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Abstract

Long-tailed datasets, where head classes comprise much
more training samples than tail classes, cause recognition
models to get biased towards the head classes. Weighted
loss is one of the most popular ways of mitigating this is-
sue, and a recent work has suggested that class-difficulty
might be a better clue than conventionally used class-
frequency to decide the distribution of weights. A heuris-
tic formulation was used in the previous work for quan-
tifying the difficulty, but we empirically find that the op-
timal formulation varies depending on the characteristics
of datasets. Therefore, we propose Difficulty-Net, which
learns to predict the difficulty of classes using the model’s
performance in a meta-learning framework. To make it
learn reasonable difficulty of a class within the context
of other classes, we newly introduce two key concepts,
namely the relative difficulty and the driver loss. The former
helps Difficulty-Net take other classes into account when
calculating difficulty of a class, while the latter is indis-
pensable for guiding the learning to a meaningful direc-
tion. Extensive experiments on popular long-tailed datasets
demonstrated the effectiveness of the proposed method, and
it achieved state-of-the-art performance on multiple long-
tailed datasets. Code is available at https://github.
com/hitachi-rd-cv/Difficulty_Net.

1. Introduction

Despite the outstanding performance of the recent deep
learning (DL) models on public datasets, deploying such
models in the real world often leads to a performance drop.
One of the causes is that the public datasets are usually al-
most perfectly class-balanced while real-world data are gen-
erally long-tailed, where a few classes (called head classes)
consist of a significantly larger number of training samples
than the rest of the classes (called tail classes). The ‘long-
tailed recognition’ research domain particularly aims at ad-
dressing this issue.

Amongst multiple possible strategies to tackle long-
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Figure 1. Different quantifications of class-difficulties perform
better than others in different situations (imbalance ratios). The
imbalance in the data is calculated as the ratio of the frequency
of the most frequent class to that of the least frequent class. We
compute class-wise difficulty (d.) using four different functions of
class-wise accuracy (a.) for the CDB-CE [31] loss function and
compare their performance on the CIFAR100-LT. Interestingly,
the alternate formulations work better than the originally proposed
one (d. = 1 — a.) in many cases. However, the best perform-
ing function changes with the imbalance values. This brings us
to the question “Which formulation to choose for my imbalanced
dataset?”

tailed recognition problems, cost-sensitive learning is one
of the most popular and promising strategies. Most cost-
sensitive learning techniques modify the cost function to
penalize the model differently for different samples. This
modification is generally done by scaling the cost value us-
ing different weights, and the research direction is mainly
aimed at finding an effective weight-assignment strategy.
One simple and intuitive way is to assign weights using the
inverse of the class-frequencies. Recently, more sophisti-
cated approaches such as class-balanced loss [7] and equal-
ization loss [36] have been proposed. However, most of
these approaches give more weights to the tail classes be-
cause they assume that tail classes are always the most dif-
ficult to learn. Recently Sinha et al. [31, 32] empirically
showed that the above assumption does not always hold true
and further claimed that class-difficulty might be a better
clue to decide weights.

While they proposed an intuitive quantification of the
class-level difficulties, this quantification is preliminarily
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determined regardless of the property of a given dataset,
and thus may not be optimal in different situations. In
fact, we empirically found that multiple quantifications for
class-wise difficulty gave comparable or even better results
than [31] as shown in Figure 1. This adds the extra tedious
task of selecting the appropriate formulation for a given im-
balanced data.

Motivated by recently proposed Meta-Weight-Net
(MWN) [29], our research aims to address the above is-
sue by meta-learning a simple model, named Difficulty-
Net, to predict class-level difficulty scores and then dynam-
ically distribute the weights based on the scores. Such a
strategy removes dependence on any prior formulation for
class-wise difficulty and lets the model learn any suitable
function to compute it. The key difference with MWN is
three folds. First, while MWN is a sample-level weighting
method, ours is a class-level weighted approach, whose ad-
vantage in long-tailed recognition has been revealed in [31]
and also discussed in Sec. 3.2 and Sec. 4.5. Second, we
propose to use relative difficulties rather than absolute diffi-
culties that are used in prior works [29, 31] so that the other
classes’ difficulties are also taken into account when deter-
mining the difficulty of a class. Third, we propose a new
loss function that drives the learning process of Difficulty-
Net in a reasonable direction, without which the perfor-
mance turned out to degrade.

