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Abstract

Shoe-tread impressions are one of the most common
types of evidence left at crime scenes. However, the util-
ity of such evidence is limited by the lack of databases of
footwear prints that cover the large and growing number of
distinct shoe models. Moreover, the database is preferred to
contain the 3D shape, or depth, of shoe-tread photos so as
to allow for extracting shoeprints to match a query (crime-
scene) print. We propose to address this gap by leveraging
shoe-tread photos collected by online retailers. The core
challenge is to predict depth maps for these photos. As they
do not have ground-truth 3D shapes allowing for training
depth predictors, we exploit synthetic data that does. We
develop a method, termed ShoeRinsics, that learns to pre-
dict depth from fully supervised synthetic data and unsuper-
vised retail image data. In particular, we find domain adap-
tation and intrinsic image decomposition techniques effec-
tively mitigate the synthetic-real domain gap and yield sig-
nificantly better depth predictions. To validate our method,
we introduce 2 validation sets consisting of shoe-tread im-
age and print pairs and define a benchmarking protocol to
quantify the quality of predicted depth. On this benchmark,
ShoeRinsics outperforms existing methods of depth predic-
tion and synthetic-to-real domain adaptation.

1. Introduction
Studying the evidence left at a crime scene aids inves-

tigators in identifying criminals. Shoeprints have a greater
chance of being present at crime scenes [9], although they
may have fewer uniquely identifying characteristics than
other biometric samples (such as blood or hair). Thus,
studying shoeprints can provide valuable clues to help in-
vestigators narrow down suspects of a crime.

Forensic analysis of shoeprints can provide clues on the
class characteristics and the acquired characteristics of the
suspect’s shoe. The former involves the type of shoe (e.g.,
the brand, model, and size); the latter consists of the indi-
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Figure 1: Predicting depth for shoe-tread images (collected by
online retailers) is the core challenge in constructing a shoeprint
database for forensic use. We develop a method termed ShoeRin-
sics to learn depth predictors. The flowchart depicts how we train
ShoeRinsics using annotated synthetic and un-annotated real im-
ages (Sec. 4). We use domain adaptation (via image translators
GS→R and GR→S) and intrinsic image decomposition (via decom-
poser F and renderer R) techniques to mitigate synthetic-real do-
main gaps (Sec. 5). Our method achieves significantly better depth
prediction on real shoe-tread images than the prior art (Sec. 6).

vidual traits of a particular shoe that appear over time as it
is worn (e.g., holes, cuts, and scratches). We are interested
in aiding the study of class characteristics of shoeprints.

Status quo. Traditionally, investigating class charac-
teristics of shoeprints involve matching the prints against
a manually curated database of impressions of various
shoe models [11]. The research community has shown
significant interest in automating this matching process
[10, 12, 21, 22, 23, 3, 29, 33, 31, 57, 65]. However, in prac-
tice, the success of such work depends on the quality of
the database to which the shoeprint evidence is compared.
Yet, maintaining and regularly updating such a database to
include all shoe models is tedious, costly, and requires sig-
nificant human effort. Shoeprint matching methods are de-
cidedly less useful if the database does not include the type
of shoe the criminal wore! Partly because of this, shoeprint
evidence is vastly underutilized in the USA [52].

Motivation. To address the need for such a com-
prehensive database, we propose to leverage imagery of
shoe-treads collected by online retailers. High-resolution
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tread photos of various shoe products are readily available,
and shopping websites are updated frequently (>1000 new
products appear each month based on our analysis on some
websites). Fig. 2 (b) shows examples of such shoe-tread
images. Developing a method to predict the 3D shape from
a shoe-tread image would directly address the need for a
comprehensive, up-to-date database of tread patterns. We
formulate this problem as depth prediction for shoe-treads;
thresholding the depth map of a given shoe can gener-
ate/simulate shoeprints sufficient for matching query prints.

Technical Insights. To learn depth predictors from sin-
gle shoe-tread images, we would ideally utilize supervised
training examples of aligned shoe-tread images and their
corresponding depth maps. However, since such ground-
truth data is simply unavailable, we develop an alterna-
tive strategy. We create a synthetic dataset of rendered
shoe-tread images and corresponding ground-truth depth,
albedo, normal, and lighting. This data can train a predic-
tor in a fully supervised fashion. However, the resulting
model performs sub-optimally on real-world images due to
the domain gap between synthetic and real imagery. To
address this, we introduce three additional techniques to
close the synthetic-real domain gap by incorporating meth-
ods of domain adaptation [70] and intrinsic image decom-
position [28] (see Fig. 1). First, we train a translator that
translates synthetic shoe-treads to realistic images, which
better match the distribution of the real shoe-treads. Sec-
ond, we use an adversarial loss to enforce that features of
real and translated synthetic images are indistinguishable.
Third, we use a re-rendering loss that adopts a synthetically
trained renderer to reconstruct the real shoe-tread images
using their predicted depth and other intrinsic components.
We find these three techniques in combination help close the
domain gap and yield significantly better depth prediction.

