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Abstract

Although human action anticipation is a task which is
inherently multi-modal, state-of-the-art methods on well
known action anticipation datasets leverage this data by
applying ensemble methods and averaging scores of uni-
modal anticipation networks. In this work we intro-
duce transformer based modality fusion techniques, which
unify multi-modal data at an early stage. Our Anticipa-
tive Feature Fusion Transformer (AFFT) proves to be su-
perior to popular score fusion approaches and presents
state-of-the-art results outperforming previous methods on
EpicKitchens-100 and EGTEA Gaze+. Our model is eas-
ily extensible and allows for adding new modalities without
architectural changes. Consequently, we extracted audio
features on EpicKitchens-100 which we add to the set of
commonly used features in the community. |

1. Introduction

Beyond human action recognition, anticipating possible
future actions, as displayed in Figure 1, is one of the most
important tasks for human machine cooperation and robotic
assistance, e.g. to offer a hand at the right time or to gen-
erate proactive dialog to provide more natural interactions.
As the anticipation results are just assumptions, this tends
to be significantly more challenging than traditional action
recognition, which performs well with today’s well-honed
discriminative models [13, 35]. As modeling long tem-
poral context is often crucial for anticipation [16, 42, 20],
many such methods were proposed in recent years, includ-
ing clustering [21, 36], attention [42] and recurrence [16].
While vision based systems are the de-facto standard for ac-
tion anticipation [16, 20, 48], additionally using other sup-
porting modalities like optical flow features [47, 7, 28] or
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Figure 1: The action anticipation task aims to use the ob-
served video segment of length 7, to anticipate a future ac-
tion 7, seconds before it happens.

knowledge about objects in the scene [15] have shown to
be beneficial. In recent work [28, 27, 37], audio has been
explored and shown to be complementary with appearance
for action recognition in first-person vision. Consistent with
most multi-modal action recognition models [47, 7], an-
ticipation models typically use score fusion (i.e., averag-
ing predictions computed based on each single modality)
to fuse different modalities. While averaging using fixed
weights, including simple averaging [42] and weighted av-
eraging [20], shows already superior results over the uni-
modal baseline, Furnari et al. [16] show that assigning each
modality with dynamical importance for the final predic-
tion is particularly beneficial for anticipating egocentric ac-
tions. Inspired by the classical view of multisensory inte-
gration, i.e., information across the senses gets merged af-
ter the initial sensory processing is completed [6, 45], we
take the mid-level fusion strategy in this work. We present
a transformer-based feature fusion model, Anticipative Fea-
ture Fusion Transformer (AFFT), which successfully com-
bines multi-modal features in a mid-level fusion process
where features are first fused and the fused representations
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are utilized to anticipate next actions, different from all late
and score fusion methods mentioned above. Our method
is based on features and does not require end-to-end train-
ing of feature extractors. We see this as a major advantage
since recent state-of-the-art results on various tasks have
been driven by large foundation models which are difficult
and resource intensive to train. By combining strong fea-
ture extractors like OMNIVORE [22] with mid-level feature
fusion, we achieve state-of-the art results on common action
anticipation datasets without the need for fine-tuning them.

In summary, our main contributions are:

* The Anticipative Feature Fusion Transformer (AFFT),
which successfully performs mid-level fusion on ex-
tracted features, improves significantly over score fu-
sion based approaches and provides state-of-the-art
performance on EpicKitchens-100 action anticipation
and competing results on EGTEA Gaze+;

* A comparison of multiple self-attention and cross-
attention based feature fusion strategies as well as de-
tailed hyper parameter ablations for our final model,

* Extracted audio and OMNIVORE-based RGB features
of EpicKitchen-100 which we provide to the commu-
nity and an analysis of temporal and modality-wise
performance contributions and model attention values.

