was used in [16], difference in motion was exploited in [6]
[8], dense motion fields using SIFT flow was proposed in
[27] and a combination of motion cues and gradient spar-
sity prior was used in [32]. An approach to remove generic
obstructions caused due to glass or fence was proposed in
[32]. More recently, Alayrac et.al. [1] proposed to re-
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Figure 2. Overview of the proposed Burst Reflection Removal Pipeline. The network architecture of the sub-networks are also shown

where second and third stages use similar architecture.

duce the ill-posedness of the problem using multiple input
frames. Specifically, they propose a deep neural network
named visual centrifuge, which separates different layers of
an input video sequence corrupted by obstructions. How-
ever this method is proposed as a generic layer separation
problem and fails to remove reflections as observed by Liu
et.al [18] who proposed a hybrid method to combine opti-
mization with deep learning priors. A more recent method
[15] uses the depth ambiguity for edge regeneration to re-
cover transmission layer while [21] uses stereo images to
demonstrate layer separation on synthetically generated re-
flections. Most of these methods rely on images captured
at sufficiently different view points by scanning the scene
with predefined camera motions making it extremely incon-
venient for the end user. Generic layer separation using a
burst of images has been recently proposed in [20], however
application to reflection removal is relatively less explored.

3. Burst Reflection Removal

In this section, the proposed multi-stage approach is de-
scribed where we provide details on the network architec-
ture in section 3.1 and loss function used for training the
different stages of the network in section 3.2,

3.1. Network Architecture

An overview of the proposed method is shown in Fig.
2. We design the proposed network architecture to leverage
relative motion difference between reflection and transmis-
sion layers incurred during a burst capture to improve the
efficiency of layer separation. We propose to generate a
motion aggregate cue to aid reflection removal given a burst
of images. The proposed approach consists of 3 stages to
generate the final output image. In the first stage, each of
the input images are pre-processed to suppress the amount
of reflections. These images are passed to the reflection ag-
gregation stage, which aggregates the motion incurred in
the reflection layer alone, generating the Reflection Motion
Aggregation (RMA) cue image. The RMA image, along
with the reference input image (we use middle frame of the
burst as reference) are then passed to the guided reflection
removal stage, which learns to remove reflection using this

cue. Each of these stages are explained in detail in the fol-
lowing subsections.

3.1.1 Single Image Reflection Suppression (SIRS)

The input images are pre-processed to suppress the amount
of reflections present. This initial stage aids in the ho-
mography based image alignment in the subsequent reflec-
tion aggregation stage. We use a modified version of the
light weight network architecture proposed in [22]. We use
an upsampling operation followed by a convolution in the
decoder blocks, instead of using deconvolution, to avoid
checkerboard artefacts. We also provide batch normaliza-
tion and ReLU activation after every convolution operation.

3.1.2 Reflection Motion Aggregation - RMA

The reflection suppressed images are firstly aligned using
a homography based image alignment, where we use ORB
features [24] and RANSAC [23] to warp the non-reference
images to the reference image. The reflection suppression
helps in reducing the number of outliers for homography
based transmission alignment. The aligned images are then
passed to the reflection aggregation stage. The goal of this
stage is to aggregate the motion encountered by the reflec-
tion layer during the burst duration into a Reflection Motion
Aggregate (RMA) image. The reflections that are left out
by the reflection suppression stage are accumulated to form
the reflection aggregation. Since reflection and transmission
layers follow different trajectories during a burst process, it
is possible to aggregate the motion in reflection layer alone,
without altering the transmission layer. The resultant RMA
image will have a higher relative smoothness difference be-
tween the transmission and the aggregate reflection layers,
compared to the original input. This leads to a better sepa-
ration of the distributions between the the two layers, which
can be leveraged as a cue for better reflection removal in the
later stage. In order to handle scenarios where the transmis-
sion alignment is not perfect, we deploy a training strategy
that can handle misalignments. More details of this training
strategy is given in Section 5.

The n outputs from the SIRS stage are warped so that
their transmission layers are aligned with that of the refer-
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ence image. The transmission aligned images are passed
through separate encoders comprising of three convolu-
tional blocks of stride 2 followed by 4 residual dual convo-
lutional blocks (RCBs) as shown in Figure 2. The outputs
from the encoders are then concatenated and passed through
a sequence of 8 RCBs. The resultant feature maps are then
passed through the decoder block consisting of a further 4
RCBs and three upsampling layers to generate the RMA cue
image. Each of the upsampling layers perform bilinear up-
sampling followed by a convolution. We then provide skip
connections between all the encoders to the decoders. We
also use batch normalization and ReLU activations in every
convolutional blocks.