To summarize, our key contributions are:

* We propose Difficulty-Net, which learns to predict

class-difficulty in a meta-learning framework.

* We argue that relative difficulty is more important and
effective than absolute difficulty, and provide an em-
pirical evidence for the argument.

* We propose a new loss function, called driver loss, that
guides the learning process in a reasonable direction.

* We conducted extensive experiments on multiple long-
tail benchmark datasets and achieved state-of-the-art
results. In addition, we provide in-depth analysis on
the effect and property of the proposed method in com-
parison to previous works, which revealed the effec-
tiveness of our method.

2. Related works

Major strategies to tackle the long-tailed recognition can
be broadly categorized as data re-sampling methods [3, 13,
17, 30, 34, 32], metric learning [15, 20, 33, 40], knowledge
transfer [24, 43, 44], mixture of experts [41, 45, 50], cost-
sensitive learning [2, 7, 25, 29, 32] and decoupled learn-
ing [19, 28, 48, 51].

Data re-sampling techniques [3, 13, 17, 30, 34] try
to neutralize the long-tail by under-sampling from head
classes or over-sampling from tail classes.  Under-
sampling [34] generally results in poor representation of

the head classes, while a straight-forward over-sampling
strategy of replicating tail-class samples causes the model
to overfit on the repeated samples. Another popular over-
sampling technique is synthetic data generation [3, 13] for
the tail classes. Certain class-balanced sampling approaches
such as class-aware sampling [17, 19, 42] and square-root
sampling [19] have been shown to be more effective than
using over- or under-sampling. They typically try to in-
crease the sampling rate for the tail classes during training.
However, they still result in overfitting due to the repeated
sampling of the same samples from tail classes.

Metric learning methods [1, 15, 20, 33, 40, 49] aim to
learn a high-quality feature extractor that preserves inter-
class and intra-class relationships in the feature space.
They achieve this by learning from pairs [20, 33, 49] or
triplets [1, 15] of input samples. Metric learning has been
used in long-tailed recognition [24, 38] in hope that high-
quality feature extractor will mitigate the imbalance be-
tween head and tail classes. An effective sampling of
the sample groups is the key for efficient training in this
scheme. However, such sampling strategies come with
the risk of under-representation or overfitting, as explained
above.

Knowledge transfer [8, 24, 43, 44, 47] in long-tailed
recognition tries to transfer knowledge gained from the head
classes to the tail classes. They achieve this either by learn-
ing modular transformations from few-shot model param-
eters to many-shot models [43, 44] or by designing exter-
nal modules for feature transfer [24, 47]. Designing such
modules is usually computationally expensive in real-world
usecases [19].

Mixture of experts (MoE) [41, 45, 50, 52] is an
ensemble-based technique where the expert models are
trained to gain diverse knowledge. The aggregated knowl-
edge of the experts is either used directly to alleviate the
long-tail [41, 50] or used to teach a student model for that
purpose [45]. Despite the increasing popularity of this do-
main, our research focuses on the improvement of a single
model as it can then easily be combined with any mixture.

Cost-sensitive learning can be achieved by logit-
adjustment loss [2, 25, 37] and weighted loss [7, 11, 23,
27, 29, 35, 36] approaches. Most prior methods distribute
these adjustment or weight values on the basis of class-
frequencies. Recently, Sinha et al. [31, 32] showed that
class-difficulty is a better metric for the purpose. How-
ever, finding an optimal formulation for calculating class-
difficulty is not a trivial task as the optimal formulation
usually varies depending on datasets as shown in Figure 1.
Our research builds on the work of Sinha er al. [31] and
tries to remove the requirement of any prior formulation
by using meta-learning. Meta-learning [12] has previously
been used in long-tailed recognition to learn [18, 27] or
predict [29] sample weights. The closest to our research
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is Meta-Weight-Net (MWN) [29], which learns a model to
predict sample-level weights from training loss. Different
from them, we use class-level weighting, which is known to
be better than sample-level weighting in long-tailed recog-
nition [31].

Recently, Kang et al. [19] found that decoupling
model learning into representation learning and classifier
learning helps long-tailed recognition. Since this find-
ing, most works have tried to improve either the data-
representation [28, 46] or the classifier [22, 39, 48, 51]. We
show that our method also benefits from this framework and
achieves state-of-the-art results based on it.