2. Related Work

Action anticipation aims to predict future actions given
a video clip of the past and present. While many approaches
investigated different forms of action and activity antici-
pation from third person video [17, 12, 29, 23], the first-
person (egocentric) vision has recently gained popularity
along with development of multiple challenge benchmarks
to support it [8, 9, 32]. To model the temporal progression
of past actions, [16] proposed using an LSTM to summarize
the past and another LSTM for future prediction. [42] made
use of long-range past information and used an adapted ver-
sion of the attention mechanism to aggregate short-term
(‘recent’) and long-term (‘spanning’) features. To main-
tain the sequential temporal evolution while addressing the
problem of modeling long-range temporal dependencies of
recurrent architectures, a variation of GPT-2 [40] has been
recently proposed in [20]. We propose a transformer based
feature fusion model to effectively fuse multiple modalities,
and follow [20] to use a generative language model for fu-
ture action prediction.

Multi-modal fusion for action anticipation. The
modalities typically used in prior work for egocentric vision
are RGB, objects and optical flow [16, 42, 49, 50, 20]. To
fuse information contained in different modalities, anticipa-
tion models typically utilize a late fusion strategy, similar

to many multi-modal action recognition models [47, 7, 28].
These fusion methods can be broadly divided into score fu-
sion and feature fusion. While in score fusion, the predicted
future action scores of each modality are combined using
either fixed weights, in form of simple averaging [42, 49]
or weighted averaging [20], or dynamic weights based on
the scene [16], the feature fusion combines the predicted
future action feature and an additional feed-forward layer
is utilized to generate the action score [50]. Different from
the late fusion strategy, we take the mid-level fusion strat-
egy inspired by the classical view of multisensory integra-
tion [6, 45]. Specifically, we adopt the multi-head atten-
tion mechanism [46] to combine different modalities at each
timestamp and utilize the variation of GPT-2 following [20]
to analyze the temporal evolution of the fused past features
and predict future action features. Finally, a feed-forward
layer is used to predict the future action class.

Audio-visual learning. Recent work used audio for
an array of video understanding tasks, including self-
supervised representation learning [5, 3, 30], audio-visual
source separation [38, 2, 11], localizing sounds in video
frames [4, 43], generating sounds from video [39, 52, 18],
leveraging audio for efficient action recognition [31, 19],
and utilizing audio to improve classification performance of
action recognition [28, 27, 37]. Different from all the work
above, we focus on making use of audio as a complemen-
tary source of information for action anticipation.

3. Methodology

Our architecture which is displayed in Figure 2 consists
of three exchangeable components: Modality specific fea-
ture extractors fi;”,j € {1,..., M}, a cross-modal fusion
module g3 and an anticipation module ag. Since this work
analyzes multi-modal fusion on frozen features, we assume
all fi to have pretrained frozen weights and therefore refer
to Section 4.2 for more details on the specific feature sets
used for our experiments. Our proposed fusion modules are
presented in Section 3.2. We follow [20] and use a variation
of the GPT-2 [40] model as feature anticipation module to
predict 2,11 = aq(z;),i € {1,...,T}.

3.1. Problem statement

In this work, we follow the anticipation setup defined
in [8, 9]. As illustrated in Figure 1, the action anticipa-
tion task aims to predict an action starting at time 75 by
observing a video segment of length 7,. The observation
segment is 7, seconds preceding the action, i.e., from time
Ts — (Ta + 7o) t0 Ts — T4, Where 7, denotes the “antici-
pation time”, i.e., how many seconds in advance actions are
to be anticipated. The anticipation time 7, is usually fixed
for each dataset, whereas the length of the observation seg-
ment is typically dependent on the individual method. In
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Figure 2: Architecture of AFFT. The feature encoders are
omitted, we directly list the feature vectors #M A fusion
module combines the modality specific feature vectors. The
feature anticipation module then predicts the features of the
next time step, followed by a linear classifier.

our experiments we assume 7' temporally sequential input
observations z;7,i € {1,...,T},j € {1,..., M} which
describe the observation time 7, for each of the M avail-
able modalities. The anticipated action is defined to be at
time step 7" 4+ 1 without observation and label yr4;. De-
pending on the dataset, the preceding observations might
additionally be labelled with y;. Since this work is aimed
at feature based modality fusion, we assume fixed feature
extractors f; and define the individual extracted features as
&% = fi1? (x]") and the collection of all T x M features

for an input sample as 2.

