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Abstract

Thorough evaluation is critical for developing models that
are fair and robust. In this work, we describe the Conditional
Attribute Subsampling Toolkit (CAST) for selecting data sub-
sets for fine-grained scientific evaluations. Our toolkit effi-
ciently filters data given an arbitrary number of conditions
for metadata attributes. The purpose of the toolkit is to al-
low researchers to easily to evaluate models on targeted test
distributions. The functionality of CAST is demonstrated
on the WebFace42M face Recognition dataset. We calcu-
late over 50 attributes for this dataset including race, image
quality, facial features, and accessories. Using our toolkit,
we create over a hundred test sets conditioned on one or
multiple attributes. Results are presented for subsets of vari-
ous demographics and image quality ranges. Using eleven
different subsets, we build a face recognition 1:1 verification
benchmark called C11 that exclusively contains pairs that
are near the decision threshold. Evaluation on C11 with
state-of-the-art methods demonstrates the suitability of the
proposed benchmark. The toolkit is publicly available at
https://github.com/WesRobbins/CAST.

1. Introduction

Benchmark datasets such as Imagenet for image classifi-
cation [17], MS-COCO for object detection [33], and IJB-C
for face recognition [36] have been pivotal for the progress
of deep learning. By using standardized metrics and datasets,
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Figure 1. Conditional Attribute Subsampling Toolkit (CAST) is
our open-source tool for train and test set sampling conditioned
on data attributes. CAST provides efficient filtering and sampling
from large datasets and automatic evaluation for face recognition—
allowing for easy comparisons between attributes, such as between
demographics The plots show genuine and imposter distributions
from subsets generated by CAST. Lower distance between distribu-
tions is worse.

researchers can quickly compare methods and training sets.
However, benchmarks often only capture a narrow view of
performance. For example, improving a benchmark score
does not answer the following: Which classes or distribu-
tions did the model perform better on? Was performance
sacrificed on other classes or distributions? Answering such
questions can be critical for estimating the performance and
fairness in real-world conditions. Thus, it is worth consid-
ering during model development. A first step toward more
detailed evaluations can be to examine the performance of
each class with statically significance testing with multiple
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sets. In addition, it may be desirable to understand perfor-
mance between test distributions that are not strictly captured
by a class label. Such test distributions may relate to prop-
erties such as image quality, lighting conditions, or other
metadata that can be task specific (such as race in face recog-
nition). As the number of properties (or combination of
properties) increases, it can be burdensome to generate and
evaluate performance differences for each evaluation set.

To aid with the generation of test sets, we develop the
Conditional Attribute Subsampling Toolkit (CAST). CAST
creates evaluation sets by conditioning sampling over re-
quested attributes. By using a pre-built index for metadata,
CAST can efficiently subsample million-scale datasets to
create hundreds of test sets. For face recognition, CAST
also includes pre-built test sets and an evaluation module.
While some research tools are complicated to use, CAST is
designed to minimize overhead for researchers. By simply
providing a path to the data and metadata, evaluation sets are
created and saved to a structured directory. Figure 1 shows
an overview of the functionality of CAST. Detailed workings
of the toolkit are described in Section 3.

Along with CAST, we implement a probabilistic approach
for inter-category evaluation. Inspired by classic works on
softmax as probability [12, 20], network softmax outputs are
used as probabilities for evaluation categories. Probabilistic
inter-category evaluation attributes the performance of each
sample relative to the sample’s probability of belonging to a
test property. For example, if we are comparing model per-
formance between high- and low-quality samples (scored by
some numerical metric), a sample between two bins would
partially contribute to each of these bins. The benefit of
probabilistic inter-category evaluation is that more samples
can be used to evaluate each category. The probabilistic
inter-category evaluation method is provided to supplement
standard disjoint test sets, rather than replace them; and
both are implemented within CAST. Further discussion and
formal implementation details can be found in Section 4.