3.1.3 Guided Reflection Removal

In this final stage, the RMA image obtained from the sec-
ond stage is used as a guide to remove reflections from the
reflection suppressed reference image. The RMA image
clearly distinguishes between the transmission and reflec-
tion layers using motion aggregation. We propose a deep
network to use the RMA image as a cue to remove reflec-
tions from the reference image. We follow a similar archi-
tecture for this stage as that used in RMA stage. We use
only 2 encoder blocks to extract features from RMA cue
image and the input image respectively.

3.2. Loss Function

We use a combination of contextual loss and pixel losses
to train different stages of our pipeline. We introduce small
mis-alignments in the inputs to the RMA stage to account
for errors in transmission layer alignment that may occur
in real-life scenarios. The contextual loss analyses simi-
larity between contextual information and helps in improv-
ing convergence [30]. The third stage uses the RMA im-
age as a guide along with input which is also expected to
have small mis-alignments, hence we use contextual loss
for this stage as well. More details about these loss func-
tions can be found in [30] [19]. We observed that using
contextual loss alone results in loss of details and texture.
Hence, a pixel level loss is added along with contextual loss
as L, = a.||Lh—I;||1+B.|[Io—It||2+7.|| AL, — AL|;. Here
A represents image gradient. In our experiments, o = 0.2,
B = 0.2, v = 0.4 were used. The total loss used to train
the network is defined as £ = £, 4+ 0L., where § is a
weighing parameter and L., is the contextual loss. In our
experiments, 6 = 0.8 was used.

4. Datasets

We use three types of datasets for training and eval-
uation: (a) Synthetic Burst Reflection dataset, (b) Real
world Burst Reflection dataset (ours) and (c) Large Base-
line dataset (publicly available).
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Figure 3. Real World Burst Image Reflection Removal Dataset
(BIRR). (a) Data capture setup for the Aligned dataset. (b) Hand-
held dataset. (c) Sample images of the burst for one set.
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4.1. Synthetic Burst Reflection (SBR) dataset

Learning to remove reflections using burst images re-
quires a large amount of training data. To alleviate this
problem, several image formation models have been pro-
posed to generate synthetic data for single image reflection
removal [34] [31]. Methods such as [18] extend these
models to handle multi-image reflection removal by apply-
ing them on video data in a frame-by-frame manner. How-
ever, we observed that video data requires extensive pruning
to avoid unrealistic scene transitions. Hence, a method is
developed to simulate realistic burst capture using a single
image. This method generates a synthetic burst with reflec-
tion in two stages: a) Synthetic burst generation for trans-
mission and reflection layers; and b) Blending image bursts
to generate single burst of images with reflection. Assump-
tions are made, w.r.t. reflection and transmission layers be-
ing planar, static and at different depths from camera plane.

4.1.1 Synthetic Burst Model:

Given images I; and I, representing transmission and re-
flection layers respectively, synthetic image bursts I+ and I,
need to be generated. The handshake motion incurred dur-
ing capture can be represented by the set of motion vectors
M : {0x,0y,0,,tx, ty, t,}, where 6 denotes 3 degrees of
rotational freedom and t denotes 3 degrees of translational
freedom. Each of the vectors denotes a set sampled from
the trajectory followed by the camera during handshake.
To generate realistic trajectories, we analyze the work by
Kohler et.al. [11] on modeling handshake patterns and ob-
serve that a 3¢ order polynomial can sufficiently approxi-
mate a typical handshake pattern. Next, 6 random polyno-
mials are generated for each of the 6 degrees of freedom
from which n points are uniformly sampled to generate M.

For a sufficiently planar scene, [9] showed that M can be
approximated using 3 degrees of freedom M’ : {t,,t,,0.}
as follows: tx = tx — d.sin(f,) and ty, = ty + d.sin(6;)
[11]. Here z denotes normal axis to camera plane and d de-
notes distance of image plane from the camera plane. Using
the assumption that the reflection and transmission layers
are at different depths, we generate two different motion
vectors { M/, M!}. The synthetic bursts {I;,I,} can then
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(a) Input Ref.
Figure 4. Qualitative visual comparison against state of the art single image as well as multi-image methods on synthetic dataset.(a) Input
burst reference frame, (b) ERRNet [30], (c) Loc.Aware [3], (d) IBCLN [14], (e) Alayrac.et.al [1], (f) Liu.et.al [18] with online optimization,

(b) ERRNet (c) Loc.Aware (d) IBCLN (e) Alayrac (f) Liu.et.al (g) Ours (h) Ground Truth

(g) Ours (h) Ground truth. The proposed method is able to suppress reflections to an aesthetically pleasing level (Rows 2,4)

be generated by transforming {I;, I,.} using the homogra-
phies represented by { M/, M/}.