Contributions. We make three major contributions.
• Motivated to create a database of shoeprints for foren-

sic use, we introduce the task of depth prediction for
real shoe-tread photos collected by online retailers.

• We develop a benchmarking protocol, with which we
evaluate existing methods of depth prediction using
domain adaptation for this task.

• We develop a method called ShoeRinsics that incorpo-
rates intrinsic image decomposition and domain adap-
tation techniques, outperforming prior art for this task.

2. Related Work
Shoeprint Analysis. Automatic shoeprint matching has

been studied widely in the past two decades [45]. Existing
works focus on generating good features from shoeprints
and using them to assign a class label (shoe type) from
a database of lab footwear impressions. To study global
features (i.e., considering the whole shoe), [33] introduces
a probabilistic compositional active basis model, [31] ex-

plores multi-channel normalized cross-correlation to match
multi-channel deep features, and [57] employs a mani-
fold ranking method, and [65] uses VGG16 as a feature
extractor. On the other hand, [41] studies a multi-part
weighted CNN, [5] introduces a block sparse representa-
tion technique, and [6] applies multiple point-of-interest
detectors and SIFT descriptors to study the local features
of shoeprints (i.e., keypoints [34]). Our work differs from
the previous work as it focuses on creating a database of
prints rather than developing methods for shoeprint match-
ing. Creating such as database is a prerequisite for algo-
rithmic explorations for shoe-matching.

Monocular Depth Prediction has been studied exten-
sively since early works [26, 48, 47]. Previous meth-
ods invent features representations [8, 44, 18], deep net-
work architectures [7, 37, 46, 30, 36, 60], and training
losses [16, 51, 62]. [35, 20, 39] explore self-supervised
learning in a stereo setup while [43, 67] experiment with
training on large datasets. Depth estimation has been further
improved by considering the camera pose [66]. Our work
differs from the above as it aims for depth prediction on
real images by learning over un-annotated real images and
synthetic images (and their ground-truth intrinsics: depth,
albedo, normal and light).

Intrinsic Image Decomposition. Another line of work
aims to explain image appearance in terms of some intrin-
sic components, including albedo, normals, and lighting.
However, predicting intrinsic images is difficult, if not im-
possible. Our approach is related to [28], which learns for
intrinsic image decomposition and uses a differentiable ren-
derer to leverage un-annotated images with a reconstruction
loss. [50, 42, 58] focus on face images and explore a similar
reconstruction loop [50], non-diffuse lighting models [42],
and multiple reflectance channels [58]. [59] works on ro-
tationally symmetric objects with only object silhouettes as
supervision. [49, 64, 69, 38, 63] study decomposition on
entire scenes. [4] learns photo-realistic rendering of syn-
thetic data and intrinsic decomposition of real images us-
ing unpaired data as input via an adversarial loss. In con-
trast, our work utilizes intrinsic decomposition techniques
to help learn depth prediction by leveraging annotated syn-
thetic and un-annotated real data via domain adaptation.

Domain Adaptation. Training solely on synthetic data
can cause models to perform poorly on real data. Adver-
sarial domain adaptation has proved promising for bridg-
ing such domain gaps. One way to approach this is to
use domain-invariant features to map between the domains.
[40] proposes to reduce the Maximum Mean Discrepancy to
learn domain-invariant features. [56] builds on this idea and
further improves domain adaptation performance in classi-
fication tasks. [55, 54, 19, 53] learn domain adaptation by
aligning source and target features. Another direction of
work uses image-to-image translation [70] to stylize source
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Table 1: Overview of our datasets for training and testing, along
with their shoe categories and counts. It is worth noting that real-
val contains formal and used shoes, which are not present in train-
ing (i.e., the real-train set). We include these novel shoe types to
analyze the generalizability of different methods. See details in
Sec. 4 and visual examples in Fig. 2.

Dataset Shoe Category Total Annotation

New-Athletic Formal Used

syn-train 88,408 0 0 88,408 depth, albedo, normal, light
real-train 3,543 0 0 3,543 none
real-val 22 6 8 36 print
real-FID-val 41 0 0 41 print

images as target images. [25, 68] use the stylized source im-
ages to learn from target images using source labels while
performing alignment both at the image and feature level.
We use domain adaptation for depth estimation but take this
approach further by reasoning about the intrinsic compo-
nents of unlabeled real data.