3.2. Cross-modal fusion

Time-decoupled feature fusion In order to fuse the fea-
tures 2 on each individual time-step separately, we apply
L consecutive transformer encoder blocks as used in [10]
with dimensionality d and k attention heads, this module is
displayed on the left of Figure 3. We found that modality-
wise positional embeddings do not yield an improvement of
performance, presumably since the modality specific fea-
tures are already easily separable in feature space. We do
ablate the usage of a modality agnostic learnable token 2,
similar to the concept of a learnable class-token used in
[10]. The module with the prepended learnable token 2
is referred to as Self-Attention Fuser (SA-Fuser). Without
this learnable token we average the resulting output tokens
2. We consider the usage of the learnable token as de-

3
fault, experiments without token are marked as such.

Temporal feature fusion The Temporal Self-Attention
Fuser (T-SA-Fuser) which is displayed in the middle of Fig-
ure 3 follows the paradigm of the SA-Fuser, but instead of

fusing multi-modal features per time step, all modality fea-
tures for all time steps are used to provide all output features
z = g(#M) at once. A learnable positional embedding p;
is used to encode the temporal positions for each modal-
ity and an attention mask enforces that an output feature at
temporal position ¢ only attends to previous or concurrent
multi-modal features. Instead of a single modality agnostic
token, we provide a learned token for each time step pro-
vided to the module. Learned positional embeddings are
added to the tokens of each time step to allow the model to
differentiate them.

Temporal cross-attention feature fusion Our third fu-
sion module, which is displayed on the right of Figure 3, is
inspired by [26] and follows a different paradigm. Instead
of providing all modalities at once, we iteratively enrich a
main modality (RGB in our experiments) with information
from other modalities. Instead of L transformer encoder
blocks, (M — 1) transformer decoder blocks [46] are used.
Following the decoder architecture, the RGB features &:/7¢5
are provided as main input which provides the queries for
the multi-head cross-attention and each block makes use of
another modality £™7 as second decoder input which pro-
vides the keys and values. Positional embeddings are added
to all modality features. We do not use additional tokens,
but rather directly predict the fused features z. We refer to
this module as Cross-Attention Fuser (CA-Fuser)

3.3. Feature anticipation and classification

After different modality features get fused by the fusion
module, a variation of the GPT-2 [40] model is used to pre-
dict the future features 2,11 = aq(z;),i € {1,...,T},
following [20]. To encode the temporal ordering and ob-
tain generative ability, learnable positional embeddings and
a temporal attention mask are used. Based on the an-
ticipated features Z we define a classification head h, a
single linear layer followed by a softmax activation func-
tion. The anticipation result is based on the predicted fu-
ture feature, so §; = h(Z;) and the final anticipation result

9741 = h(Zr41)-
3.4. Loss functions

Our loss functions follow the setting of [20]. We apply
three losses £ = Lpext + Lecis + Lteat- Lnext 1S defined
on §r41 and yr41 according to the task of action anticipa-
tion. Since the network output does not only provide fea-
tures 2 for the anticipated next action but also for the
preceding time steps ¢ € {1,...,T}, L. evaluates the ac-
tion classification performance of these preceding features,
so on §; = h(2;) and y;. Both are cross-entropy losses.
Leat 1s the mean squared error between predicted and fused
features Z; and z;.
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Figure 3: The SA-Fuser on the left applies Transformer Encoder blocks at individual time steps while the 7-SA-Fuser in the
middle and the transformer decoder based CA-Fuser on the right perform fusion on the whole temporal sequence at once.