4.1.2 Synthesizing Reflections:

We use images from PASCAL-VOC dataset [4] for train-
ing. In every iteration of training, a pair of bursts {I, I}
are generated using images {1, I, } chosen at random from
the dataset. The burst images obtained are then blended us-
ing the image formation model proposed by [34]. I, is lat-
erally inverted before passing through the image formation
model. I; is chosen as ground truth for training.

4.2. Real World Burst Image Reflection Removal
(BIRR) dataset

Our real world burst image reflection removal (BIRR)
dataset comprises of a large set of images captured with and
without reflections in burst mode. To the best of our knowl-
edge, there is no publicly available large scale burst image
dataset for reflection removal. Since training a deep learn-
ing method require a large dataset, we capture more than
1000 sets of burst image with at least 5 images per burst.
This dataset is split into two categories namely (a) Aligned
dataset and (b) Hand-held dataset. We provide the details
of each of these sets in the following subsection. We will
release the BIRR dataset later upon paper acceptance.

4.2.1 Aligned Dataset:

In order to collect high quality dataset with perfect align-
ment between input and ground truth transmission, the
smartphone is mounted on a tripod to fix the position of
the camera. The data collection method for the tripod set is
shown in Figure 3. We create real reflections in the scene
by using a hand held glass in front of the camera to cre-
ate different reflection motions for different images in the
burst. This captured set of images form the input burst while
a single image captured without the hand held glass form
the perfectly aligned ground truth transmission for training
purpose. We repeat this process to capture a variety of sce-
narios such as indoor/outdoor, different lighting conditions,
different types of glasses, different smartphones, etc to pre-
pare a large set required for training. The input bursts com-
prises of one reference image and 4 non-reference images,
where we choose the middle frame of the burst as reference.
We apply synthetic motion model to the non-reference input
images using the method described in Section 4.1. The ref-
erence image of the burst and the ground truth transmission
are perfectly aligned in this dataset. This dataset is mainly
used for training purpose.

4.2.2 Hand-Held Dataset:

This dataset comprises of high quality image bursts cap-
tured using smartphone cameras in hand-held mode. We
capture about 100 different scenes where the glass obstruc-
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tion is either hand-held or fixed depending upon the conve-
nience of data capture. We also capture the best possible
ground truth image that is required for reference purpose.
The reference image of the input burst and the ground truth
are not perfectly aligned in this dataset, hence this dataset is
only suitable for testing purpose.

4.3. Large Baseline Dataset

We also evaluate the proposed method on the publicly
available multi-image dataset for reflection removal [32].
This dataset contains 8 sets of videos using a moving cam-
era to capture the scene at different viewpoints. We sample
the video sequence at 5 frames per second and create S im-
ages per set. This dataset contains large view point differ-
ences between the images. In spite of the fact that this is
not a burst dataset, we evaluate our method on this dataset
as this is only publicly available multi-image dataset for re-
flection removal.

5. Implementation and Training Details

The proposed method is implemented in Pytorch on a
PC with Intel Xeon 6242R with 512GB RAM and Tesla
V100 GPU with 32GB memory. The multi-stage architec-
ture comprises of three different networks namely - Single
Image Reflection Suppression (SIRS) stage, Reflection Mo-
tion Aggregation (RMA) stage and the Guided Reflection
Removal stage. Initially, these three networks are indepen-
dently trained followed by end-to-end transfer learning of
the last two stages to achieve convergence.

5.1. Training SIRS stage:

We adopt a strategy similar to [30], [22] where we first
train on the single image synthetic datasets generated using
the PASCAL VOC dataset [4]. A total of 7000 images with
synthetic reflections are generated for training. We train this
network for about 1000 epochs using the Adam optimizer
with an initial learning rate of 10~ followed by fine tuning
on the real world Berkeley dataset [35] for 200 epochs to
achieve convergence. We use randomly cropped patches of
size 2566 x 256 with scale and rotation augmentations.

