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Abstract

Single image reflection removal has attracted lot of inter-

est in the recent past with data driven approaches demon-

strating significant improvements. However deep learn-

ing based approaches for multi-image reflection removal

remains relatively less explored. The existing multi-image

methods require input images to be captured at sufficiently

different view points with wide baselines. This makes it

cumbersome for the user who is required to capture the

scene by moving the camera in multiple directions. A more

convenient way is to capture a burst of images in a short

time duration without providing any specific instructions to

the user. A burst of images captured on a hand-held device

provide crucial cues that rely on the subtle handshakes cre-

ated during the capture process to separate the reflection

and the transmission layers. In this paper, we propose a

multi-stage deep learning based approach for burst reflec-

tion removal. In the first stage, we perform reflection sup-

pression on the individual images. In the second stage, a

novel reflection motion aggregation (RMA) cue is extracted

that emphasizes the transmission layer more than the re-

flection layer to aid better layer separation. In our final

stage we use this RMA cue as a guide to remove reflections

from the input. We provide the first real world burst images

dataset along with ground truth for reflection removal that

can enable future benchmarking. We evaluate both quali-

tatively and quantitatively to demonstrate the superiority of

the proposed approach. Our method achieves ∼ 2dB im-

provement in PSNR over single image based methods and

∼ 1dB over multi-image based methods.

1. Introduction

Many modern day cameras, especially those present in

smart phones have shown significant advances in terms of

achieving good image quality in different lighting condi-

tions. Low level computational imaging tasks such as image

de-noising [7], high dynamic range (HDR) imaging [10]

[12], have shown tremendous improvements in the recent

past with the advent of data driven approaches. However,

high-level computational imaging tasks such as image in-
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Figure 1. Illustration of the proposed method. (a) A typical multi-

image capture process (large baseline). (b) Our proposed burst

capture process for reflection removal that is very convenient to

the user. (c,f) A typical image containing transmission and re-

flection layers. (d,g) Reflection Motion Aggregation (RMA) cue

with reflection layer de-emphasized. (e,h) Recovered transmission

layer using RMA cue.

painting, removing obstructions, reflections, shadows, etc.,

still pose significant challenges in terms of achieving ac-

ceptable image quality. More recently, deep learning based

approaches have shown tremendous amount of progress in

reflection removal [30] [35] [34] [14] [22] compared to the

traditional computationally expensive optimization based

methods [25] [16] [17] making them a viable choice to be

deployed on consumer products such as smart phones.

An image I ∈ R
mxn that is corrupted by reflections can

be modeled as a combination of two layers: desirable trans-

mission layer B ∈ R
mxn and, the undesirable reflection

layer R ∈ R
mxn [25]. Removing reflections involves re-

covering the clear transmission layer B corrupted by re-

flections which is significantly ill-posed [17]. Traditional

optimization based approaches typically make strong prior

assumptions [13] [25] to reduce the ill-posed nature of the
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problem. A few other methods impose additional hand-

crafted constraints such as gradient smoothness [33], ghost-

ing cues [25], sparsity priors [26], relative smoothness [17].

More recently, data driven methods adopt learning based

approaches that automatically capture the necessary priors

required to recover the clear transmission layer. Reflec-

tion removal algorithms, can be further classified depend-

ing upon the type of inputs that are used, namely single im-

age based approach or multi-image based approach. While

there has been steady progress in single image based deep

learning approaches [5], [35], [31], [34], [30], [14], [22],

multi-image based deep learning approaches is still rela-

tively less explored. While separating reflection layer and

transmission layer using a single input image is severely ill-

posed, the multi-image input reduces the ill-posed nature.

Recent methods such as [32] [18] uses multiple images

captured at different view points to remove reflections. The

method in [32] uses conventional optimization based ap-

proach while the more recent [18] deploy a hybrid approach

of learning and online optimization to estimate optical flow

fields followed by layer reconstruction. This method itera-

tively optimizes dense motion estimation and layer recon-

struction in a coarse to fine manner. Both these methods

require a set of images to be captured with different view

points to ensure a large baseline between the images. While

such methods provide strong cues for reflection removal, it

has the following disadvantages. These methods are signif-

icantly inconvenient for the end user (see Figure 1(a)) who

typically expects an image to be captured instantaneously

with a click of a single button. Typically the performance

of such a method depends on how well the user follows

the capture instructions. Hence, there is a need to devise

a method that incorporates the convenience of single image

based approaches along with the superior reflection removal

capability of multi-image based methods. A burst capture

method provides us with this capability.