4. Experimental Setup

In order to investigate the influence of the different fu-
sion strategies and evaluate the proposed method for the ac-
tion anticipation task, we train and evaluate our methods on
two different datasets (discussed in detail in Section 4.1).
To allow a fair comparison with prior work, we first use
pre-extracted TSN features [47] as input features for both
datasets provided by [16]. To investigate the impact of the
audio modality for action anticipation, we train a TSN au-
dio action recognition model following [28] and extract its
features for fusion with other modalities. In order to show
the generalization of our proposed fusion method, we ex-
tract alternative RGB features from a recent state-of-the-
art visual model, OMNIVORE [22]. Information regarding
feature extraction is discussed in detail in Section 4.2. All
experiments follow the training procedure described in Sec-
tion 4.3.

4.1. Datasets and metrics

We perform experiments on two large-scale egocen-
tric (first-person) video datasets: EpicKitchens-100 [9] and
EGTEA Gaze+ [32]. EpicKitchens-100 consists of 700
long unscripted videos of cooking activities totalling 100

hours. It contains 90.0K action annotations, 97 verbs, and
300 nouns. We considered all unique (verb, noun) pairs
in the public training set, obtaining 3,807 unique actions.
We use the official train, val and test splits to report per-
formance. The test evaluation is performed on a held-out
set through a submission to the official challenge server.
EGTEA Gaze+ is another popular egocentric action antic-
ipation dataset. It contains 10.3K action annotations, 19
verbs, 51 nouns and 106 unique actions.

We report class mean top-5 recall [14] for EpicKitchens-
100, a class-aware metric in which performance indica-
tors obtained for each class are averaged to obtain the final
score, accounting for the multi-modality in future predic-
tions and class imbalance in a long-tail distribution. For
EGTEA Gaze+, we report top-1/5 and class mean top-1. As
some prior works report their results averaged across the
official three splits, and some evaluate their methods on the
first split only, we test our method using both recipes.

4.2. Uni-modal features
RGB. We compare two types of RGB features, the com-

monly used TSN features [47] provided by [16] and Swin
transformer [34] features which we extracted with OMNI-
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VORE [22] to represent more recent transformer based ap-
proaches. Both feature extractors are trained for action
recognition. While TSN features are extracted by applying
TSN on each frame, we extract Swin features by feeding 32
consecutive past frames totalling 1.067s video with a frame
rate of 30fps to the OMNIVORE model for each timestamp.

Audio. Following [28], We extract 1.28s of audio, con-
vert it to single-channel, and resample it to 24kHz. We
then convert it to a log-spectrogram representation using an
STFT of window length 10ms, hop length 5Sms and 256 fre-
quency bands, resulting in a 2D spectrogram matrix of size
256256, after which we compute the logarithm. Different
from [28], we extract audio in an online manner, i.e., we ex-
tract the past audio segment for each timestamp, prohibiting
the model to have access to the future, which is the prereq-
uisite for the anticipation task. We feed such matrices to
the TSN network, train it for the action recognition task and
extract features for our work.

Objects and optical flow. We use the existing object and
optical flow features provided by [16]. Object representa-
tions are obtained by accumulating the confidence scores of
all bounding boxes predicted by a Faster R-CNN [41] for
each object class. Optical flow features are extracted by
feeding 5 consecutive past frames of horizontal and vertical
flow, forming a tensor with 10 channels, to a TSN model
trained for action recognition.

4.3. Implementation details

Architecture details. For our AFFT model we use the
marked default hyper parameters from Table 2. For EGTEA
Gaze+, we reduce the number of layers of the fuser and
the future predictor to 2, since EGTEA Gaze+ is relatively
small compared to EpicKitchens-100. We employ a linear
projection layer for modality features that are not in align-
ment with the hidden size of the fuser. To match the hidden
dimension used in the future predictor, another linear layer
is employed to project the fused modality features.