3. Proposed method
3.1. Background

Generally, the prior assumption is that the tail classes are
the most difficult to learn for the models. However, it has
recently been empirically shown that the number of training
instances of a class might not be the best clue to determine
its difficulty because some classes are well-represented even
with fewer training samples. On the basis of this finding,
Sinha et al. [31] came up with a simple formulation to di-
rectly calculate the difficulty of a class from the model’s
performance. The formulation says that if the model’s clas-
sification accuracy on a class c is a., then the difficulty of
the class d. can be computed as d. = 1 — a.

However, we found two lacking points in the formula-
tion. First, as stated in Sec. 1, we found multiple decreas-
ing functions of accuracy a. that outperformed the above
formulation in multiple setups. In the meantime, we also
found that the best performing formulation varies inconsis-
tently with the data imbalance and thus it is not possible to
preliminarily define the best formulation for a given dataset.
Second, while the above formulation helps to compute the
absolute difficulty of a class, we believe it is more impor-
tant to compute the difficulty of a class relative to the other
classes because it is reasonable to assign a high difficulty
score to a class with high accuracy (i.e. easy class) if the
other classes have even higher accuracies. For that purpose,
all the classes need to be considered when computing the
difficulty of a single class, which is not done in [31].

To address these issues, we propose meta-learning the
formulation that is most effective for a given dataset, taking
relative difficulties into consideration.

3.2. Meta-learning via Difficulty-Net

Difficulty-Net design. Given a dataset of C' classes, we
aim to learn a formulation that can compute the relative dif-
ficulty for each class. For this purpose, we design the for-
mulation for class-wise difficulty as

dy,dy,...,dc = D({a.}<_;0). (1)

Note that both d. and a. change as the training progresses,
but here we omit the notation of training steps for simplicity.
D is a neural network with parameters 6. In our implemen-
tation, we choose D to be a simple MLP model with two
hidden layers. The output layer dimension is kept same as
the number of classes and a sigmoid activation at the output
ensures the difficulty scores to be in the range (0, 1). The
input to D are the model’s classification accuracies for all
C classes. The design of D ensures that while estimating
the difficulty for a class, the model’s performance on the
other classes is also taken into account. We refer to D as
‘Difficulty-Net’.

Meta-learning objective: Suppose a classification prob-
lem in which we are provided a training dataset S %" =
{xi,y;},, where z; is the i'" training sample and y; €
{1,...,C} is its corresponding ground truth label. Given
a classifier neural network f(z;¢) with learnable parame-
ters ¢, our primary objective is to learn the optimal parame-
ters ¢* so that f(x; ¢*) provides the minimum classification
loss on the training set S %" j.e.

N
“ — arg min — )
¢" = arg min N;L(ﬂxm,yz), @

where L computes the loss corresponding to f’s prediction
for a given sample and is typically the cross-entropy loss.

In long-tailed recognition, the training dataset S*"%" is
class-imbalanced. In such cases, optimization using Eq. 2
leads to biased learning of ¢. To compensate for the im-
balance, we modify the learning objective as most weighted
loss approaches do, i.e.

| X
o arg;nin N Z w L(f (25 8),yi)s (3)
i—1

where w; is the weight assigned to the training sample x;.
In our proposed approach, w; is computed by Difficulty-Net
D as

where D(A¢;6),, is the difficulty score for class y; pre-
dicted by Difficulty-Net and Ac = {a.}< ; is the set of
accuracies of f(xz;¢) for all C classes, evaluated prior to
this calculation. Therefore, the learning objective for ¢* is
modified as

1 N
¢*(0) = arg min - > wilAc, O)L(f(xi;6),4:). (5)

i=1

Since the optimization of our main classifier network de-
pends on the effectiveness of Difficulty-Net, it is impor-
tant to optimize the parameters 6 of D as well. Inspired
by [29], we use a small balanced meta-dataset S™¢%% =
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{ameta ymetay M for optimizing the parameters 6 as fol-
lows.

Z Lmeta

_ arg min — Z L mm‘a (9)) yzmeta) (6)

0" = arg min —

However, we found that L™¢!® alone is not enough for
Difficulty-Net to learn to estimate difficulties from accu-
racy. Even for 2 classes with very different accuracy val-
ues, Difficulty-Net learned using Eq. 6 tends to give sim-
ilar difficulty scores for both classes. To address this is-
sue, we add another loss component to drive the learning of
Difficulty-Net in a practically correct direction. We call this
loss ‘driver loss’ and calculate it as

LY (Ac, ) Z D(4ci0))*, ()

where d. = a./)_, a is the normalized accuracy of class
c. The L9 is built on the motivation that Difficulty-Net
should learn to give high difficulty scores to a class, if the
accuracy of the class is relatively low. Now the parameters
6 of Difficulty-Net D are optimized as

M

1
* : dr - meta (
0* = argemln ALY (A, 0) + i ié 1 L (9*(6)), (8)

where A is a hyper-parameter controlling the influence of
L. Note that too high value of \ will simply cause D to
always predict class difficulties as d. = 1 — a.. We ablate
over various values of A in our experiments.