In this paper we propose a multi-stage burst reflection

removal comprising of three stages: (a) Pre-processing, (b)

Cue extraction and (c) Guided Reflection removal stages.

The first stage individually suppresses the reflections in the

burst images. Next we explicitly generate a distinguishing

cue from a burst input that is later utilized to guide reflection

removal. We propose to extract a cue based on the observa-

tion that difference in relative motion between transmission

and reflection layers during a burst capture can be leveraged

for layer separation. We call this cue as Reflection Motion

Aggregation (RMA), the extraction of which is non-trivial

and requires careful design consideration. A pictorical rep-

resentation of the proposed Reflection Motion Aggregation

cue is demonstrated in Figure 1. The motion that belong

to the reflection layer is identified and aggregated in such

a way that the relative smoothness between reflection and

transmission layers are made more discernible. The reflec-

tion layer is de-emphasized compared to the transmission

layer as shown in Figure 1(g).

To summarize, the main contributions are as follows:

(a) A multi-stage deep learning based approach for burst

reflection removal that initially performs reflection suppres-

sion on individual images followed by extraction of a novel

reflection motion aggregation cue that is used to guide the

reflection removal. (b) The proposed reflection motion ag-

gregation emphasizes the transmission layer more than the

reflection layer to further distinguish the two layers that can

aid better layer separation. (c) We provide a large scale real

world burst image dataset with ground truth for reflection

removal captured using a smartphone camera in different

indoor and outdoor environments for future benchmarking.

(d) We have performed extensive qualitative and quantita-

tive evaluation along with ablation studies to verify the su-

periority of the proposed methods over the existing state of

the art methods.

2. Related Work

Reflection removal can be categorized into (a) Single Im-

age (b) Multi Image methods [28].

Single Image Reflection Removal: Several past meth-

ods use traditional optimization that rely on priors such as

gradient sparsity depending upon edges [13], corners [2],

layer smoothness [33], different probability distributions to

model transmission and reflection layers [17]. A Gaussian

mixture model patch based prior with an image formation

model comprising of reflection and its spatial shifts was

used in [25]. More recently, single image deep learning

methods have seen good amount of progress. An end-to-

end single image deep learning architecture was proposed

in [5]. Usage of perpetual loss was introduced in [35] and a

multi scale guided concurrent neural network was proposed

in [29]. A non-linear blending model was used to model re-

alistic reflections in [31]. A bi-directional approach where

an estimated reflection layer is used to refine the transmis-

sion layer was proposed in [34]. An alignment invariant

loss function was introduced in [30] that relaxes the con-

straint of perfect alignment between ground truth and input

pairs. A recent method [36] proposes a teacher-student net-

work where the teacher network learns reflection dynamics

from multiple view images and a student network is taught

to remove reflections from single image during inference.

Multi-Image Reflection Removal: Traditional optimiza-

tion based approaches use discriminating cues between the

two layers present in multiple images. Edge separation cues

was used in [16], difference in motion was exploited in [6]

[8], dense motion fields using SIFT flow was proposed in

[27] and a combination of motion cues and gradient spar-

sity prior was used in [32]. An approach to remove generic

obstructions caused due to glass or fence was proposed in

[32]. More recently, Alayrac et.al. [1] proposed to re-
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Figure 2. Overview of the proposed Burst Reflection Removal Pipeline. The network architecture of the sub-networks are also shown

where second and third stages use similar architecture.

duce the ill-posedness of the problem using multiple input

frames. Specifically, they propose a deep neural network

named visual centrifuge, which separates different layers of

an input video sequence corrupted by obstructions. How-

ever this method is proposed as a generic layer separation

problem and fails to remove reflections as observed by Liu

et.al [18] who proposed a hybrid method to combine opti-

mization with deep learning priors. A more recent method

[15] uses the depth ambiguity for edge regeneration to re-

cover transmission layer while [21] uses stereo images to

demonstrate layer separation on synthetically generated re-

flections. Most of these methods rely on images captured

at sufficiently different view points by scanning the scene

with predefined camera motions making it extremely incon-

venient for the end user. Generic layer separation using a

burst of images has been recently proposed in [20], however

application to reflection removal is relatively less explored.