Training & testing. We sample all modality features at 1
fps, resulting in a sequence of feature vectors whose length
corresponds to observation time 7,. Default observation
time is 10s, the other observation lengths are analyzed in
Section 5.3. We train our models with SGD+momentum
using 106 weight decay and 1073 learning rate for 50
epochs, with 20 epochs warmup [24] and 30 epochs of
cosine annealed decay, following [20]. We use mixup
data augmentation [51] with o« = 0.1. Default settings
for dropout and the stochastic depth regularization tech-
nique [25] are listed in Table 2. Following standard prac-
tice [16, 20, 48], our model is optimized to predict the action
label during training and marginalize the output probabili-
ties to obtain the verb and noun predictions in testing.

Fusion strategy Act.
o Average 16.4
S  Weighted average 17.3
“  MATT 12.2

SA-Fuser (w/o Token) 17.1
g SA-Fuser 18.0
§ T-SA-Fuser 15.2
&~ CA-Fuser 16.6

Table 1: Comparison of fusion strategies. The results are
based on all modalities with RGB-Swin features. We refer
to the model using the SA-Fuser as our method AFFT.

5. Results

In Section 5.1 we ablate the proposed fusion architec-
tures. Continuing with the best architecture, we find op-
timized hyper parameters in Section 5.2 and the optimal
temporal context in Section 5.3. In Section 5.4 we ana-
lyze the contribution of individual modalities to the final
model performance and in Section 5.5 our models are com-
pared against state-of-the-art feature based action anticipa-
tion models on EpicKitchens-100 and EGTEA Gaze+. The
models trained with RGB-TSN and RGB-Swin features are
referred to AFFT-TSN and AFFT-Swin respectively.

5.1. Fusion strategies

We evaluate the fusion architectures presented in Sec-
tion 3.2 against score fusion based methods and evaluate
which of our strategies proves best for multi-modal fusion.
Table 1 lists all methods. In our comparison we include
Modality Attention (MATT) [16], a learned score fusion
weighting method, but find it to be lacking in our setting.
For score averaging and weighted averaging, we choose the
same setting as [20], verifying their results. Combining
temporal and modality attention as done with 7-SA-Fuser
performs worst in our feature fusion models, which we as-
sume to be caused by the complexity of this process. CA-
Fuser introduces an inductive bias by introducing a new
modality with each consecutive block, splitting the process
of attention into separate smaller problems instead of pre-
senting all temporal and modality tokens at once. Our best
approach SA-Fuser on the other hand is even simpler, since
it splits the problem along time-steps and only attends over
the modality tokens. Temporal attention is then performed
in a completely separate step with the GPT-2 based future
predictor. We believe this reduced complexity to be the
mechanism which leads to optimal performance of our fi-
nal model. For further experiments we use the SA-Fuser as
our default fusion module.
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Projection ‘ Act. Dim. ‘ Act. Heads ‘ Act.
Lin. 17.6 512 | 16.7 4 18.0
Lin. (sparse) | 18.0 768 | 17.2 8 184
Lin. + ReLU | 17.1 1024 | 18.0 16 17.4
GLU [36] 17.8 1280 | 18.0
2048 | 16.9
(a) Projection layer. (b) Dimension. (¢) No. of heads.
Layers ‘ Act.  Regularization ‘ Act.
2 17.9  no regularization 15.8
4 17.3 stochastic depth (0.1) 16.2
6 18.0  drop. & stoch. depth (0.1) | 18.0

(d) No. of layers. (e) Regularization.

Table 2: Fuser architecture ablation on the validation set of
EpicKitchens-100. Default settings are marked in gray .

5.2. Architecture ablations

In Table 2, we ablate different hyper parameters of our
architecture. The default parameters are marked with grey
table cells, the best values are typed in boldface.

Projection layer and common dimensionality. The di-
mension of all multi-modal input features must coincide.
This could be achieved using a simple linear layer, a lin-
ear layer with ReL.U activation function [27, 23] or a gated
linear projection [36, 44], listed in Table 2a. We add an
additional variant sparse linear, meaning a linear layer is
only applied for features which have a different dimension
than the desired common dimension and show that it outper-
forms other projection methods. In Table 2b, we examine
how the projection dimension influences performance. We
find a dimensionality of 1024 to be optimal, a higher di-
mension presumably decreases performance due to the in-
creased number of parameters and overfitting effects.