3. Problem Setup and Evaluation Protocol

Our motivation is to create a database of shoeprints for
forensic use. The specific task is to predict depth maps for
shoe-tread images collected by online retailers. Below, we
formulate the problem and introduce an evaluation protocol
to benchmark methods.

3.1. Problem Setup

Online shoe-tread photos do not have ground-truth
depth. Thus, we cannot directly train a depth predictor on
them. Instead, we propose to create a dataset of synthetic
shoe-tread images for which we have a complete set of
annotations, including depth, albedo, normal, and lighting
(details in Section 4.1). Therefore, the problem is to pre-
dict depth for real shoe-treads by learning a depth pre-
dictor on synthetic shoe-treads (with annotations) and
real shoe-treads (without annotations). This requires (1)
learning a depth predictor by exploiting synthetic data that
has annotations of depth and other intrinsic components, (2)
addressing the synthetic-real domain gap.

3.2. Evaluation Protocol

Recall that the created database, containing predicted
depth maps and shoe-tread images, and will serve for foren-
sic use – an investigator will query a shoeprint collected at
a crime scene by matching it with depth maps within this
database. Therefore, we evaluate the quality of predicted
depth maps w.r.t shoeprint matching.

To this end, we introduce two validation sets that con-
tains paired “ground-truth” shoeprints and shoe-tread pho-
tos (details in Section 4.2). For a given shoe-tread, a
trained model predicts its depth and the metric measures
the degree of match between the ground-truth shoeprint

new, athletic

(a) syn-train (b) real-train

used

(c) real-val shoe and print

formal

(d) real-FID-val

shoe print

Figure 2: Shoe tread examples from (a) syn-train, (b) real-train,
(c) real-val, and (d) real-FID-val. Clearly, a domain gap exists be-
tween (a) syn-train and (b) real-train, demonstrating the need to
close the synthetic-real domain gap. Moreover, to study the gen-
eralizability, we evaluate on 2 datasets (c) and (d) and purposely
hold out the formal and used shoe-treads which are not used for
training but for validation (c).

and the predicted depth. We develop a metric based on
Intersection-over-Union (IoU). Specifically, we generate a
set of shoeprints using adaptive thresholding (with a range
of hyperparameters) for the predicted depth, and compute
the IoU between the ground-truth print to each of these gen-
erated shoeprints. The metric returns the highest IoU. We
further average the IoUs over all the validation data as mean
IoU (mIoU) to benchmark methods. Refer to the supple-
ment for further details.

4. Data Preparation

During training, we have two data sources: a synthetic
dataset (syn-train) that has annotations, and a dataset of un-
annotated real shoe-treads (real-train). To study models’
generalizability, we test our model on two validation sets
(real-val and real-FID-val). Each of these datasets con-
tain shoe-tread photos with aligned ground-truth shoeprints,
which enable quantitative evaluation. Note that to analyze
the models’ robustness to novel shoe types, we constrain our
training sets to contain only brand-new athletic shoes while
letting real-val also include formal and used (worn) shoes.
Fig. 2 displays example shoe-treads and Table 1 summa-
rizes the four datasets. Below, we elaborate on the creation
of the synthetic training set (syn-train), the real training set
(real-train), and validation sets (real-val and real-FID-val).

4.1. Synthetic Data for Training

Our synthetic dataset (syn-train) containing synthetic
shoe-tread images and their intrinsic annotations (depth,
albedo, normal, and lighting). We synthesize a shoe-tread
image with a given depth map, an albedo map, and a light-
ing environment (outlined in Fig. 3). We pass these to a
physically-based rendering engine [27] to generate the syn-
thetic image. The final syn-train set contains 88,408 shoe-
treads with paired ground-truth intrinsic images.

Depth Map. We use an existing dataset [61] to generate
plausible synthetic depth maps to create syn-train data. For
each of 387 shoeprints, we synthesize 10-15 different depth
maps. Because the shoeprints have noise that affects syn-
thetic data generation, we first apply a Gaussian blur to filter
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Figure 3: Generation of synthetic data. We scale off-the-shelf
shoeprints to generate “pseudo” depth maps. We sample a color
distribution from a real-shoe example to create an albedo map.
The depth map and albedo map are combined with a lighting en-
vironment to render a synthetic image. The lighting environment
is demonstrated by visualizing a shiny sphere in place of the shoe.
In this example, directional light comes from a point on the right.

the noise. We then scale the blurred print image to create a
“pseudo” depth map. To generate more diverse depth maps
we add random high-frequency textures. Lastly, we make
tread shapes more realistic by adding a priori features, such
as slanted bevels on the tread elements and global curvature
of the shoe-tread (details in supplement).