3. Burst Reflection Removal

In this section, the proposed multi-stage approach is de-

scribed where we provide details on the network architec-

ture in section 3.1 and loss function used for training the

different stages of the network in section 3.2,

3.1. Network Architecture

An overview of the proposed method is shown in Fig.

2. We design the proposed network architecture to leverage

relative motion difference between reflection and transmis-

sion layers incurred during a burst capture to improve the

efficiency of layer separation. We propose to generate a

motion aggregate cue to aid reflection removal given a burst

of images. The proposed approach consists of 3 stages to

generate the final output image. In the first stage, each of

the input images are pre-processed to suppress the amount

of reflections. These images are passed to the reflection ag-

gregation stage, which aggregates the motion incurred in

the reflection layer alone, generating the Reflection Motion

Aggregation (RMA) cue image. The RMA image, along

with the reference input image (we use middle frame of the

burst as reference) are then passed to the guided reflection

removal stage, which learns to remove reflection using this

cue. Each of these stages are explained in detail in the fol-

lowing subsections.

3.1.1 Single Image Reflection Suppression (SIRS)

The input images are pre-processed to suppress the amount

of reflections present. This initial stage aids in the ho-

mography based image alignment in the subsequent reflec-

tion aggregation stage. We use a modified version of the

light weight network architecture proposed in [22]. We use

an upsampling operation followed by a convolution in the

decoder blocks, instead of using deconvolution, to avoid

checkerboard artefacts. We also provide batch normaliza-

tion and ReLU activation after every convolution operation.

3.1.2 Reflection Motion Aggregation - RMA

The reflection suppressed images are firstly aligned using

a homography based image alignment, where we use ORB

features [24] and RANSAC [23] to warp the non-reference

images to the reference image. The reflection suppression

helps in reducing the number of outliers for homography

based transmission alignment. The aligned images are then

passed to the reflection aggregation stage. The goal of this

stage is to aggregate the motion encountered by the reflec-

tion layer during the burst duration into a Reflection Motion

Aggregate (RMA) image. The reflections that are left out

by the reflection suppression stage are accumulated to form

the reflection aggregation. Since reflection and transmission

layers follow different trajectories during a burst process, it

is possible to aggregate the motion in reflection layer alone,

without altering the transmission layer. The resultant RMA

image will have a higher relative smoothness difference be-

tween the transmission and the aggregate reflection layers,

compared to the original input. This leads to a better sepa-

ration of the distributions between the the two layers, which

can be leveraged as a cue for better reflection removal in the

later stage. In order to handle scenarios where the transmis-

sion alignment is not perfect, we deploy a training strategy

that can handle misalignments. More details of this training

strategy is given in Section 5.

The n outputs from the SIRS stage are warped so that

their transmission layers are aligned with that of the refer-
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ence image. The transmission aligned images are passed

through separate encoders comprising of three convolu-

tional blocks of stride 2 followed by 4 residual dual convo-

lutional blocks (RCBs) as shown in Figure 2. The outputs

from the encoders are then concatenated and passed through

a sequence of 8 RCBs. The resultant feature maps are then

passed through the decoder block consisting of a further 4

RCBs and three upsampling layers to generate the RMA cue

image. Each of the upsampling layers perform bilinear up-

sampling followed by a convolution. We then provide skip

connections between all the encoders to the decoders. We

also use batch normalization and ReLU activations in every

convolutional blocks.

3.1.3 Guided Reflection Removal

In this final stage, the RMA image obtained from the sec-

ond stage is used as a guide to remove reflections from the

reflection suppressed reference image. The RMA image

clearly distinguishes between the transmission and reflec-

tion layers using motion aggregation. We propose a deep

network to use the RMA image as a cue to remove reflec-

tions from the reference image. We follow a similar archi-

tecture for this stage as that used in RMA stage. We use

only 2 encoder blocks to extract features from RMA cue

image and the input image respectively.

3.2. Loss Function

We use a combination of contextual loss and pixel losses

to train different stages of our pipeline. We introduce small

mis-alignments in the inputs to the RMA stage to account

for errors in transmission layer alignment that may occur

in real-life scenarios. The contextual loss analyses simi-

larity between contextual information and helps in improv-

ing convergence [30]. The third stage uses the RMA im-

age as a guide along with input which is also expected to

have small mis-alignments, hence we use contextual loss

for this stage as well. More details about these loss func-

tions can be found in [30] [19]. We observed that using

contextual loss alone results in loss of details and texture.