Attention heads and encoder blocks. We compare the im-
pact of different head numbers of the encoder multi-head
attention in Table 2c¢, the number of encoder blocks is ana-
lyzed in Table 2d, we find eight heads and six consecutive
encoder blocks to be best.

Effect of regularization. We ablate using either no dropout
and no stochastic depth [25] (i.e. no regularization) or using
stochastic depth with maximal layer dropping probability of
0.1. Results in Table 2e show that both dropout and stochas-
tic depth regularization are very beneficial.

5.3. Impact of temporal context.

To study the ability of modeling sequences of long-range
temporal interactions, we train and test the model with dif-
ferent lengths of temporal context, i.e., observation time 7,,.
As seen in Figure 4, as more frames of context are incorpo-
rated, the performance improves for both, AFFT-TSN and

0.4
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5 g 03
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= 16 —e— Fusion TSN
154 ; fusiorll Swin' 0.2

1 1
4 8 12 16 20 RGB Obj AU Flow

Observation time [s]

Figure 4: Impact of tempo- Figure 5: Modality at-
ral context on the validation tentions of AFFT-Swin on
set of EpicKitchens-100. Our the validation set of EK-
method leverages long-term 100. Our method learns to
dependencies to improve an- pay more attention to RGB
ticipation performance. without any supervision.
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Figure 6: Temporal attentions of AFFT-Swin over all sam-
ples of the validation set of EK-100. Our method attends not
only to the recent past, but also to the entire past frames.

AFFT-Swin. The gains are especially pronounced when
trained using RGB-Swin features (16.5 — 18.5 = 2.0 1)
vs. RGB-TSN features (15.7 — 17.0 = 1.3 7). To further
explore how the temporal context is utilized, following [20],
we extract temporal attentions from the last layer of the fea-
ture anticipation module for all samples in the validation
set of EpicKitchens-100, average them over heads and vi-
sualize them in Figure 6. The anticipation module learns to
attend to visual features in the recent past, showing that the
nearest past frames provide crucial keys for predicting fu-
ture actions. This aligns with previous work [29, 42] which
reflects the importance of the recent past in designing antic-
ipation models. However, while the median attention val-
ues of more distant past frames are smaller (close to 0.1),
the attention distribution is significantly scattered, indicat-
ing that the model can choose to attend to important actions
not only from the recent past, but also from the entire obser-
vation time, as illustrated in an example in Figure 8. Here
the model attends to an early time step in the middle of the
observation which shows the opening of a fridge in order
to predict the the future action ‘close fridge’. Results for
AFFT-TSN are listed in the supplementary.
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Figure 7: Per-class top-5 accuracy of fusion (AFFT-TSN) and single modalities for the largest 25 actions in the validation
set of EpicKitchens-100. The classes are presented in the order of number of samples per class, from left to right. For most

classes the fusion method provides significantly better results over the single modalities.

Close bag Close bag  Open fridge Put bag Close fridge Mod. Backbone Act. RGB ‘TSN Swin
=% & 5] RGB TSN 13.2 Other | Act. Act.
e LATBY B . . RGB Swin 16.1 :

d G e ) P NP Obj ER-CNN 99  Obj 15.9 16.7
o AU TSN 53 A 22 el
Obj Flow TSN 7.5 FO,W 5.2 165
AU Obj+Flow 16.2 17.6
Flow

L]
0 4 8

I s Temporal
12 16

Figure 8: Qualitative results on EpicKitchens-100. The hor-
izontal and vertical axes indicate the index of past frames
as well as the modality. The closer the color is to yellow,
the higher the attention score. A video frame is highlighted
with a yellow box when the attention score of the frame is
highly activated.