Learning method. Following [29], our meta-learning
method is a 3-step process. Given a classifier network
f(x; ¢¢) and Difficulty-Net D(; 6,) at time step ¢, the first

step aims to learn intermediate classifier parameter (bAt by

OL(f(xi;9),vi)
a(b ¢t7
€))
where « is the step size for gradient descent and b is the
number of samples in one mini-batch sampled from the
training set S, Ao, is the classification accuracy of
f(x; ¢¢) on all the C classes at time step ¢ and is computed
on a validation dataset SV,
The second step updates the parameters 6 of Difficulty-
Net using the obtained intermediate classifier f(z; gzgt) ona
mini-batch of size m sampled from the meta-dataset. The

b
$(01) « by — 0% > wi(Acy, 04)

i=1

update is done by

0t+1 <

OOLA(Agy, 0) + L i L7t (,(0))

et _B 80 0, )

(10)

where [ is the step size for updating the parameters of
Difficulty-Net.

Finally, the third step uses the updated parameters 6;1
to update the parameters of the classifier network f(x; ¢;)
over the same mini-batch sampled in Eq. 9.

OL(f (i), yi)
2] b1
an
The above three steps are executed iteratively till conver-
gence or the end of the training. The overall algorithm is
presented in Algorithm 1 in the supplementary material.
For our experiments, we construct the S¢'¢ following
exactly the same procedure as [18, 29]. We also found that
S™eta s reusable as SV for calculating Ac . Therefore,
we do not use any extra data compared to previous methods.
Also, although it is ideal to calculate Ac ; for every time
step t, we calculate the accuracy only after every epoch in
our implementation for saving computational time.

b
1
Pr41 — Pt — ay ; w;i(Act, Or41)

Difference with MWN and CDB-CE. Although we
share a similar meta-learning framework as MWN [29],
our approach is very different from theirs in more than one
way. One difference is that MWN is a sample-level weight-
ing strategy while ours is a class-level weighting strategy.
The advantages of class-level weighting over sample-level
weighting in long-tailed learning is pointed out in [31] and
also reflected in our experimental results.

Ours is not the straight-forward combination of
MWN [29] and CDB-CE [31]. First, both MWN and CDB-
CE use absolute difficulties of a sample or a class to deter-
mine the weights. We believe, however, the relative diffi-
culty compared with other samples or classes is more im-
portant because it is reasonable to assign a high difficulty
score to a class with high accuracy (i.e. easy class) if the
other classes have even higher accuracies. The proposed
method estimates relative difficulties of each class amongst
all the classes, and it turned out to be more effective as we
will show in Sec. 4.5. Second, the straight-forward combi-
nation of these prior works without the driver loss turns out
to learn almost nothing and predicts almost identical diffi-
culties for all the classes as we will show in Sec. 4.5. The
newly proposed driver loss is essential to guide the training
in a reasonable direction.

The empirical evidences of these arguments are provided
in Sec. 4.5 and 4.6.
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4. Experiments
4.1. Datasets

CIFAR100-LT. CIFARI100 [21] is an object-centric bal-
anced classification data-set comprised of tiny images be-
longing to 100 different classes. Long-tailed versions of the
dataset are artificially created by reducing the training sam-
ples per class according to an exponential function as given
in [7]. Following [7], we use CIFAR100-LT with imbalance
varying in 10-200.

ImageNet-LT. ImageNet-LT is a long-tail version of Ima-
geNet [9] created by [24]. It contains 1000 object categories
with heavy imbalance of 256. We use the same train, val
and fest splits as [24].

Places-LT. Places-2 [53] is a large-scale scene-centric im-
age dataset, used for scene recognition tasks. Places-LT is
a long-tailed subset of Places-2 with 365 classes and imbal-
ance of 996, created by [24]. We use the same splits as [24].