5.2. Training RMA and Guided Removal Stages:

Firstly, these two stages are trained independently fol-
lowed by end-to-end training. The RMA stage is first
trained using the synthetic SBR dataset (Section 4.1) with
4000 burst training samples for 1000 epochs using Adam
optimizer using a initial learning rate of 10~%. This is fol-
lowed by fine tuning on the BIRR dataset (Section 4.2) for
500 epochs to achieve convergence. The BIRR aligned
dataset is used to generate the ground truth for the RMA
stage where we perform weighted averaging of aligned
frames. We apply synthetic motion model to the aligned
burst frames to generate small mis-alignments to the inputs
for training. This strategy of training with mis-aligned input

helps the network in handling alignment errors that might
have been caused due to incorrect homography estimation.
The outputs generated from the RMA stage is then used
as input to train the Guided Reflection Removal stage. We
follow a similar approach of first training with a synthetic
dataset followed by fine tuning on the real dataset. Finally,
we perform end-to-end training to fine tune the weights of
the network to generate high quality reflection free output.
We use a combination of contextual loss and pixel loss as
described in Section 3.2 for both these stages.

6. Experimental Results

In this section, we first provide qualitative and quantita-
tive evaluation followed by ablation studies.

6.1. Comparison against State of the Art Methods

We compare the proposed methods on three different
datasets (see Section 4 for details). Firstly, we compare both
qualitatively and quantitatively on the synthetic datasets fol-
lowed by the our BIRR dataset. We finally evaluate on the
publicly available multi-image dataset that has large view
point variations [32]. Please refer to the supplementary ma-
terial for more sets of comparisons.

6.1.1 Evaluation on the Synthetic SBR Dataset

We first evaluate the proposed method using the synthetic
dataset against both single image [30] [14] [3] and multi-
image based methods [1] [18]. All the single image
methods are trained on synthetic dataset generated using
PASCAL-VOC by adapting the method described in [30]
[35]. We extend this dataset with synthetic motions to gen-
erate the SBR dataset as described in Section 4.1. We use
online optimization on this dataset to generate results for
[18]. Since, [1] does not release their source code, we im-
plemented their method and trained on this dataset for eval-
uation purpose. The qualitative comparisons are shown in
Figure 4 and the quantitative comparisons in Table 1. As it
is evident, our method out-performs the existing single im-
age and multi-image methods both qualitatively as well as
quantitatively with at least 1d B improvement in PSNR.

6.1.2 Evaluation on the Real World BIRR Dataset

In order to evaluate our method on the real world BIRR
dataset, we choose the best performing single image based
method on synthetic dataset - ERRNet [30] and also the
multi-image based methods [1] [18]. We fine tune both
the methods [30] [1] on the BIRR dataset till convergence.
We also perform the recommended online optimization for
[18] on the BIRR dataset for a fair evaluation. The quali-
tative evaluation is shown in Figure 5 and the quantitative
evaluation in Table 1. While both the multi-image meth-
ods [1] [18] are able to suppress the reflection layer to an
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(a) Input Ref. (b) ERRNet (c) Alayrac (d) Liu.et.al

(e) Ours
Figure 5. Qualitative visual comparison against state of the art single image as well as multi-image methods on our BIRR burst dataset.(a)
Input burst reference image, (b) ERRNet [30], (c) Alayrac.et.al [1], (d) Liu.et.al [18], (¢) Ours, (f) Ground truth. The proposed method is
able to suppress strong reflections better than all other state of the art methods

(f) Ground Truth

SBR Dataset BIRR Dataset Large Baseline Dataset
Method Type Time(s) | PSNR SSIM NCC | PSNR SSIM NCC | PSNR SSIM NCC
ERRNet [30] Single 0.76 21.89 0.855 0.946 | 19.51 0.751 0.841 | 20.49 0.758 0.8418

IBCLN [14]
Loc.Aware [3]

Single 083 | 21.82 0836 0951 | 1831 0.737 0.839 | 1896 0735 0.843
Single 041 | 1848 0813 0910 | 17.78 0.744 0941 | 1727 0733  0.855
Livetal [18] Muli® 235 | 1944 0806 0874 | 1849 0725 0814 | 21.01 0791  0.852
Livetal [18] Muli® 3160 | 22.78 0811 0.961 | 19.59 0731 0.827 | 23.39 0.841 0.952
Alayracetal [1]  Multi 153 | 2091 0772 0912 | 19.13 0733 0834 | 1971 0.771  0.896
Ours Multi 1.24 23.8  0.876 0969 | 20.64 0.761 0936 | 23.03 0.823 0.943