Albedo Map. The color palette for each rendered shoe
comes from the color distribution of a real shoe-tread pho-
tograph. Shoes tend to have only a handful of different col-
ors across the entire tread. We identify the primary col-
ors on real shoe-treads using the mean-shift algorithm [17].
Albedo maps for the rendered shoes are composed of these
colors. First, we use depth maps to identify shoe-tread ele-
ments and segment out areas of the shoe that can have dif-
ferent colors. Then we assign colors to those segments from
the color palette of a real shoe in the percentages in which
they are present. Fig. 3 shows one example.

Light environment. Online retail stores use special-
ized diffuse lighting rigs to capture shoe photos. We cre-
ate a similar lighting environment for our rendered images.
Shoes are photographed with bright diffuse white light from
all directions and some optional directional light. We use a
total of 17 different light configurations. One light config-
uration is simply diffuse light coming from all directions.
Eight light configurations consist of single light bulbs shin-
ing from eight directions around the shoe in addition to the
diffuse white light. The remaining eight are similar but con-
tains two light bulbs at 120◦ to each other. The supplement
has further details.

4.2. Online Shoe Treads for Training and Prediction

Online retailers [1, 2] adopt photos of shoes for ad-
vertisement, which include shoe-tread images. Real-train
(3,543), cf. Table 1, consists of such shoe-tread images and
masks computed by a simple network to segment out the
shoe-treads. This dataset does not contain any ground-truth
and consists only of new, athletic shoes.

4.3. Lab Data for Validation

Real-val. To quantitatively benchmark methods, we col-
lect paired shoe-tread images and ground-truth prints in a

shoe-tread pseudo albedo shoe-tread pseudo albedo

Figure 4: Generating pseudo albedo maps from shoe-tread im-
ages. We show two pairs. We run the mean-shift algorithm [17]
on a shoe-tread image to group RGB pixels, resulting in the corre-
sponding pseudo albedo map. We use the pseudo albedo maps as
supervision signals to train the decomposer (cf. Fig. 1).

lab environment. Fig. 5 summarizes the procedure. We pho-
tograph shoes by placing them inside a light box with a ring
light on top. We collect prints from those shoes by painting
the treads with a thin layer of relief ink and pressing ab-
sorbent white papers onto the shoe-treads. This method of
collecting shoeprints is called the block printing technique
and is one of several techniques used in the forensics com-
munity to collect reference footwear impressions [9]. To
improve print quality, we collect 2-3 prints for each shoe
and average them after alignment to the shoe-tread. We use
thin-plate splines [13] with a smoothness parameter of 0.5
for alignment. We threshold the average print as the final
ground-truth shoeprint. Real-val contains 22 new-athletic
shoes, 6 new formal shoes, and 8 used athletic shoes. The
formal and used shoes are not present during training and
thus serve as novel examples in evaluation.

Real-FID-val. We introduce the second validation set
consisting of shoeprints from the FID300 dataset [32] and
shoe-tread images separately downloaded from online re-
tailers (i.e., these images are disjoint from those in the
real-train set). We find matched FID300 prints (used as
the ground-truth) and the downloaded shoe-tread images,
and align them manually. Real-FID-val contains 41 new,
athletic shoe-tread images with corresponding ground-truth
shoeprints and masks to segment out the shoe-treads.

5. Methodology

We now introduce our ShoeRensics, a pipeline that trains
a depth predictor for real images IR by incorporating un-
supervised adversarial domain adaptation and intrinsic im-
age decomposition techniques. Given synthetic images
IS with their corresponding ground-truth intrinsics (albedo
Xa

S , depth Xd
S , normal Xn

S , and light X l
S) and unlabeled

real images IR, our goal is to train a model to predict
depth dR for real images IR. Fig. 1 overviews our train-
ing pipeline. The main components of our pipeline are a
translator GS→R to stylize synthetic images as real images,
a decomposer F for intrinsic image decomposition, and a
renderer R to reconstruct the input images from their in-
trinsic components.