For constructing S™¢*¢, we followed the setup of previ-
ous meta-learning based methods [18, 29] to ensure the fair
comparison. Please see the supplementary material for the
details. The evaluation results are reported on balanced test
sets.

4.2. Implementation details

Following previous long-tailed works [7, 24, 36], we
use ResNet-32 [14] for CIFAR-100-LT experiments. On
ImageNet-LT, we follow [19, 24, 51] and use ResNet-
10 [14], ResNet-50 [14]. As in [51], we use pretrained (on
ImageNet [9]) ResNet-152 [14] and finetune it on Places-
LT. The basic architecture of Difficulty-Net is the same for
all the datasets as explained in Sec. 3.2, i.e. MLP with two
hidden layers, but we change the dimension of hidden and
output layers as different datasets have different number of
classes. We will explain a simple way to select the dimen-
sion of hidden layers in the supplementary material. We
evaluate our method both in end-to-end (e2e) learning and
decoupled learning [19] settings. For using Difficulty-Net
in decoupled learning, we first train the respective model us-
ing Difficulty-Net based weighting. Then, following [19],
we freeze the feature extractor and re-train the classifier
without using Difficulty-Net. We use A = 0.3 for all the
experiments unless otherwise stated since we find it works
reasonably well as we will show in Sec. 4.5. Further details
are provided in the supplementary material.

4.3. Compared methods

For comparison, we use multiple SOTA methods in-
cluding (1) data-resampling: class-balanced sampling (CB
sampling) [19], (2) cost-sensitive learning: equalization
loss (EQL) [36], focal loss [23], class-balanced loss [7],
label-distribution-aware-margin (LDAM) loss [2], pre-
formulated class-difficulty balanced loss (CDB-CE) [31],

Imbalance

Method 200 100 50 20 10
e2e training
Focal Loss [23] 39.64 44.03 4891 5557 61.10
MWN [29] 40.25 44.81 49.68 56.53 61.44
Class-Balanced [7] 39.95 4478 47.67 56.83 59.95
CB-DA [18] 40.89 46.24 49.80 56.67 62.16
LDAM [2] 4142 46.14 49.19 5590 62.08
EQL [36] 4346 4647 5134 56.82 60.13
CDB-CE [31] 4042 4525 4945 56.66 61.52
PaCo [6] 43.09 4726 52.14 5837 63.12

+ Bal. Softmax [26] 46.72 5147 55.88 60.32 64.10

+ Bal. Softmax [26]f - 52.00 56.00 - 64.20
Ours 4480 4796 5427 5893 63.52

+ Bal. Softmax 47.53 52.14 56.86 61.72 65.67
decoupled learning
cRT [19] 44.05 48.04 5332 5872 63.74
LWS [19] 4442 48.13 5344 59.10 6397
LAS [51] 44.87 48.68 53.85 5936 64.18
DRO-LT [28] t - 4731 5757 - 63.41
BALMS [26] 46.12 5095 5442 59.00 63.10
MWN + cRT 4456 48.34 53.62 59.05 63.99
MWN + LWS 4471 48.65 53.77 59.22 64.15
MWN + LAS 45.04 49.12 5395 5938 64.24
Ours + cRT 4745 5201 5634 61.08 64.80
Ours + LWS 4791 52.62 56.61 6138 65.08
Ours + LAS 48.32 5296 5690 6146 65.22

Table 1. Top-1 classification accuracy (%) on CIFAR-100-LT.
denotes copied results from origin paper [6, 28]. The best results
are made bold while the second best results are underlined, which
applies for the other tables as well.

(3) metric learning: parametric contrastive learning
(PaCo) [6], (4) decoupled learning: classifier normaliza-
tion (7-norm) [19], classifier re-training (cRT) [19], learn-
able weight scaling (LWS) [19], label-aware smoothing
(LAS) [51], balanced meta-softmax (BALMS) [26], dis-
tribution robustness loss (DRO-LT) [28], (5) meta learn-
ing: Meta-Weight-Net (MWN) [29], class-balancing as
domain-adaptation (CB-DA) [18]. For the sake of fairness,
we do not compare our method directly with MoE meth-
ods [41, 45] as they use ensemble of multiple expert mod-
els, while we focus on improving the learning for a single
expert. However, we verified that the proposed method can
exhibit significant performance gains by using simple en-
sembling techniques and can outperform SOTA MoE meth-
ods. The results are found in the supplementary material.