5.4. Modality contributions

As shown in Table 3a, visual modalities, especially
RGB, have higher performances than audio, also observable
in Figure 7. Benefiting from a larger model capacity and
better representative ability, RGB features extracted with
an Omnivore-pre-trained Swin-Transformer perform signif-
icantly better than TSN features. Results in Table 3b show
that the anticipation performance keeps increasing when ad-
ditional modalities are introduced for both kinds of RGB
features. In particular, AFFT-TSN and AFFT-Swin have
gains of 3.6% and 1.9% over their uni-modal RGB per-
formances in Table 3a, respectively. Per-class top-5 accu-
racies, for individual modalities as well as for our fusion
model (AFFT-TSN) trained on all four modalities, can be
seen in Figure 7. The fusion model outperforms uni-modal
models for most classes, often by a significant margin. Re-
sults of AFFT-Swin are shown in the supplementary ma-
terial. To analyze the contribution of our extracted audio
features, we conduct experiments with the visual modali-
ties (RGB+Obj+Flow) only and compare them with models

Obj+AU+Flow |16.8 18.0

(a) Results of individual (b) Results of multiple modalities com-

modalities. bined with RGB.

Table 3: Impact of individual modalities on the validation
set of EpicKitchens-100. Compared to other modalities,
RGB performs significantly better, particularly on features
extracted by Swin. The proposed fusion method benefits
from multi-modal inputs. The more modalities are pro-
vided, the better the anticipation model performs.

trained on all four modalities, which results in an increase
of 0.6% (AFFT-TSN) and 0.4% (AFFT-Swin) in mean top-
5 action anticipation accuracy as seen in Table 3b. To fur-
ther validate the benefit of audio, we compute a confusion
matrix with the utilization of audio for the largest-15 ac-
tion classes, following [28], which we list in the supple-
mentary. To better understand how the fusion module mod-
els relative importance of different modalities, we visualize
the learned modality attentions of AFFT-Swin in Figure 5.
Specifically, we use attention rollout [1] to aggregate atten-
tion over heads and layers. As shown in the figure, RGB
has gained the most attention, indicating the modality which
contributes the most for the anticipation task (as seen in Ta-
ble 3a) will be automatically utilized most by the fusion
module, as would be expected. Figure 5 also shows that
the attention distributions of all modalities spread widely,
showing that the model learns to adjust the relative impor-
tance of individual modalities based on each sample.
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Overall Unseen Kitchen Tail Classes
Method
Verb Noun Act. Verb Noun Act. Verb Noun Act.
chance 64 20 02 144 29 05 16 02 0.1

AVT+ [20] 28.2 32.0 159 295 239 119 21.1 25.8 14.1
_ MeMViT [48] 322 37.0 17.7 28.6 274 152 25.3 31.0 15.5
§RULSTM[16] 27.8 30.8 140 28.8 27.2 142 19.8 22.0 11.1

TempAgg [42] 23.2 314 147 28.0 262 145 145 225 11.8

AVT+-TSN [20] 25.5 31.8 14.8 255 23.6 11.5 185 25.8 12.6

Ours-TSN 21.3 32.7 164 24.1 255 13.6 13.2 258 143
Ours-TSN™ 223 31.5 17.0 23.8 253 14.0 14.6 23.6 15.0
Ours-Swin 234 337 17.6 245 254 152 15.6 265 153
Ours-Swin™ 22.8 34.6 18.5 24.8 264 155 15.0 27.7 16.2
chance 62 23 01 81 33 03 19 07 00
AVT+ [20] 25.6 28.8 12.6 209 223 88 19.0 22.0 10.1

_RULSTM[16] 25.3 26.7 11.2 194 269 9.7 17.6 160 7.9
éTempAgg [42] 21.8 30.6 12.6 17.9 27.0 10.5 13.6 20.6 8.9
TCN-TSN [50] 204 26.6 109 179 269 11.1 11.7 152 7.0
TCN-TBN [50] 21.5 26.8 11.0 20.8 28.3 12.2 132 154 7.2
Ours-TSN* 19.4 283 134 140 242 99 12.0 19.5 109
Ours-Swin™ 20.7 31.8 149 162 27.7 12.1 134 23.8 11.8

Table 4: Comparison of state-of-the-art methods on the val-
idation and test set of EpicKitchens-100. Our models set
a new state of the art. The numbers in bold-face indicate
the highest score. All methods use all modalities provided
by [16], except for MeMViT which uses RGB only. Tem-
pAgg and the ones marked with ™ additionally use interact-
ing hand-object bounding boxes and audio, respectively.