Synthetic-only Training. We train a decomposer F and
the renderer R in a supervised manner on syn-train. For
an input image, the decomposer predicts depth X̂d

S , albedo
X̂a

S , normal X̂n
S , and light X̂ l

S . The renderer R learns to
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Figure 5: We collect a validation set of ground-truth shoeprints
from shoes in a lab environment. (a) shows an example shoe. (b)
It is painted with a thin layer of relief ink, and a paper sheet is
pressed evenly onto the shoe-tread using a roller. (c) We repeat this
to get 2-3 different prints. (d) We align these prints to the shoe-
tread using thin-plate spline [13] and (e) threshold their average to
obtain the final ground-truth shoeprint, which has better coverage.

reconstruct the input image from these predicted intrinsic
components. To train the decomposer F , we use an L1

loss to learn for depth, albedo, and normal prediction and a
cross-entropy loss LCE to learn for light (treating light pre-
diction as a K-way classification problem given the limited
light sources). We minimize the overall loss below:

Lsup = λlLCE(X̂
l
S , X

l
S) +

∑
κ∈{d,a,n}

λκL1(X̂
κ
S , X

κ
S). (1)

where λ’s are hyperparamters controlling loss terms for the
intrinsic components. To learn the renderer R, we simply
minimize the L1 loss between the original and rendered im-
ages, i.e., L1(IS ,R(Xd

S , X
a
S , X

n
S , X

l
S)). Note that depth

prediction is our main focus, and we find learning with de-
composer and renderer significantly helps depth learning
(cf. Fig. 1, Table 2). A model trained on synthetic data
only does not work effectively well on real data due to the
notorious synthetic-real domain gap. We address this issue
using the techniques below.

Mitigating domain gap by image translation. Previ-
ous work [25, 70] addresses the domain gap between im-
age sources by translating images from one domain to the
other. We adopt a similar approach and translate our syn-
thetic images to realistic ones by training a translator GS→R.
We train another GR→S that translates real images to syn-
thetic style. Discriminators DR(I) and DS(I) are learned
simultaneously to discriminate translated images and used
for training translators. This is known as the adversarial
domain adaptation [25]. We further translate the translated
synthetic/real images back to the original domain and use
a cycle loss between the resulting and the initial images to
ensure that structure and content are preserved during trans-
lation. The following losses train the translators [25, 70]:

LS→R
GAN (IR, IS) = logDR(IR) + log(1−DR(GS→R(IS)))

LR→S
GAN (IS , IR) = logDS(IS) + log(1−DS(GR→S(IR)))

Ltran = LS→R
GAN (IR, IS) + LR→S

GAN (IS , IR)

Lcyc = L1(GR→S(GS→R(IS)), IS)+

L1(GS→R(GR→S(IR)), IR) (2)

With GS→R(IS), we translate syn-train images and keep
their corresponding ground-truth intrinsics unchanged. We
use such translated data to finetune the renderer R.

Mitigating domain gap by image reconstruction. We
additionally use an image reconstruction loss to address the
domain gap [28]. We reconstruct a real image from its de-
composed intrinsic components using the trained renderer
R, which we freeze after finetuning on translated synthetic
data. We use R to regularize the training of the decomposer
D on real images. Denoting reconstructed real image as
ÎR := R(Xd

R, X
a
R, X

n
R, X

l
R), we minimize the difference

between the original image IR and its reconstruction ÎR us-
ing an L1 loss, i.e., L1(ÎR, IR).

Mitigating domain gap by feature alignment. We fur-
ther adopt the feature alignment technique to mitigate the
domain gap [70]. Specifically, we learn an adversarial dis-
criminator Dfeat to discriminate features extracted by the
decomposer for the real images and the translated synthetic
images. We use this as a loss in training the decomposer and
update the discriminator Dfeat while training of the decom-
poser. This encourages the decomposer to extract features
on real data that are indistinguishable from synthetic data,
thus helping mitigate the domain gap.

Exploiting Pseudo Albedo. Shoe-treads, like many
other man-made objects such as cars and other toys, tend
to have piece-wise constant albedo. Building on this obser-
vation, we create pseudo albedo for the real data by group-
ing pixels with the mean-shift algorithm [17]. Fig. 4 shows
an example pseudo albedo on two real shoes. As pseudo
albedo is not ideal as ground-truth, we use it to learn an
albedo predictor through the the decomposer. We find this
produces better albedo maps than the pseudo ground-truth
(see analysis in the supplement). To learn albedo prediction,
we minimize the L1 loss, i.e., L1(X̂

a
R,MS(IR)), where MS

is the mean-shift clustering algorithm.
Stage-wise Training is common in training multiple

modules, particularly with GAN discriminators. Our train-
ing paradigm contains four stages. First, we train the de-
composer F and renderer R on syn-train. Second, we train
the image translators and discriminators GS→R, GR→S ,
DR, and DS with Eq. 2. Third, we finetune R using the
translated synthetic images by GS→R. Finally, we freeze R
and GS→R and finetune F on translated synthetic images
and real images using losses described above.