4.4. Main results

CIFAR100-LT. Following [6, 36], we use AutoAug-
ment [4] and Cutout [10] for all our implementations on
CIFAR100-LT. As explained in [36], this achieves a higher
baseline than other commonly followed ones. Therefore,

6448



to ensure the fairness of comparison, we re-implemented
the compared methods in our training setup using their
published codes. Results without using AutoAugment and
Cutout are provided in the supplementary material. We
achieved better results than originally reported results for
all the re-implemented methods except PaCo [6], which
uses additional augmentation. Therefore, we list the orig-
inal results of PaCo for reference in addition to the results
in the fair setting. PaCo uses an additional center learn-
ing rebalance step, for which they employ Balanced Soft-
max (Bal. Softmax) [26]. We report the results of PaCo
both with and without the use of Bal. Softmax. For the fair
comparison with PaCo + Bal. Softmax, we tested Ours +
Bal. Softmax in addition to the vanilla variant (Ours).

In e2e learning, our proposed approach without com-
bining any other techniques (Ours) achieved better perfor-
mance than all previous stand-alone methods as seen in
Table 1. The margin of improvement is higher in high-
imbalanced situations. End-to-end learning with Ours +
Bal. Softmax turned out to be very effective and created new
SOTA for low imbalanced cases (i.e. 10 and 20).

In decoupled-learning, we find that when we use feature
extractors trained using Difficulty-Net, any popular classi-
fier learning method (e.g. cRT, LWS, LAS) gives improved
performance. This shows that our proposed method learns
very powerful data representations. Ours + LAS achieved
the best results in high imbalanced situations (e.g. 200 and
100), while it achieved the second best in all other cases.

ImageNet-LT. Table 2 shows the results on ImageNet-LT.
In e2e learning alone, irrespective of the model used, we
achieved better overall accuracy than other e2e methods and
comparable accuracy with multiple decoupled methods.

Furthermore, Difficulty-Net based representation learn-
ing with popular classifier re-training methods achieved
state-of-the-art results. Using both ResNet-10 and ResNet-
50, Ours + LAS achieved the best overall accuracy,
which re-confirms the effectiveness of this method. More
ImageNet-LT results with many-/med-/few-shot splits are
available in the supplementary material.

Places-LT. From Table 1 and Table 2, it is evident that
our Difficulty-Net based weighting is consistently effec-
tive when used for the representation learning in decoupled
training methods. Therefore, for Places-LT, we only report
the results of Ours + {cRT, LWS, LAS} and compare them
with previous SOTA results in Table 3. The results ver-
ify that the representation learned using our method is very
powerful and helps us achieve the best overall accuracy by
simple classifier re-balancing. Our improvements in over-
all accuracy is majorly accounted for by significant gains in
medium- and few-shot accuracies. Even though our repre-
sentation learning is effective with any classifier re-training

Method ResNet-10  ResNet-50
e2e training

CE 34.8 41.6
Focal loss [23] 30.5 -
EQL [36] 36.4 -
CB-DA[18] 36.7 48.0
CDB-CE [31] 38.5 -
Bal. Softmax [26] 41.1 -
PaCo [6] ™ - 49.8
+ Bal. Softmax [26]* - 53.5
Ours 41.4 51.2
+ Bal. Softmax 44.3 53.7
decoupled learning

cRT [19] 41.8 47.3
LWS [19] 41.4 47.7
MiSLAS [51] - 52.7
BALMS [26] 41.8 -
DRO-LT [28] - 53.5
Ours + cRT 43.6 53.5
Ours + LWS 44.4 53.7
Ours + LAS 44.6 54.0

Table 2. Top-1 classification accuracies (%) on ImageNet-LT. *
represents reproduced results using author’s codes without using
RandAugment [5] for fair comparison. Other baseline results are
copied from original papers. Results using RandAugment are pro-
vided in the supplementary material.

Method Many Med Few All

CE 45.7 273 82 302
CB sampling [19] - - - 30.3
Focal Loss [23] 41.1 348 224 346

cRT [19] 42.0 37.6 249 36.7
LWS [19] 40.6 39.1 28.6 37.6
BALMS [26] 412 39.8 31.6 387
LADE [16] 42.8 39.0 312 3838
DisAlign [48] 40.4 424 301 393
IEM [54] 46.8 392 28.0 39.7
MiSLAS [51] 39.6 433 361 404
PaCo [6] 375 472 339 412
Ours + cRT 43.0 438 350 417
Ours + LWS 41.4 43.7 369 415
Ours + LAS 42.4 437 36.6 41.7

Table 3. Top-1 classification accuracies (%) for Places-LT.

method, especially Ours + LAS significantly boosts results
for the few-shot classes and achieved SOTA in overall ac-
curacy. PaCo achieved the best results for the medium-shot
classes, but it sacrificed the performance on the many-shot
classes significantly, resulting in lower overall accuracy.