Hence, a pixel level loss is added along with contextual loss

as Lp = α.‖Io−It‖1+β.‖Io−It‖2+γ.‖∆Io−∆It|1. Here

∆ represents image gradient. In our experiments, α = 0.2,

β = 0.2, γ = 0.4 were used. The total loss used to train

the network is defined as L = Lp + δLcx where δ is a

weighing parameter and Lcx is the contextual loss. In our

experiments, δ = 0.8 was used.

4. Datasets

We use three types of datasets for training and eval-

uation: (a) Synthetic Burst Reflection dataset, (b) Real

world Burst Reflection dataset (ours) and (c) Large Base-

line dataset (publicly available).

(a)

(c)

Glass

Camera

Frame - 0 Frame - 1 Frame - 2 Frame – 3 Frame – 4

(b)

Camera

Glass

Tripod

Figure 3. Real World Burst Image Reflection Removal Dataset

(BIRR). (a) Data capture setup for the Aligned dataset. (b) Hand-

held dataset. (c) Sample images of the burst for one set.

4.1. Synthetic Burst Reflection (SBR) dataset

Learning to remove reflections using burst images re-

quires a large amount of training data. To alleviate this

problem, several image formation models have been pro-

posed to generate synthetic data for single image reflection

removal [34] [31]. Methods such as [18] extend these

models to handle multi-image reflection removal by apply-

ing them on video data in a frame-by-frame manner. How-

ever, we observed that video data requires extensive pruning

to avoid unrealistic scene transitions. Hence, a method is

developed to simulate realistic burst capture using a single

image. This method generates a synthetic burst with reflec-

tion in two stages: a) Synthetic burst generation for trans-

mission and reflection layers; and b) Blending image bursts

to generate single burst of images with reflection. Assump-

tions are made, w.r.t. reflection and transmission layers be-

ing planar, static and at different depths from camera plane.

4.1.1 Synthetic Burst Model:

Given images It and Ir representing transmission and re-

flection layers respectively, synthetic image bursts It and Ir

need to be generated. The handshake motion incurred dur-

ing capture can be represented by the set of motion vectors

M : {θx, θy, θz, tx, ty, tz}, where θ denotes 3 degrees of

rotational freedom and t denotes 3 degrees of translational

freedom. Each of the vectors denotes a set sampled from

the trajectory followed by the camera during handshake.

To generate realistic trajectories, we analyze the work by

Kohler et.al. [11] on modeling handshake patterns and ob-

serve that a 3rd order polynomial can sufficiently approxi-

mate a typical handshake pattern. Next, 6 random polyno-

mials are generated for each of the 6 degrees of freedom

from which n points are uniformly sampled to generate M .

For a sufficiently planar scene, [9] showed that M can be

approximated using 3 degrees of freedom M ′ : {tx, ty, θz}
as follows: tx = tx − d.sin(θy) and ty = ty + d.sin(θx)
[11]. Here z denotes normal axis to camera plane and d de-

notes distance of image plane from the camera plane. Using

the assumption that the reflection and transmission layers

are at different depths, we generate two different motion

vectors {M ′

t ,M
′

r}. The synthetic bursts {It, Ir} can then
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(a) Input Ref. (b) ERRNet (c) Loc.Aware (d) IBCLN (e) Alayrac (f) Liu.et.al (g) Ours (h) Ground Truth

Figure 4. Qualitative visual comparison against state of the art single image as well as multi-image methods on synthetic dataset.(a) Input

burst reference frame, (b) ERRNet [30], (c) Loc.Aware [3], (d) IBCLN [14], (e) Alayrac.et.al [1], (f) Liu.et.al [18] with online optimization,

(g) Ours (h) Ground truth. The proposed method is able to suppress reflections to an aesthetically pleasing level (Rows 2,4)

be generated by transforming {It, Ir} using the homogra-

phies represented by {M ′

t ,M
′

r}.

4.1.2 Synthesizing Reflections:

We use images from PASCAL-VOC dataset [4] for train-

ing. In every iteration of training, a pair of bursts {It, Ir}
are generated using images {It, Ir} chosen at random from

the dataset. The burst images obtained are then blended us-

ing the image formation model proposed by [34]. Ir is lat-

erally inverted before passing through the image formation

model. It is chosen as ground truth for training.