To demonstrate the functionality of CAST, we use the
WebFace42M face recognition dataset [72]. This work fo-
cuses on face recognition with CAST because there is an on-
going need for fine-grained evaluation between demographic
groups to understand the fairness of face recognition mod-
els. An additional contribution of this work is an extensive
evaluation of face recognition models on the evaluation sets
generated by CAST. On the WebFace42M dataset—which
contains 42 million images—we calculate over 50 attributes
for each image using numerous open-source repositories.
The attributes collected include race, sex, age, accessories,
blind image-quality, and face-image quality. A full list of
the collected attributes can be found in Section 3. These
attributes are passed to CAST to create numerous test sets.
Figure 1 highlights the genuine and imposter distributions on
three different test sets generated by CAST. In our evaluation

with new subsets and previous benchmarks, we observe that
most face-pairs (both impostor and genuine) are far from a
decision threshold, and thus there is near zero risk of misclas-
sifying these pairs for modern networks. Motivated by this
observation, we filter datasets created with CAST to only
include hard pairs, thus saving the time and compute cycles
wasted on trivial comparisons. Using only near-threshold
1:1 verification pairs, we create a benchmark titled CAST-11
(C11), which contains 11 sub-benchmarks with different
attribute categories. In Section 5, we provide results on nu-
merous CAST test sets including an evaluation on C11 with
several models.

In summary, this work makes the following contributions:

* Provides an open-source toolkit for subsampling data
to create training or evaluation sets conditioned on any
number of numerical or categorical metadata fields.

» Proposes Probabilistic Inter-Category Evaluation as a
supplemental approach for inter-category performance
comparisons (e.g., between demographics).

* Presents extensive attribute and performance evaluation
on the WebFace42M face recognition dataset.

* Creates the CAST-11 (C11) face recognition bench-
mark, which only contains hard verification pairs.

2. Related Work

Our toolkit aims to provide a system to conditionally sam-
ple over datasets in order to create test sets to allow for bet-
ter improvement on models with newfound information on
inter-category performances. Ideas and practices surround-
ing subsets have been implemented [71] [70] before. These
studies found an improvement in facial recognition with the
implementation of their methods, but both preformed analy-
sis on smaller, controlled datasets. [18] expands upon this by
implementing a system to sort larger scale datasets into two
classes, clean and noisy, with the usage of a new sub-center.
By dropping noisy samples, they achieved comparable per-
formance compared to a manually cleaned dataset. Similarly,
[32] produced a toolkit that has the ability to correct im-
balanced datasets with different sampling techniques. Our
toolkit implements a way to create balanced datasets with
specified traits of images in each on a much larger scale than
these toolkits and with more versatility in attribute selection.
While CAST allows for benchmark analysis through the cre-
ation of subsets, tools like [61] [63] [42] provide ways to
analyze the effects of changes in the evaluation pipeline in
order to more efficiently run benchmark studies.

The accuracy of face recognition models is tested on sev-
eral benchmark datasets in order to ensure the robustness
of these systems. These benchmark datasets are usually
constructed to encompass a wide variety of variations that
could be prevalent in real-world operational scenarios. The
benchmark datasets like CFP [50], AgeDB [41], LFW [27],
CPLFW [68], CALFW [69] are designed to evaluate recog-
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Figure 2. A flowchart of CAST functionality. The top row shows the main functionality of each step with pseudo-code. The bottom row
show the user input, which is read from a configuration file. The entire functionality can be run by calling the build_and_evaluate.py

script.

nition accuracy mostly for varying pose and age intra-class
distributions. Other larger benchmark datasets such as IJB-C
[35] and MegaFace [29] include the images with varying
poses, illumination, demographics, quality, etc. and thus,
are designed to evaluate the models for more operationally
realistic and large scale recognition accuracy. None of these
datasets contain multiple test subtests for computing the sta-
tistical significance of difference. Different from previous
benchmarks, our proposed C11 benchmark only has pairs
that are near the genuine vs. impostor decision boundary
and enough subsets for statistical comparison.

Though recent advances in deep learning have enabled
FR systems to achieve higher scores on several performance
metrics across several benchmark datasets, face recogni-
tion accuracy differences across demographics is preva-
lent and widely acknowledged by academic researchers.
The general consensus across several research results is
that the FR accuracy is worse for females, young, and
black/darker skin toned cohorts at a fixed global thresh-
old [1, 9, 24, 30, 22, 45, 34, 53, 59, 23, 5, 31]. Past re-
searchers have speculated causes such as the use of cosmet-
ics [30, 34, 15], more varied hairstyles [5], or differences in
average height, leading to non-optimal camera angle [15, 24]
for the varying FR accuracy across demographics. Since the
advent of deep learning, imbalanced training data is often
suggested as the go-to cause [59, 21, 38]. Few works attempt
to mitigate the differences by using one of three methods: im-
proved algorithm and training pipeline [54, 2, 52, 56, 57, 16],
balanced training datasets [59, 62, 49], and dynamic decision
thresholding across demographics [58, 47]. These accuracy
differences across demographics are well known, but there
is relatively little work that attempts to identify the cause
or causes [5, 3,7, 2, 10, 64] and thus, substantial research
effort is required to understand the causes for the accuracy
differences across different demographics groups.