5.5. Comparison to the state-of-the-art

Our final models follow the default hyper parameters
from Table 2. On EpicKitchens-100, AFFT-TSN and
AFFT-Swin use observations of 18s and 16s respectively,
while the default observation time (10s) is used for EGTEA
Gaze+. For the comparisons, we distinguish between train-
ing with frozen backbones (i.e., training on frozen features)
and training with fine-tuned backbones (marked with gray
font). In all tables in this section, the main metrics used to
rank methods for these datasets are highlighted.

In Table 4, we compare our method with state-of-the-art
methods on EpicKitchens-100. The table is divided into two
compartments according to the validation and test splits. On
the validation split, our AFFT-TSN outperforms other fu-
sion methods with a large margin (14.8 — 164 = 1.6 1)
with the exact same features provided by [16]. With the
addition of audio, the performance is further improved by
0.6%. AFFT-Swin* which uses Omnivore features outper-
forms the current state-of-the-art model MeMViT by 0.8%
mean top-5 ratio action anticipation performance on the val
split without the need to fine-tune the backbone network.
Consistent with the results on validation split, our method
also outperforms prior fusion methods on the test set of
EpicKitchens-100. As shown in bottom compartment in
Table 4, we get the largest gains on tail classes, for which

Method Top-1 Class mean @1  Top-5
Verb Noun Act. Verb Noun Act. Act.
I3D-Res50 [7] 48.0 42.1 34.8 31.3 30.0 232 -
FHOI [33] 49.0 455 36.6 32.5 327 253 -
AVT [20] 549 522 43.0 499 483 352 -
RULSTM [16] - - - - - - 71.84F
ImagineRNN [49] - - - - - 7232

AVT (TSN)[20] 517 50.3 39.8 412 414 283 -
AFFT-TSN (Ours) 53.4 50.4 425 42.4 44.5 352 7247

Table 5: Comparison to the state-of-the-art methods on
EGTEA Gaze+ with 7, = 0.5s. Results marked with *
are averaged across the three official splits, while others are
based on split 1 only. We use the same input modalities
as RULSTM. More details on the used modalities of each
method can be found in the supplementary material.

our method proves particularly effective. Note that Table 4
lists peer-reviewed results, only. In our supplementary we
also list results of the EpicKitchens-Challenge, which holds
many non-peer-reviewed results, often created with model
ensembling of various methods.

Next we evaluate our method on EGTEA Gaze+, shown
in Table 5. Following prior works [33, 20], we set the an-
ticipation time 7, to 0.5s. As some prior works report the
results averaged across the three official splits, while oth-
ers test on split 1 only, we evaluate our methods using both
recipes. Using fixed features, AFFT-TSN outperforms prior
works using both recipes, especially for class mean top-1.

6. Conclusion and Future Work

This work presents Anticipative Feature Fusion Trans-
former (AFFT), an attention based multi-modal feature fu-
sion method for action anticipation. Extensive ablations
demonstrate the improved performance of our approach
compared to basic score fusion or other multi-modal fu-
sion methods and in state-of-the-art comparisons AFFT
outperforms existing approaches on EpicKitchens-100 and
EGTEA Gaze+. Our method can easily be combined with
various feature extractors and is extensible to new modali-
ties without architectural changes. Given this extensibility
we hope to provide a framework for multi-modal action an-
ticipation for other researchers and aim to experiment on
additional modalities like body poses and object hand inter-
actions ourselves, in the future.
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