4.2. Real World Burst Image Reflection Removal
(BIRR) dataset

Our real world burst image reflection removal (BIRR)

dataset comprises of a large set of images captured with and

without reflections in burst mode. To the best of our knowl-

edge, there is no publicly available large scale burst image

dataset for reflection removal. Since training a deep learn-

ing method require a large dataset, we capture more than

1000 sets of burst image with at least 5 images per burst.

This dataset is split into two categories namely (a) Aligned

dataset and (b) Hand-held dataset. We provide the details

of each of these sets in the following subsection. We will

release the BIRR dataset later upon paper acceptance.

4.2.1 Aligned Dataset:

In order to collect high quality dataset with perfect align-

ment between input and ground truth transmission, the

smartphone is mounted on a tripod to fix the position of

the camera. The data collection method for the tripod set is

shown in Figure 3. We create real reflections in the scene

by using a hand held glass in front of the camera to cre-

ate different reflection motions for different images in the

burst. This captured set of images form the input burst while

a single image captured without the hand held glass form

the perfectly aligned ground truth transmission for training

purpose. We repeat this process to capture a variety of sce-

narios such as indoor/outdoor, different lighting conditions,

different types of glasses, different smartphones, etc to pre-

pare a large set required for training. The input bursts com-

prises of one reference image and 4 non-reference images,

where we choose the middle frame of the burst as reference.

We apply synthetic motion model to the non-reference input

images using the method described in Section 4.1. The ref-

erence image of the burst and the ground truth transmission

are perfectly aligned in this dataset. This dataset is mainly

used for training purpose.

4.2.2 Hand-Held Dataset:

This dataset comprises of high quality image bursts cap-

tured using smartphone cameras in hand-held mode. We

capture about 100 different scenes where the glass obstruc-

243



tion is either hand-held or fixed depending upon the conve-

nience of data capture. We also capture the best possible

ground truth image that is required for reference purpose.

The reference image of the input burst and the ground truth

are not perfectly aligned in this dataset, hence this dataset is

only suitable for testing purpose.

4.3. Large Baseline Dataset

We also evaluate the proposed method on the publicly

available multi-image dataset for reflection removal [32].

This dataset contains 8 sets of videos using a moving cam-

era to capture the scene at different viewpoints. We sample

the video sequence at 5 frames per second and create 5 im-

ages per set. This dataset contains large view point differ-

ences between the images. In spite of the fact that this is

not a burst dataset, we evaluate our method on this dataset

as this is only publicly available multi-image dataset for re-

flection removal.

5. Implementation and Training Details

The proposed method is implemented in Pytorch on a

PC with Intel Xeon 6242R with 512GB RAM and Tesla

V100 GPU with 32GB memory. The multi-stage architec-

ture comprises of three different networks namely - Single

Image Reflection Suppression (SIRS) stage, Reflection Mo-

tion Aggregation (RMA) stage and the Guided Reflection

Removal stage. Initially, these three networks are indepen-

dently trained followed by end-to-end transfer learning of

the last two stages to achieve convergence.

5.1. Training SIRS stage:

We adopt a strategy similar to [30], [22] where we first

train on the single image synthetic datasets generated using

the PASCAL VOC dataset [4]. A total of 7000 images with

synthetic reflections are generated for training. We train this

network for about 1000 epochs using the Adam optimizer

with an initial learning rate of 10−5 followed by fine tuning

on the real world Berkeley dataset [35] for 200 epochs to

achieve convergence. We use randomly cropped patches of

size 256× 256 with scale and rotation augmentations.

5.2. Training RMA and Guided Removal Stages:

Firstly, these two stages are trained independently fol-

lowed by end-to-end training. The RMA stage is first

trained using the synthetic SBR dataset (Section 4.1) with

4000 burst training samples for 1000 epochs using Adam

optimizer using a initial learning rate of 10−4. This is fol-

lowed by fine tuning on the BIRR dataset (Section 4.2) for

500 epochs to achieve convergence. The BIRR aligned

dataset is used to generate the ground truth for the RMA

stage where we perform weighted averaging of aligned

frames. We apply synthetic motion model to the aligned

burst frames to generate small mis-alignments to the inputs

for training. This strategy of training with mis-aligned input

helps the network in handling alignment errors that might

have been caused due to incorrect homography estimation.