3. CASToolkit

Conditional Attribute Subsampling Toolkit (CAST) is
our tool for subsampling data. CAST can be used to sub-

sample for training or evaluation, and we focus on using
CAST for evaluation sets in this work. The three qualities
that make CAST advantageous for a researcher are that it is
fast, extensible and easy to use.

Usability and Extensibility. Any array with rows of
images and columns of attributes can be used — csv and
numpy are easily used. A user then specifies subsets and
generates files for experiments. A user can import a PyTorch
model to easily run our C11 benchmark consisting of 11
separate validation sets; or create a new benchmark based
on attributes of the user’s choice.

Speed. For WebFace42M, a pre-built index over 50+
attributes is provided, which allows filtering to be performed
in O(1). If new attributes or data are provided, an index is
automatically created, allowing subsequent attribute filtering
to be done in constant time.

In the remainder of this section we provide details on
our adoption of the WebFace42M dataset for building sub-
sets (Section 3.1), description of the attributes collected for
WebFace42M (Section 3.2), filtering & subsampling imple-
mentation details (Section 3.3), and last we introduce the
Cast-11 (C11) benchmark which is provided as an extension
of CAST (Section 3.4).

3.1. WebFace42M Dataset

WebFace42M is a large scale dataset for face recogni-
tion with 42 million images and 2 million identities [72].
Due to the size and training cost of WebFace42M, prior
work (including the original paper) [8, 72] have presented
results on two subsets of WebFace42M: WebFace4M and
WebFacel2M. These subsets have respectively 4 million
and 12 million images, and WebFacel2M is a superset of
WebFace4M. To create test sets, we only use images and
identities that are not included in WebFace4M/12M. Thus,
WebFace4M/12M are still viable training sets for the eval-
uation sets created in the work. The relationship between
different versions of WebFace is visualized in Figure 4. For
our experiments, some of our models are trained on Web-
Face4M.
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Figure 3. Rather than spending compute on 95+% trivial 1:1 verification pairs, the C11 benchmark only contains hard pairs. In the left
three plots, it can be seen previous benchmarks contain a majority easy pairs, some hard pairs (in red box), and some impossible pairs. The
impossible pairs are pairs that are being misclassified and are far from the threshold (e.g., the purple area around 0.0 for AgeDB-30). C11
filters out easy and impossible pairs, and thus only contains hard pairs. The red box highlight pairs that fall with in a cosine similarity of
0.15-0.30, which is the hard pair range. The abrupt edges of the C11 impostor and genuine distributions is due to removing pairs outside of

the hard pair range. The C11 benchmark has 110,000 pairs.
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Figure 4. The data used for training and evaluation in this work.
The WebFace12M and WebFace4M (a subset of 12M) sets are held
out for training. The remaining 30 million images are used as a
pool for sampling evaluation sets.

3.2. Attribute Calculation

Using a selection of methods described below, we cre-
ate an array of attribute values for each image. Values in
the first 40 columns are generated by AFFACT [25] which
scores facial attributes (e.g., mustache, sideburns, glasses,
attractiveness, etc.). We then use three ResNet-50 mod-
els from [6] to predict race, age, and gender. A ResNet50
model trained on AFAD [43], IMFDB [51], MegaAsian
[66], MORPH3 [46], and UTKFace datasets [67] predicted
race. A ResNet-50 model trained on AAF [14], AFAD,
AgeDB [41], CACD [13], IMDB-WIKI [48], IMFDB,
MegaAgeAsian, MORPH3, and UTKFace datasets pre-
dicted gender, and age was predicted by a ResNet-50 model
trained on AAF, AFAD, AgeDB, IMDB-WIKI, IMFDB,
MegaAgeAsian, MORPH3, and UTKFace datasets. We help
verify and compare these values with regression values from
FairFace [28] which gives a model confidence score for
seven races, binary genders, and age ranges. For FairFace,
we resize the WebFace images to 224x224. The softmax
operation is then performed over each output category (e.g.,
7 races, 2 genders, 9 age bins). Race and Gender information
calculated with FairFace can be found in Figure 5. Finally,
we use BRISQUE [40], NIMA [55], Paq2Piq [65] to give
general image quality scores and SDD-FIQA [44], CR-FIQA

[11], and MagFacel [37] to provide Face-Image quality as-
sessments. img2pose [4] is then run which regresses 6Dof
and estimates a 3D pose for the face in the image. These
resulting values are concatenated to form a general attribute
array. We create a sorted list of indexes for the array to aid
in selecting bounds when filtering. A full list of attributes
and their correlation are in the supplemental material.