4.5. Ablation study

In this sub-section, we first show the ablation study
of our key components, namely relative difficulty and the

6449



—— Class accuracy
Predicted difficulty (A =0)
—— Predicted difficulty (A =0.3)

0.8
0.6
0.4
0.2
0.0

0 20 40 60 80 100
Classes

Figure 2. Difficulty scores for CIFAR100-LT (imbalance=100)
classes predicted by Difficulty-Net learned with A = 0 and A =
0.3. The classes are sorted in increasing order of their accuracy.

driver loss. Then we re-verify the effectiveness of the class-
level weighting studied in [31] in our meta-learning frame-
work. Further, we verify the effectiveness of using the meta-
learning loss in our method. We conclude this sub-section
with the effectiveness of the proposed method by comparing
it with the straight-forward combination of CDB-CE [31]
and MWN [29].

Absolute difficulty vs. relative difficulty. For predicting
absolute difficulty, we modified Difficulty-Net from Eq. 1
to d. = D%(a.;0) and trained it in the same way as be-
fore. The comparison is provided in Table 4 (#7 vs. #9).
As can be seen, relative difficulty significantly outperforms
absolute difficulty for both low and high imbalance. This
verifies the effectiveness of relative difficulty.

Contribution of L. The value of \ in Eq. 8 controls the
impact of L%". Here we analyse the effect of \. For that, we
evaluate the performance of ResNet-32 trained end-to-end
using different values of A and report the results in Table 5.
It shows that A\ = 0, which is equivalent to #6 in Table 4,
works significantly poor especially in high imbalance case,
which asserts the importance of using L%". We find that for
higher imbalance, higher A works better. But, too high A
leads to significant drop in performance. Irrespective of the
imbalance, A = 0.3 works consistently well.

To further analyse the usefulness of L, we visualise
the predicted difficulty by Difficulty-Net trained with and
without L. The results are shown in Figure 2. It shows
that using L% with A = 0.3 provides a more meaningful
learning of Difficulty-Net compared to when not using L%
(A = 0). The latter predicts similar difficulty scores for all
the classes inspite of the highly biased accuracy. However,
using L9 helps Difficulty-Net to predict high difficulty for
less accurate classes.

Sample-level difficulty vs. Class-level difficulty. We
modified the Difficulty-Net to predict sample-level dif-
ficulties and compared it with the proposed method.
We modified the Difficulty-Net as dy,ds,...,dp =
Dsample({] 1B - 0) where B is the total number of sam-
ples in a single batch, [ is the model’s cross-entropy loss
for samples s, and d; is the predicted difficulty for sample
s. Simply, we meta-learn the D**™P!¢ to predict difficulty
of each sample relative to other samples in the same train-
ing batch. Note that this variant uses relative difficulty and
the driver loss, and thus is different from MWN.

In Table 4 (#8 vs. #9), it is seen that class-level diffi-
culty significantly outperforms the sample-level difficulty
in overall performance. This proves the effectiveness of
class-difficulty in our proposed method. We believe that
this happens because the head classes have higher absolute
number of hard samples than the tail classes simply because
the head classes have much more training samples. In such
case, as pointed out in [31], sample-level weighting gives
higher weights to head classes in total, and therefore cause
the model to get biased to the head classes. This is veri-
fied by the fact that class-level performs much better espe-
cially for the tail classes (med and few-shot) as shown in the
supplementary material. Another interesting observation is
that our sample-level Difficulty-Net even significantly out-
performs MWN (#3 vs. #8), which re-verifies the effective-
ness of our newly proposed components, namely relative
difficulty and the driver loss.

Contribution of ™€, Here we verify the usefulness of
L™¢t% ip our Difficulty-Net training. In Table 4 (#5 vs. #6),
we see that using meta-learning loss gives a boost of 0.89%
(for imb. 100) which confirms the benefit of using ML.

The straight-forward combination of CDB-CE and
MWN does not work. As stated in Sec. 3.2, ours is not
the straight-forward combination of the previous methods.
Evidently from Table 4 (#4 vs. #9), such straight-forward
combination does not work well, which verifies the contri-
butions of our newly proposed components.