The outputs generated from the RMA stage is then used

as input to train the Guided Reflection Removal stage. We

follow a similar approach of first training with a synthetic

dataset followed by fine tuning on the real dataset. Finally,

we perform end-to-end training to fine tune the weights of

the network to generate high quality reflection free output.

We use a combination of contextual loss and pixel loss as

described in Section 3.2 for both these stages.

6. Experimental Results

In this section, we first provide qualitative and quantita-

tive evaluation followed by ablation studies.

6.1. Comparison against State of the Art Methods

We compare the proposed methods on three different

datasets (see Section 4 for details). Firstly, we compare both

qualitatively and quantitatively on the synthetic datasets fol-

lowed by the our BIRR dataset. We finally evaluate on the

publicly available multi-image dataset that has large view

point variations [32]. Please refer to the supplementary ma-

terial for more sets of comparisons.

6.1.1 Evaluation on the Synthetic SBR Dataset

We first evaluate the proposed method using the synthetic

dataset against both single image [30] [14] [3] and multi-

image based methods [1] [18]. All the single image

methods are trained on synthetic dataset generated using

PASCAL-VOC by adapting the method described in [30]

[35]. We extend this dataset with synthetic motions to gen-

erate the SBR dataset as described in Section 4.1. We use

online optimization on this dataset to generate results for

[18]. Since, [1] does not release their source code, we im-

plemented their method and trained on this dataset for eval-

uation purpose. The qualitative comparisons are shown in

Figure 4 and the quantitative comparisons in Table 1. As it

is evident, our method out-performs the existing single im-

age and multi-image methods both qualitatively as well as

quantitatively with at least 1dB improvement in PSNR.

6.1.2 Evaluation on the Real World BIRR Dataset

In order to evaluate our method on the real world BIRR

dataset, we choose the best performing single image based

method on synthetic dataset - ERRNet [30] and also the

multi-image based methods [1] [18]. We fine tune both

the methods [30] [1] on the BIRR dataset till convergence.

We also perform the recommended online optimization for

[18] on the BIRR dataset for a fair evaluation. The quali-

tative evaluation is shown in Figure 5 and the quantitative

evaluation in Table 1. While both the multi-image meth-

ods [1] [18] are able to suppress the reflection layer to an
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(a) Input Ref. (b) ERRNet (c) Alayrac (d) Liu.et.al (e) Ours (f) Ground Truth

Figure 5. Qualitative visual comparison against state of the art single image as well as multi-image methods on our BIRR burst dataset.(a)

Input burst reference image, (b) ERRNet [30], (c) Alayrac.et.al [1], (d) Liu.et.al [18], (e) Ours, (f) Ground truth. The proposed method is

able to suppress strong reflections better than all other state of the art methods

SBR Dataset BIRR Dataset Large Baseline Dataset

Method Type Time (s) PSNR SSIM NCC PSNR SSIM NCC PSNR SSIM NCC

ERRNet [30] Single 0.76 21.89 0.855 0.946 19.51 0.751 0.841 20.49 0.758 0.8418

IBCLN [14] Single 0.83 21.82 0.836 0.951 18.31 0.737 0.839 18.96 0.735 0.843

Loc.Aware [3] Single 0.41 18.48 0.813 0.910 17.78 0.744 0.941 17.27 0.733 0.855

Liu.et.al [18] Multi(1) 2.35 19.44 0.806 0.874 18.49 0.725 0.814 21.01 0.791 0.852

Liu.et.al [18] Multi(2) 3160 22.78 0.811 0.961 19.59 0.731 0.827 23.39 0.841 0.952

Alayrac.et.al [1] Multi 1.53 20.91 0.772 0.912 19.13 0.733 0.834 19.71 0.771 0.896

Ours Multi 1.24 23.8 0.876 0.969 20.64 0.761 0.936 23.03 0.823 0.943
Table 1. Quantitative comparison against on three different datasets. Our method achieves an overall improvement of 1.02dB in PSNR on

SBR dataset, 1.05dB on BIRR dataset, 2dB on large baseline dataset over state of the art [18]. Our method is also comparable to a more

complex online optimization based method in [18] with 2500× better speed. Here we use two variants of state of the art [18] - Multi(1)

Without online optimization, Multi(2) With online optimization. The best results are shown in bold face and the second best is underlined.

extent, they fail to remove the reflection to perceptible lev-

els. This is clearly evident especially in cases of strong re-

flective components (Rows 3,4). It can be observed that the

proposed method is able to suppress the reflection layer bet-

ter than the state-of-the-art solutions resulting in a cleaner

output. The proposed method obtains the best scores on all

the metrics of PSNR, SSIM, and NCC.