6. Experiments
We validate our ShoeRinsics and compare it against prior

methods of depth prediction on our benchmark. We start
with implementation details, followed by a visual com-
parison and quantitative evaluation, and conduct an abla-
tion study and analysis of why ShoeRinsics outperforms the
prior art.

6.1. Implementation

Training specifics. Instead of using high-resolution
images (405x765) from the training set, we crop patches
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new, athletic
(seen)

used
(unseen)

formal
(unseen)

new, athletic
(seen)

image pred. albedo pred. normal pred. depth pred. print GT print

Figure 6: On images of the real-val set, we visualize ShoeRinsics’s predictions including depth thresholding which generates predicted
prints. Our method ShoeRinsics produces visually appealing intrinsic decompositions (depth, albedo, and normal). Importantly, on novel
shoe-tread displayed in the last bottom rows, ShoeRinsics produces very good depth and shoeprints by comparing against the ground-truth
shoeprints. To display the predicted prints, we threshold the predicted depth to best match the ground-truth print (Sec 3.2).

(128x128) to train the models. We find this yields better
performance, as shown in the ablation study (Sec. 6.4). For
a fair comparison, we train all models with patches for the
same number of optimization steps. During training, we
sample patches from random positions. We use Adam op-
timizer and set the learning rate as 1e-3 and 1e-4 for train-
ing the initial models (e.g., F and R) and finetuning them,
respectively. We set the batch size as 8 throughout our ex-
periments. Recall that we train our model in stages (Sec. 5).
We train for 20M iterations in the first two stages and 100K
iterations in the last two stages.

Architectures. Our decomposer F and renderer R have
a classic encoder-decoder structure as used in [28]. We
modify the light prediction decoder to be a 17-way classi-
fier (given that our synthetic data has only 17 lighting con-
figurations). We also add residual connections between lay-
ers to predict full-resolution maps for intrinsic components
(depth, albedo, and normal). Our translators and discrim-
inators (GS→R,GR→S ,DR,DS , and Dfeat) have the same
structure as used in [25]. The Dfeat is a convolutional net-
work that uses a kernel size 3 to process the albedo, depth,
and normal features. It further takes as input the features
of the lighting prediction branch. That said, Dfeat learns to
discriminate features of all the intrinsic components.

Hyperparameter setting. We denote the combined hy-
perparameters as λ̂ = (λa, λd, λn, λl) in Eq. 1. The de-
composer F is trained with λ̂ = (1, 1, 1, 0.1) in the first
stage, and finetuned with λ̂ = (1, 2, 1, 0.1) in the final stage.
When finetuning, we set the weight to 3 for the reconstruc-
tion loss, 2 for the pseudo albedo loss, and 1 for the feature
alignment. We set the hyperparameters via validation.

Test-time augmentation. During testing, we consider
test-time augmentation [14, 24]. For each image, we pro-
duce 23 variants: 3 flips (horizontal, vertical, and verti-
cal+horizontal), 4 rotations (angles +5◦, +10◦, −5◦, and
−10◦), 4 scalings (scale factor 0.5, 0.8, 1.5, and 1.8), and
12 flip+rotation versions (three flips times four rotations).
For each variant, we predict the depth and then transform
back to the original coordinate frame. We average all the 24

new, athletic (seen) used (unseen) formal (unseen)

image / 
GT print

ShoeRinsics 
pred. 

depth / print

CyCADA 
pred. 

depth / print

UDAB 
pred. 

depth / print

ADDA 
pred. 

depth / print

Figure 7: Comparison with the state-of-the-art methods of do-
main adaptation tailored to depth prediction on our real-val bench-
mark. Our ShoeRinsics performs better than others for both seen
and unseen shoe categories as highlighted by the red boxes.

depth maps as the final prediction.

6.2. Qualitative Results of ShoeRinsics

We visualize predictions on the real-val images by our
method ShoeRinsics in Fig. 6. ShoeRinsics predicts good
depth maps, the thresholding of which generates shoeprints
that match the ground-truth prints. As a byproduct, our
method also makes visually appealing predictions on other
intrinsic components. We compare our predictions with
those made by other methods on real-val (Fig. 7) and real-
FID-val (Fig. 8). Clearly, our ShoeRinsics produces more
reasonable visuals (depth and shoeprints) than the com-
pared methods. The supplement has further visualizations.
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Figure 8: Comparison with the state-of-the-art methods for depth
prediction and domain adaptation [19, 25, 55] on real-FID-val.
Clearly, our ShoeRinsics produces shoeprints which are visually
closer to the ground-truth than previous methods.