4.6. Further analysis

It is evident in Figure 2 that Difficulty-Net successfully
learns to predict reasonable difficulty from the class-wise
accuracies. Here we further analyse how the predicted dif-
ficulties change as the training progresses. For this pur-
pose, we plot the entropy of the difficulty scores with the
training steps in Figure 3. We compute the entropy as
E({d.},) = =% Zlelog(C%). Figure 3 shows
that the entropy decreases with the training steps. This sug-
gests that the predicted difficulty scores gradually become
more and more uniform, as the model’s class-wise perfor-
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# Name Svs.C Avs.R ML L% 1Imb=100 Imb=10
1  Focal loss [23] S A 44.03 61.10
2 CDB-CE [31] C A 45.25 61.52
3 MWN [29] S A v 44.81 61.44
4 CDB-CE + MWN C A v 45.42 61.87
5 Ours w/o L% and ML C R 45.51 62.44
6 Ours w/o LT C R v 46.40 63.10
7 Ours w/o relative difficulty C A v v 46.81 62.32
8  Ours w/o class-level weighting S R v v 45.76 62.51
9 Ours C R v v 47.96 63.52

Table 4. Classification accuracy on CIFAR100-LT with imbalance ratio (Imb.) 100 and 10. “S vs. C” means Sample-level vs. Class-level.
“A vs. R” means Absolute difficulty vs. Relative difficulty. ML stands for Meta Learning.

A 0 0.3 0.6 0.9 1.0
Imbalance=100 4640 47.96 48.03 47.35 46.66
Imbalance=10 63.10 63.52 63.44 62.62 62.24

Table 5. Accuracy (in e2e learning) for different values of A on
CIFAR100-LT.

10—3.

10—5.

4k 6k 8k 10k 12k

Training steps

0 2k

Figure 3. Plotting entropy (E£) of difficulty scores predicted
by Difficulty-Net against number of training steps. We used
CIFAR100-LT (imbalance=100) for this plot.

mance gradually gets balanced. this result empirically sup-
ports the rationality of Difficulty-Net.

Further, we analyse the characteristics of difficulties es-
timated by Difficulty-Net in comparison with those by [31].
We pick three classes from the CIFAR100-LT classes (one
from each of many-, medium- and few-shot classes) and
show how the normalized weights of the classes change
as the training progresses. As shown in Figure 4, CDB-
CE weighting [31] leads to more fluctuations in the as-
signed weights, while Difficulty-Net based weighting is
more smooth and stable. This suggests that Difficulty-
Net has capability of ‘remembering’ which class is difficult
whereas CDB-CE weighting tends to be heavily affected
by quick accuracy change at each time step. We believe
this characteristic of Difficulty-Net encourages consistent
and stable training of the model, ending up in better perfor-
mance than CDB-CE weighting. Another interesting obser-
vation in Figure 4 is that the difficulties of the three classes

1.3
“\WWW”’ —— many shot class
15 1.2 medium shot class
—— few shot class
1.0 1.1
. O T T Y
1.0
0.9
M
0 0.8
0 2k 4k 6k 8k 10k1l2k 70 2k 4k 6k 8k 10k1l2k

Figure 4. Assigned weights to three different classes during train-
ing with CDB-CE [31] (Left) and our Difficulty-Net (Right). The
vertical axis represents assigned weights and the horizontal axis
represents training steps.

estimated by Difficulty-Net tend to converge as the training
progresses ,which is not observed in the case of CDB-CE.
This observation is consistent with Figure 3, which showed
that the predicted difficulty scores gradually become more
uniform as the model’s performance gets balanced.

5. Conclusion

This paper has proposed Difficulty-Net, a novel method
for long-tailed recognition that learns to predict difficulty of
classes in a meta-learning framework. The proposed method
has mainly three key features compared to prior works.
First, it removes any dependence on heuristic formulations
thanks to its ability to learn any suitable difficulty formula-
tion for a given dataset. Second, it estimates relative diffi-
culty of a class compared to the other classes whereas prior
works use only absolute difficulty of a class in question.
Third, it employs a new driver loss function that helps to
drive Difficulty-Net learning in a reasonable direction. We
verified the effectiveness of the proposed method by con-
ducting extensive experiments on multiple datasets. Further
analysis also demonstrated the usefulness of relative diffi-
culty and the newly proposed driver loss function.
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