6.1.3 Evaluation on the Large Baseline Dataset

We also evaluate the proposed method on real video se-

quences from [32]. This dataset comprises of video se-

quences captured by moving the camera in order to capture

different view points. We prepare a Multi-Image dataset

using these video sequences as described in Section 4.3.

The proposed method outperforms the single image based

methods as well as the multi-image based method [1] and

achieves comparable scores against the state of the art

method [18]. The qualitative evaluation is shown in Figure

6 and the quantitative evaluation in Table 1. The proposed

method is far superior in terms of processing time compared

to [18] and is much more suitable for real time applications.

The state of the art [18] performs poorly without online op-

timization. The inference time is measured on a PC with

Intel Xeon 6242R with 512GB RAM and an NVIDIA Tesla

245



(a) Input (b) ERRNet (c) Alayrac (d) Liu.et.al (e) Ours (f) Ground Truth

Figure 6. Qualitative visual comparison against state of the art single image as well as multi-image methods on public Large Baseline

dataset (a) Input burst reference (b) ERRNet [30] (c) Alayrac.et.al 2017 [1] (d) Liu.et.al [18] (e) Ours (f) Ground truth. The proposed

method is comparable to the state of the art method [18] at significantly lower complexity (see Table 1)

S1 S2 S3 S4 PSNR SSIM NCC

N1 X[22] 19.23 0.81 0.921

N2 X[22] X X 20.04 0.84 0.941

N3 X X X 21.81 0.83 0.955

N4 X[22] X X X 23.8 0.876 0.969

N5 X[30] X X X 23.96 0.874 0.962

N6 X[14] X X X 23.12 0.865 0.95

N7 X[3] X X X 23.62 0.872 0.961
Table 2. Ablation Studies: Network Component Analysis. S1 -

SIRS stage, S2 - Transmission Alignment, S3 - Reflection Motion

Aggregation, S4 - Guided Reflection Removal

V100 GPU with 32GB memory.

6.2. Ablation studies

We evaluate the proposed pipeline using the SBR dataset

the proposed pipeline by considering different design strate-

gies as shown in Table 2. We evaluate the first variation N1

with only the first stage of Single Image Reflection Suppres-

sion (SIRS) by providing the reference image of the burst.

For the second variation N2, we introduce the transmission

alignment as well as guided reflection removal stages. A

simple weighted averaging of the transmission aligned im-

ages is used instead of RMA stage for this variation. Thirdly

for N3, we skip the reflection suppression stage and perform

image alignment followed by Reflection Motion Aggrega-

tion stage along with the last stage of guided reflection re-

moval to generate the final output. Our next variation N4 is

where all the components of the proposed method is intro-

duced. We obtain a gain of about 3dB by moving from N2

to N4 where RMA stage is introduced instead of weighted

averaging. We also obtain a gain of 1dB when the first stage

of reflection suppression that helps in improving the ho-

mography estimation for improved transmission alignment.

Lastly, we evaluate the consideration of the pre-processing

step of reflection suppression in N5-N7 by replacing with

different state of the art methods [30], [14] and [3]. We see

that while [30] provides best results with a higher complex-

ity, [22] provides good results at least complexity.

7. Conclusion

In this paper, a multi-stage deep-learning based approach

for removing reflections from a burst of images is pro-

posed. We propose a novel reflection motion aggregation

cue for burst reflection removal. We capture a large scale

real world dataset that will be publicly released later upon

acceptance. Our method achieves more than 2dB improve-

ments over single image based methods. For multi-image

based methods, our method achieves an overall improve-

ment of 1.02dB in PSNR on SBR dataset, 1.05dB on BIRR

dataset, and 2dB on large baseline dataset over state of the

art [18]. Our method is also comparable to a more complex

online optimization based method in [18] with 2500× better

speed.
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