6.3. State-of-the-art Comparison

ShoeRinsics outperforms prior methods in most of the
validation examples (details in the supplement). Table 2
and 3 list comparisons as analyzed below.

Comparison with intrinsic image decomposition. We
compare our ShoeRinsics and RIN [28], which learns for
intrinsic image decomposition. As RIN [28] emphasizes
normal prediction to represent shapes, we use the standard
Frankot-Chellappa algorithm [15] to integrate the normals
towards depth maps. Compared to [28], our ShoeRinsics
explicitly incorporates domain adaptation in the image and
feature space. Doing so helps mitigate the synthetic-real
domain gap. As a result, ShoeRinsics outperforms RIN on
both real-val and real-FID-val (Table 2 and 3). On real-val,
it performs better than RIN by 20.5% mIoU on the (seen
new-athletic) shoes, by 8.1% mIoU on the formal unseen
shoes, by 11.4% mIoU on used unseen shoes. On real-FID-
val, ShoeRinsics improves IoU by 5.6% mIoU over RIN.

Comparison with domain adaptation. Table 2 and 3
clearly show that our ShoeRinsics consistently outperforms
the compared domain adaptation methods (ADDA [55],
UDAB [19], and CyCADA [25]) on both the real-val and
real-FID-val datasets. From ablation studies, as shown in
the lower panel of Table 2, we see that using the ren-
derer (cf. Fig. 1) and the decomposer (that learns to pre-

Table 2: Benchmarking on real-val. We use IoU as the metric
(in %), and break down the analysis for different shoe categories
(new-athletic shoes seen during training, and formal and used
shoes unseen in training). We compute mean IoU (mIoU) over all
validation examples. Training on only synthetic data yields poor
performance, whereas our ShoeRinsics performs the best on both
seen and unseen categories. This clearly demonstrates the bene-
fit of combining synthetic-to-real domain adaptation with intrin-
sic decomposition. The ablation study (bottom panel) shows that
each individual component (discriminator, translator, and renderer,
cf. Fig. 1) helps improve shoeprint prediction. Lastly, from our
syn-only ablation, decomposing to all intrinsic components per-
forms better than training a depth predictor for shoeprint predic-
tion, further demonstrating that incorporating intrinsic decompo-
sition helps close synthetic-to-real domain gaps. Exploiting test-
time augmentation boosts performance from mIoU=46.8 to 49.0.

Method
New-Athletic Formal Used

mIoU
(seen) (unseen) (unseen)

RIN [28] 30.0 39.7 24.4 30.4
ADDA [55] 46.5 41.4 27.2 41.4
UDAB [19] 46.0 40.4 29.6 41.4
CyCADA [25] 48.8 43.9 34.5 44.8

syn-only, depth only 41.3 41.2 28.4 38.4
syn-only, all intrinsics 41.8 41.5 27.1 38.5
ShoeRinsics 50.5 47.8 35.8 46.8

w/o discriminator 48.2 39.9 33.6 43.6
w/o translator 49.0 42.8 31.4 44.0
w/o renderer 49.0 46.4 34.7 45.4

ShoeRinsics w/ aug 52.4 52.9 36.9 49.0

Table 3: Benchmarking on real-FID-val. We report mean IoU
(mIoU) over validation examples. ShoeRinsics outperforms previ-
ous methods and improves further with test-time augmentation.

RIN ADDA UDAB CyCADA ShoeRinsics ShoeRinsics
[28] [55] [19] [25] w/ aug

mIoU 26.0 27.2 29.0 31.2 31.6 32.0

dict albedo, normal, and lighting as auxiliary supervisions)
greatly improves the performance. Qualitative comparison
on real-val in Fig. 7 and real-FID-val in Fig. 8 show that
depth maps and the corresponding prints predicted by our
ShoeRinsics have richer textures and better-aligned patterns
to the RGB input. When exploiting test-time augmentation
(cf. ShoeRinsics w/ test-time aug), we boost the perfor-
mance from mIoU = 46.8% to 49.0% on real-val and from
mIoU=31.6% to 32.0% on real-FID-val.