3.3. Implementation Details

Users first declare the number of subsets they would like
to create. From there, the attribute value array, path array,
and the indexes of the sorted attribute array are loaded in
as shown in the blue section of Figure 2. The user picks an
attribute to filter by as shown in the green-colored section of
Figure 2. If the attribute is numerical, a range can be selected
based directly on attribute value or with a percentile range.
For attributes such as age, absolute attribute values may make
more sense than the percentile range. If a percentile range is
chosen, the percentiles are then translated into indices that
bound the percentile range (filtering in O(1)). The upper
and lower indices are used to create a mask as shown in
the red section of Figure 2. If the option for filtering is
based on attribute value (as opposed to percentile range),
the array is searched to find the beginning and end of the
requested range (filtering in O(nlogn)). Users also have
the ability to view reference images that hold similar scores
relative to the declared bounds. If the attribute is scored with
discrete, classification values, then the user is asked which
class to filter for, and then a boolean statement setting the
array equal to the class is created. The toolkit can filter by
many attributes as the booleans of each specified attribute are
combined with logical and. All bounds and classes used are
logged into a .txt file. A mask with a value of True at indexes
where images fit the boolean logic and False otherwise is

The MagFace model used for quality assessment scores is a pre-trained
network from the MagFace repository, which was trained on MS1Mv2.
This is separate from the MagFace network we train for evaluation. The
MagFace model is retrained for evaluation in order to match evaluation
model settings.
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created. This mask is paired with the paths list to return the
paths of the images which fit the boolean statements. The
user inputs the number of images they would like in their
dataset and the image paths are randomly sampled into a .list
file. The result is a directory with the specified number of
datasets in the form of .list files and a .txt file describing the
bounds and classes used to create the dataset. This process
works for both validation and training sets, but of course,
training sets are written into the .list files differently.

3.4. CAST-11: Only Challenging Pairs

With the help of our toolkit, we create a benchmark
called CAST-11 (C11). The name includes ‘CAST’ be-
cause it is used for subsampling and the 11 is for the 11
sub-benchmarks for different categorical attributes. The
first motivation for C11 is to offer more fine-grained evalua-
tion with sub-benchmarks. Specifically, the sub-benchmarks
are: Black, Caucasian, East Asian, Latinx, Middle Eastern,
Young, Female, Male, Glasses & Facial Hair, Low-paq2piq,
and random.

The second motivation for C11 is that most pairs in Face
Recognition benchmarks are far from the decision threshold
and have near-zero risk of being misclassified by a modern
network. On the other extreme, there are some pairs that are
mislabeled that they are impossible for a model to correctly
classify. In Figure 3, we show that the genuine/impostor
distributions for three previous benchmarks. It can be seen
that most pairs in these datasets are trivial for a deep learning
model to classify. We contend that rather than spending time
and cycles validating or testing on trivial or impossible pairs,
it is more efficient and useful to test on challenging pairs
that are near the decision threshold.

When building the C11 benchmark we explicitly reject
pairs that are classified to be far from the decision boundary
(either too easy or too hard). To create each sub-benchmark,
we first use CAST to obtain an available pool of images
conditioned on the attribute that the category is named. As
pairs are sampled from the pool of available images, they
are passed through a ResNet100 to calculate the cosine simi-
larity of the features. If the cosine similarity falls outside of
the ‘hard-pair threshold’ the pair is rejected. In practice, we
use 0.15-0.30 for the hard pair range. The range is tuned to
1) encompass the test-time threshold and 2) be wide enough
such that enough pairs exist to create a benchmark. In Fig-
ure 3, it can be seen that all pairs are strictly within our hard
pair threshold. This selection range is based on ResNet100
features, so the functional range may be different for other
networks. However, in our experiments (Section 5.5) we find
that the test sets created with this procedure are challeng-
ing for all models. In Section 5.5, results are presented on
each sub-benchmark along with overall scores. Additionally,
pseudo-code for creating the C11 benchmark is provided in
the supplementary.