Table 1. Quantitative comparison against on three different datasets. Our method achieves an overall improvement of 1.02d B in PSNR on
SBR dataset, 1.05dB on BIRR dataset, 2dB on large baseline dataset over state of the art [18]. Our method is also comparable to a more
complex online optimization based method in [18] with 2500x better speed. Here we use two variants of state of the art [18] - MultiV
Without online optimization, Multi® With online optimization. The best results are shown in bold face and the second best is underlined.

extent, they fail to remove the reflection to perceptible lev-
els. This is clearly evident especially in cases of strong re-
flective components (Rows 3,4). It can be observed that the
proposed method is able to suppress the reflection layer bet-
ter than the state-of-the-art solutions resulting in a cleaner
output. The proposed method obtains the best scores on all
the metrics of PSNR, SSIM, and NCC.

6.1.3 [Evaluation on the Large Baseline Dataset

We also evaluate the proposed method on real video se-
quences from [32]. This dataset comprises of video se-
quences captured by moving the camera in order to capture

different view points. We prepare a Multi-Image dataset
using these video sequences as described in Section 4.3.
The proposed method outperforms the single image based
methods as well as the multi-image based method [1] and
achieves comparable scores against the state of the art
method [18]. The qualitative evaluation is shown in Figure
6 and the quantitative evaluation in Table 1. The proposed
method is far superior in terms of processing time compared
to [18] and is much more suitable for real time applications.
The state of the art [18] performs poorly without online op-
timization. The inference time is measured on a PC with
Intel Xeon 6242R with 512GB RAM and an NVIDIA Tesla
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(b) ERRNet
Figure 6. Qualitative visual comparison against state of the art single image as well as multi-image methods on public Large Baseline
dataset (a) Input burst reference (b) ERRNet [30] (c) Alayrac.et.al 2017 [1] (d) Liu.et.al [18] (e) Ours (f) Ground truth. The proposed
method is comparable to the state of the art method [18] at significantly lower complexity (see Table 1)

(a) Input (c) Alayrac

S1 S2 S3 S4 PSNR SSIM NCC

N1 V[22] 1923 0.81 0.921

N2 V[22] V v 2004 084 0941
N3 v o v v 2181 083 00955
N4 Vv[22] v v v 238 0876 0.969
N5 V[30] v v v 2396 0.874 0.962
N6 Vv[14] v v v 2312 0865 095
N7 Vv[3 v v v 2362 0872 0.961

Table 2. Ablation Studies: Network Component Analysis. S1 -
SIRS stage, S2 - Transmission Alignment, S3 - Reflection Motion
Aggregation, S4 - Guided Reflection Removal

V100 GPU with 32GB memory.
6.2. Ablation studies

We evaluate the proposed pipeline using the SBR dataset
the proposed pipeline by considering different design strate-
gies as shown in Table 2. We evaluate the first variation N1
with only the first stage of Single Image Reflection Suppres-
sion (SIRS) by providing the reference image of the burst.
For the second variation N2, we introduce the transmission
alignment as well as guided reflection removal stages. A
simple weighted averaging of the transmission aligned im-
ages is used instead of RMA stage for this variation. Thirdly
for N3, we skip the reflection suppression stage and perform
image alignment followed by Reflection Motion Aggrega-
tion stage along with the last stage of guided reflection re-

(d) Liu.et.al (e) Ours (f) Ground Truth

moval to generate the final output. Our next variation N4 is
where all the components of the proposed method is intro-
duced. We obtain a gain of about 3d B by moving from N2
to N4 where RMA stage is introduced instead of weighted
averaging. We also obtain a gain of 1d B when the first stage
of reflection suppression that helps in improving the ho-
mography estimation for improved transmission alignment.
Lastly, we evaluate the consideration of the pre-processing
step of reflection suppression in N5-N7 by replacing with
different state of the art methods [30], [14] and [3]. We see
that while [30] provides best results with a higher complex-
ity, [22] provides good results at least complexity.

7. Conclusion

In this paper, a multi-stage deep-learning based approach
for removing reflections from a burst of images is pro-
posed. We propose a novel reflection motion aggregation
cue for burst reflection removal. We capture a large scale
real world dataset that will be publicly released later upon
acceptance. Our method achieves more than 2dB improve-
ments over single image based methods. For multi-image
based methods, our method achieves an overall improve-
ment of 1.02d B in PSNR on SBR dataset, 1.05d B on BIRR
dataset, and 2dB on large baseline dataset over state of the
art [18]. Our method is also comparable to a more complex
online optimization based method in [18] with 2500 x better
speed.
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