Performance on real-val vs real-FID-val. All the
methods show lower mIoU numbers on real-FID-val com-
pared to real-val. This is owing to the noisy ground-truth
prints of real-FID-val (see Fig. 9). Note that the FID prints
are obtained by pressing gelatin lifters onto dusty shoe-
treads followed by scanning the lifters [32]. This means
that the shoeprints can be noisy as the contact surfaces do
not leave a full print. In contrast, for real-val shoeprints,
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(a) real-FID-val (b) real-val
noisy shoeprint design mismatch

Figure 9: Comparison between real-FID-val (a) and real-val (b).
The shoeprints from real-FID-val are noisy and slightly misaligned
with the corresponding shoe-treads. In contrast, shoeprints of real-
val contain the entire contact surfaces and are well aligned with the
corresponding shoe-tread images.

image pred. depth
w/ renderer

pred. depth
w/o renderer

image pred. depth
w/ renderer

pred. depth
w/o renderer

Figure 10: Training ShoeRinsics with the renderer (which allows
using the reconstruction loss) produces visibly better depth than
without. Using the renderer encourages the decomposer to out-
put depth maps that contain fine-grained details because it penal-
izes coarse predictions through the image reconstruction loss. That
said, the renderer regularizes the learning for depth prediction by
exploiting auxiliary supervisions from other intrinsic components
(albedo, normal, and lighting).

we minimize such noise and get more even coverage by av-
eraging over multiple prints for the same shoe. Moreover,
while real-val consists of image and print pairs of the exact
same shoe, real-FID-val consists of prints from [32] with
our manually discovered shoe-tread images, meaning that
they might not be well aligned, as visually seen in Fig. 9.

6.4. Ablation Study

We conduct an ablation study (cf. Table 2 bottom panel)
on the modules in ShoeRinsics, including feature align-
ment (by learning discriminator Dfeat in the feature space),
translator GS→R, and renderer R. All three modules aim to
mitigate synthetic-real domain gaps. We also study whether
predicting intrinsic components (albedo, normal, and light-
ing) helps depth prediction and whether patch-based learn-
ing is better than full-image learning.

Effect of feature alignment by discriminator Dfeat.
ShoeRinsics w/o discriminator removes the feature discrim-
inator Dfeat but keeps all the other modules. It yields
43.6% mIoU, 3.2% mIoU lower than ShoeRinsics (cf. Table
2). This demonstrates the effectiveness of Dfeat for mitigat-
ing domain gaps by aligning features.

Effect of image translator GS→R. ShoeRinsics w/o
translator drops the translators but keeps other components,
achieving 44.0% mIoU, 2.8% mIoU lower than ShoeRinsics
(cf. Table 2). This shows the effectiveness of using transla-
tors to close the synthetic-real domain gap.

Effect of the reconstruction loss by the renderer R.
ShoeRinsics w/o renderer drops the renderer from ShoeRin-
sics, leading to 45.4% mIoU, 1.4% mIoU lower than

image pred. albedo pred. normal pred. depth pred. printimage pred. albedo pred. normal pred. depth pred. print

Figure 11: Failure cases. ShoeRinsics performs poorly in the
presence of complex materials (e.g., translucence).

ShoeRinsics (cf. Table 2). This validates the effectiveness
of the renderer. Fig. 10 visualizes depth predictions with
and without the renderer during training. Clearly, with the
renderer, the predicted depth has better high-frequency tex-
tures. See the caption of Fig. 10 for details.

All intrinsics vs depth only. Comparing “syn-only,
depth only” and “syn-only, all intrinsics” in Table 2, we see
that learning to predict all intrinsics performs slightly better
(38.5% vs. 38.4%). Importantly, this allows using the ren-
derer as the reconstruction loss to regularize the training on
real images, yielding significantly better results in the final
ShoeRinsics (46.8% mIoU).

Patches vs. full-resolution images. We compare the
depth prediction performance by training the decomposer
on patches versus full-resolution images of the synthetic
data. We find that the former (patch-based) achieves 38.5%
mIoU (cf. Table 2) as opposed to 36.5% mIoU for the latter
(not shown in the table). This demonstrates the benefit of
depth learning on patches over whole images in this setup.

6.5. Failure Cases

We analyze failure cases of ShoeRinsics in Fig. 11. We
find that our method performs poorly on shoes with com-
plex materials. One reason is that the syn-train data does
not contain any complex materials. Future work may ex-
plore richer synthetic datasets to improve performance.

7. Conclusion

Motivated by constructing a database of shoeprints for
forensic use, we introduce a problem of predicting depth
for shoe-tread photos collected by online retailers. Because
these photos do not have ground-truth depth, we exploit
synthetic images (containing shoe-treads and ground-truth
intrinsics including depth, albedo, normal, and lighting).
We study domain adaptation and intrinsic image decompo-
sition techniques and propose a method termed ShoeRin-
sics to train for depth prediction. Our experiments demon-
strate consistent improvements of ShoeRinsics over previ-
ous methods on this task. We expect future algorithmic ex-
plorations on this task from the perspective of domain adap-
tation, depth prediction, and intrinsic decomposition.
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