4. Probabilistic Inter-Category Evaluation

In this section, we introduce probabilistic inter-category
evaluation as a supplemental method for comparing perfor-
mance differences across categorical groups. Our motivation
for this evaluation method it that attributes are often labeled
such that each sample each belongs to one and only one class.
In some cases, one-sample-per-category is a poor ontology.
Consider the case of classifying an individual’s race. While
race is often viewed as a categorical attribute (e.g., Asian,
Black, Middle Eastern, White, etc.), many people belong
to multiple categories to varying degrees. For this reason,
it can be worthwhile to account for samples that belong to
multiple categories when validating performance between
attributes. Furthermore, when subsampling data, the pool of
available samples exponentially decreases as conditions are
added. However, if hard filtering is not required, the pool of
available samples does not decrease.

Probabilistic inter-category is founded on using softmax
as probabilities [12, 20], which we obtain through attribute
classifiers. The implementation is as follows. Let S be a set
of test samples. Consider sample x € S which belongs to
attribute class [ € L with probability P(z = [). First, let’s
consider the standard method for comparing performance
on subsets. To test performance on each attribute class, || L]|
disjoint sets are created,

S; = {x € N|l = argmaxP(z =1')}.
VeL

For each attribute class, test accuracy A; is calculated as
1, ify, = F(x)
TES)

0, otherwise

A=
=

&)

where F is a function and y, is a ground truth label.

As an additional method for comparing performance be-
tween categories, we propose removing the disjoint sub-
sets. Instead, test accuracy A; is calculated such that each
sample = € S contributes to A; proportional to probability

Pz =1),
5 {P(:c =1), ify, = F(z)

0, otherwise

A= CED)

zesS

(@)

In this work, we refer to Equation 1 as disjoint set evaluation
and Equation 2 as probabilistic inter-category evaluation. A
comparison of results with each method on demographic
categories can be found in Section 5.4.

5. Experiments

For our experiments, we use CAST to generate test sets
from the WebFace42M dataset. Procedures for generating
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Figure 5. Demographic information from the WebFace42M dataset,
computed with FairFace [28].

test sets are discussed in Section 3. Our experiments are pre-
sented in several following subsections. In Section 5.1, we
discuss training details. In Section 5.2, we present results on
demographic test splits. Then, in Section 5.3 we show results
on image-quality test splits. We compare results between
probabilistic inter-category evaluation and standard disjoint
sets in Section 5.4. Last, we provide results from twelve
models on our CAST-11 (C11) benchmark in Section 3.4
results.

5.1. Experimental Settings

We use a total of 12 models for our experiments. We de-
velop 6 models trained on WebFace4M using combinations
between three loss functions and two backbone architectures.
For losses we use margin-based softmax losses: ArcFace [19],
CosFace [60], and MagFace [37]. For backbone archi-
tectures we use ResNet50, and ResNet100 [26]. For fair
comparison, each loss function and backbone architecture
is implemented into a single repository with uniform set-
tings (described below) and trained on WebFace4M. Ad-
ditionally, we use three pre-trained models on Glint360k
and three pre-trained models on MS1Mv3 from the Insight-
Face repository [19] each with the two backbones above and
ResNet34 [26].

We use a batch size of 256 per GPU on each of
3xRTX3090,1xA6000 GPUs. For more efficient training
we use mixed-precision floating point [39]. We follow prior
work for setting hyperparameters. Training is completed
over 20 epochs with Stochastic Gradient Descent (SGD) opti-
mizer and polynomial weight decay. A base learning rate 0.1
is used. Horizontal-flip is adopted as augmentation. Our pri-
mary experiments are on validation sets created using CAST,
however, we provide performance on common benchmarks
LFW [27], AgeDB-30 [41], CFP-FP [50], and IJB-C [36] as
a reference point for the difficulty of our proposed subsets.
As a reference point, results on previous benchmarks for
each of the twelve models used in our experiments can be
found in Table 1.

5.2. Demographic Subset Results

Table 2 shows results on 14 different subsets on race
and gender. Of the 14 subsets, ‘Southeast Asian Female’

Data Model  Loss LFW CFP AgeDB 1IB-C
WF4 R50  CosFace 99.82  99.11 97.92  96.89
WF4 R50  ArcFace 99.78  99.11 97.92  96.78
WF4 R50 MagFace | 99.78  98.89 97.78  96.73
WF4 R100  CosFace 99.82 99.14 98.15 97.26
WF4 R100  ArcFace 99.83  99.23 98.07 97.10
WF4 R100  MagFace | 99.82  99.03 98.07  97.01
G-Pre R34  CosFace 99.80 98.76 98.32  96.56
G-Pre R50  CosFace 99.80 99.14 98.20  96.97
G-Pre R100  CosFace 99.80 99.24 98.28 97.32
M-Pre R34  ArcFace 99.77  98.19 97.87 9591
M-Pre R50  ArcFace 99.80 98.40 98.20 96.46
M-Pre R100  ArcFace 99.82 98.93 98.47  96.81

WF4=WebFace4dM;MS-pre=MS 1Mv3[19]; G-Pre=Glint360k[19]
Table 1. For reference, results on previous benchmarks with each
of the 12 models used in our experiments.

is has the lowest score with 98.20 and ‘Caucasian Male’
has the highest score with 99.90. Additionally, Table 2, the
average for each race and each gender. ‘Middle Eastern’ and
‘Southeast Asian’ have the lowest scores which are almost
1% lower than ‘Caucasian’. For gender, Male has 0.74%
higher scores. The average for all sets in this experiment is
99.18%.

Race Female Male Average
Black 99.01+0.17  99.34+0.07 99.18
Caucasian 99.69+0.03  99.90+£0.02 99.80
East Asian 98.4140.10 99.71+£0.05 99.06
Hispanic Latino || 99.0440.11  99.69+0.05 99.37
Indian 98.931+0.10 99.42+0.08 99.18
Middle Eastern 98.35£0.07  99.32+0.06 98.87
Southeast Asian || 98.20+0.12  99.4440.07 98.82
Average 98.80+0.48  99.54+0.20 99.18

Table 2. Results on demographic evaluation sets. 10 test sets of
10,000 pairs are used for each race and gender combination. It can
be seen performance is highest on Caucasian’s and Males. ArcFace
ResNet100 trained of WebFace4M is used here.

5.3. Image-Quality Subset Results

Here, results are presented for subsets sampled according
to image quality. Three blind image-quality metrics: NIMA,
BIRSQUE, and paq2piq, and two face-specific image-quality
metrics: SDD-FIQA and MagFace. Using CAST, we sub-
sample 10 datasets—each with 5,000 genuine and 5,000
imposter pairs—for each of 10 quartile ranges. Subsets are
created for each quality metric for a total of 500 datasets. In
Figure 6, results are plotted for increasing quartile ranges.
In Figure 6, it can be seen that the Nima blind image-quality
measure corresponds poorly with performance. However,
paq2piq and BRISQUE are found to be useful. Upon manual
inspection of the images, we find low paq2piq scores are of-
ten blurry images. Unsurprisingly, we find the face-specific
image-quality measures to be more representative of face
recognition performance. A final observation from Figure 6,
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is that 1:1 verification face recognition performance is high
even on lower quality images.
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Figure 6. Performance on test sets sampled from 10 quartile ranges
for each of 5 quality assessment measures. Face-specific quality
assessments are shown with solid lines, and blind image quality
assessments are show with dashed lines. The face-specific image
quality measures show the best ResNet100 trained on WebFace4dM
with ArcFace loss is used here.

In Table 3, we show results with each of the twelve mod-
els on datasets sampled from low (0-10%), medium (45-
55%), and high (90-100%) quartile ranges of the SDD-FIQA
metric. We use SDD-FIQA because we find it to be corre-
lated with face recognition performance. We do not use Mag-
Face since it is also one of the training methods. Overall, it
can be seen that performance is much lower on the low range
than the medium range. However, performance is nearly
identical on the medium quartile range and the high quartile
range. This indicates that face recognition performance can
become saturated even for medium-quality images. Within
the WebFace4M models, it can be seen that the CosFace loss
incurs the least drop in performance from the medium to the
low range. It can also be seen that the ResNet50 models have
nearly the same performance as the ResNet100 model on the
medium and high quartile ranges, but the ResNet100 models
perform significantly better on the low quartile range. This
suggests that bigger models may only make improvements
on challenging samples. When comparing between training
sets, Table 3 shows that WebFace4M models drop the least in
performance between medium to low, while models trained
on MS1Mv3 have the greatest drop in performance.

5.4. Probabilistic Inter-Category Evaluation
Results

Figure 7 shows results on demographic splits for both
standard disjoint sets and for probabilistic inter-category
evaluation (introduced in Section 4). For this experiment, the
datasets from Table 2 were combined for male and female.
For probabilistic inter-category evaluation, the same evalua-
tion sets from Table 2 are made it to one large 1,400,000 pair
evaluation set. From Figure 7, it can be seen that the evalu-
ation methods produce similar overall results. While it can
not be ascertained from Figure 7 which is a more accurate

Model SDD-FIQA Quartile Ranges
Data  Model Loss 0-10% 45-55% 90-100%
WF4 R50  CosFace | 89.81+0.88 99.5940.15 99.5940.16
WF4 R50  ArcFace | 88.7740.50 99.6140.18 99.6440.10
WF4  R50 MagFace | 88.5840.64 99.62+0.17 99.64+0.13
WF4  R100 CosFace | 91.50+0.67 99.7540.11 99.7140.07
WF4  R100  ArcFace | 90.0140.93 99.7140.15 99.73+0.08
WF4  R100 MagFace | 90.914+0.66 99.724+0.17 99.70+£0.11
G-Pre R34  CosFace | 84.814+0.70 99.6840.14 99.61+£0.12
G-Pre  R50  CosFace | 86.5440.81 99.7740.12 99.73+0.11
G-Pre R100 CosFace | 88.84+0.54 99.82+0.11 99.8140.10
M-Pre R34  ArcFace | 80.7140.85 99.5040.18 99.49+0.20
M-Pre R50  ArcFace | 82.7940.73 99.7240.16 99.63+0.13
M-Pre RI100 ArcFace | 85.15£0.92 99.81+0.09 99.7640.11

WF4=WebFace4M;MS-Pre=MS IMv3[19]; G-Pre=Glint360k[ 19]
Table 3. Results on 10 datasets sampled from each of three quartile
ranges of the SDD-FIQA attribute. It can be seen that the models
pretrained on MS1Mv3 perform worse on the lower quality images
and models trained on WebFace4M perform better on the lower
quality sets..

evaluation method, the similarity between the two indicates
that either may be suitable.
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Figure 7. Results on demographic splits using probabilistic inter-
category evaluation and standard disjoint sets. The test sets from
Table 2 are combined for male and female for disjoint sets in this
experiment. For probabilistic evaluation, all sets are combined into
one.

5.5. C11 Results

We test each of our twelve evaluation models discussed
in Section 5.1 on the C11 benchmark (introduced in Sec-
tion 3.4). The results for each model on each of the 11
sub-benchmarks can be found in Table 4. From the bottom
right entry in the table it can be seen that the average score
between all models is 82.07, or 17.93 percent error. This is
significantly different than the error of previous benchmarks
such as those shown in Table 2, which range from 0.17%-
4.09% error. The increased difficulty on C11 is due to the
procedure of excluding easy pairs. For the sub-benchmarks,
Low paq2piq has the lowest average score of 80.61 and
Caucasian has the highest average score of 85.24. Of the
three loss functions, CosFace outperforms the others with
all other settings held constant on C11. Out of the three
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CAST-11 (C11) Benchmark

Model Test Sets

Data Backbone Loss Black Caucasian E. Asian Latinx M. E. Young
WebFace4M R50 CosFace || 81.72£1.22  83.70£0.91 81.83+1.09  81.76+0.98  82.06£147  82.45+0.77
WebFace4M R50 ArcFace || 81.00£1.37  83.47+091  82.11£1.08  81.144+122  81.494+129  81.8840.74
WebFace4M R50 MagFace || 80.89+1.17  83.42+£096  81.27+0.88  80.58+1.35  80.78+1.38  82.23+£1.02
WebFace4M R100 CosFace || 85.83£1.01  87.16£1.23 84964097  86.114+0.83 85934090  86.32+1.56
WebFace4M R100 ArcFace || 82.87+£1.19  85.75+1.33  82.58%1.16  83.37£155  83.74£1.20  83.671047
WebFace4M R100 MagFace || 84.494+0.85  87.10+0.92  84.45+133  85.284+0.97  85.25£1.28  85.40£1.59
G-Pre[19] R34 CosFace || 77.51+1.40  84.15£1.19  79.68+1.21  79.23£1.05  79.11£1.04  80.36%1.31
G-Pre[19] R50 CosFace || 83.07+1.19  87.48+£0.98  83.38+1.24  83.744+097  83.394+120  84.331+1.09
G-Pre[19] R100 CosFace || 86.51£1.17  91.16£0.81 87.09+1.23  87.79+0.95  86.85+£0.94  88.01+0.93
M-Pre[19] R34 ArcFace || 70.474+094  80.07+1.13  72.74+1.13  71.21+134  71.55£127  73.47+£1.74
M-Pre[19] R50 ArcFace || 74.81+0.66  82.71+1.20  76.3940.87  75.14+1.27  75.96%+1.06  76.78+1.37
M-Pre[19] R100 ArcFace || 78.924+135  86.80+1.12  80.23+1.57  79.80+1.38  80.52+0.86  81.03%1.00

Average 80.67 85.24 81.39 81.23 82.16 82.63

Data Backbone Loss Female Male G&FH L-p2p Random Overall

WebFace4M R50 CosFace || 83.37+£1.31  83.62£1.33  81.09+1.16  81.214+1.02  83.69+1.14  82.41+1.50
WebFace4M R50 ArcFace || 83.09+1.28  83.04+£1.02  80.11+£1.21 80.86+1.01 82.95+0.84  81.92+1.52
WebFace4M R50 MagFace || 82.594+0.92  82.644+0.88  80.294+0.74  80.141+0.68  83.47+0.86  81.66+£1.56
WebFace4M R100 CosFace || 87.50£0.97  87.54£1.04  85.42+122 85444145  87.544+092  86.34+1.44
WebFace4M R100 ArcFace || 85.44+098  86.06£0.91  83.164+0.88  82.33+1.16  85.844+0.73  84.07%+1.73
WebFace4M R100 MagFace || 86.794+090  87.0840.98  84.82+0.93  84.78+0.86  87.09£1.12  85.68+%1.51
G-Pre[19] R34 CosFace || 79.70+1.15  80.65£1.28  78.60£1.62  78.24+£1.02  80.41%151  79.7942.09
G-Pre[19] R50 CosFace || 84.69+1.21  85.19£0.89  82.84+0.89  82.26+1.10  85.35+125  84.16%1.78
G-Pre[19] R100 CosFace || 88.44+0.73  89.10+0.90  86.6640.99  85.96%1.12  88.71+1.14  87.84%+1.73
M-Pre[19] R34 ArcFace || 73.12+1.03  72.81£1.07  71.76£1.04  71.29£0.87  72.50£1.03  72.8242.72
M-Pre[19] R50 ArcFace || 77.67+0.87  77.59£1.51  76.12+0.89  74.95+0.67  77.30%1.14  76.86%2.35
M-Pre[19] R100 ArcFace || 82.05+£0.74  82.194+0.61  81.154+0.79  79.83+1.17  82.10£1.20  81.331+2.29

Average 82.87 83.13 81.00 80.61 83.08 82.07

R=ResNet; M.E.=Middle Eastern; G&FH=Glasses & Facial Hair; L-p2p=Low paq2piq; G-Pre: Glint360k; M-Pre: MS1M.
Table 4. Results on the CAST-11 (C11) benchmark. C11 includes 11 sub-benchmarks on demographics, face attributes (e.g., beard and
glasses), and image characteristics. Each sub-benchmark has 10 1,000 pair folds, for a total 110,000 pairs in the benchmark. All genuine and
imposter pairs are chosen close to the cosine similarity decision threshold, and thus the benchmark emphasizes performance on challenging
(but not impossible) samples. Of the 12 models used in our experiments, the Resnet100-CosFace model pretrained on Glint360k scored the
highest with an average score of 87.84 across the sub-benchmarks.

training sets, MS1Mv3 models perform the worst on C11,
and Glint360k and WebFace4M perform similarly. The mod-
els trained on the WebFace4M have more fair performance
across demographic groups (e.g., Male vs. Female). There
is a surprisingly large difference between performance on
Caucasian for Glint-R100-CosFace (91.16) and WebFace4M-
R100-CosFace (87.16) of 4.0%.

6. Conclusion

This work examines fine-grained testing of deep learning
models for face recognition. We build the Conditional At-
tribute Subsampling Toolkit for easy creation and evaluation
of data subsets based on indexed metadata. Using CAST,
face recognition models are evaluated on several attributes
such as demographics and image-quality. We find that there
are statistically significant differences in performances be-
tween demographic groups, which, like prior works, suggest
further work is needed to develop less biased models. Ad-
ditionally, based on observations that most sampled pairs
are easily classified by deep learning models, we create a
new benchmark (C11), which is designed to only contain

challenging pairs. Using CAST, the C11 benchmark can
be easily evaluated on new models. Paths of future work
include using sampled training sets for creating fewer perfor-
mance discrepancies across demographics, and using CAST
attributes as a method for managing training distributions.
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