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In the supplementary material, the contents which are
not contained in the manuscript are described including the
actual structures of searched BNN models and additional
experimental results. First, Sec. 1 shows the experimental
results on various shortcut path candidates for the reduc-
tion binary MBConv block. We analyze the search cost of
our framework in Sec. 2. Structures of searched cells on
BNAS and that of searched models based on binary MB-
Conv block under various perturbation conditions are illus-
trated in Sec. 3 and Sec. 4. Lastly, we compare the perfor-
mance of our searched BNN models on CIFAR dataset with
that of previous works in Sec. 5.

1. Experiments on shortcut path in the reduc-
tion binary MBConv block

As we stated in Section 5.1 of the manuscript, the BNN
models based on modified binary MBConv block failed to
converge without any shortcut path in the reduction block.
We proposed and tested three candidates of shortcut path
without floating-point matrix-matrix multiplication illus-
trated in Fig. 1. Given the number of input channels C;,,,
the number of output channels C,,; in a reduction binary
MBConv block and the output of AvgPool X 4p, the can-
didates are classified by the method to compute a matrix
with C,,; — C;,, channels which will be concatenated to
X 4p for the addition to the output of second 1 x 1 convo-
lution. ‘Zero’ shortcut type (Fig. 1a) concatenates a zero
matrix Oc,, —c,., to Xap, and partially duplicated matrix
Xapl: Cout —Cin, 1, :] is concatenated to X 4 p in ‘Partially
duplicate’ type (Fig. 1b). In Fig. lc (‘Global average’),
we compute the average matrix of X 4p along channel di-
mension, copy it along channel dimension by C,,; — Cip,
then concatenate the copied average matrix to X 4p. Tab. 1
shows the experimental results of shortcut candidates with
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three BNN models of which C, k, and e are randomly se-
lected. In all models, ‘Partially duplicate’ method achieves
the highest accuracy among all candidates, thus we chose
‘Partially duplicate’ type as the shortcut path for the modi-
fied binary MBConv block.
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Figure 1: Candidates of shortcut path named (a) ‘zero’, (b)
‘partially duplicate’, and (c) ‘global average’ in a reduction
binary MBConv block.



Table 1: Test accuracy of three randomly selected models
R1 to R3 on CIFAR-100 dataset with various shortcut type
for the reduction block. ‘Z’, ‘PD’, and ‘GA’ means ‘zero’,
‘partially duplicate’ and ‘global average’ shortcut type, re-
spectively.

Equiv. Ops Test acc. (%)
Model M) Z PD GA
R1 9.86 71.62 7212 71.65
R2 12.49 7320 73.83 73.67
R3 13.00 73.49 73.89 73.75

2. Analysis on search cost of BNN search with
bimodal parameter perturbation

Tab. 2 shows the search and evaluation cost required to
search for a model using our frameworks, which was mea-
sured with an RTX3090 GPU. Note that the noise injection
process increases the search time by 20%. Grid search for
the optimal noise scale point increases the total search cost
(search time + training time), but the overhead was man-
aged as follows. First, the range of noise scale is restricted
as shown in Table 2 in the paper because larger noise pre-
vents the search process from convergence. In case of Im-
ageNet, previous works utilized the information obtained
when searching for a model on smaller CIFAR dataset in
the same search space as the proxy to reduce the heavy
search cost [1]. We similarly searched for an optimal noise
scale point in binary MBConv-based search space on CI-
FAR dataset, then reused the found noise scale to find a
BNN model on ImageNet, and hence total search time was
not increased by grid search in case of ImageNet.

Table 2: Search cost of our framework (with noise on both
architecture and weight parameters) and average training
cost of searched BNN models on each search space

Dataset Search Search time  Training time
Space (hours/GPU)  (hours/GPU)
CIFAR-100 BNAS 9.8 21.4
CIFAR-100  MBConv 26.5 26.7
ImageNet-1K ~ MBConv 73.3 853.3

3. Structures of searched cells on BNAS.

Figs. 2 to 5 illustrate the structures of searched cells on
BNAS [2] under various perturbation conditions. As we
compare Fig. 2 with Fig. 4, it is observed that injected noise
on architecture parameters makes normal cell prefer pool-
ing operations and reduction cell prefer convolutional op-
erations. Perturbation on weight parameters regularizes the
redundant operations: the number of operations in a cell is
decreased and convolutional operations with smaller kernel
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Figure 2: Searched (a) normal and (b) reduction cells on
BNAS search space without parameter perturbation.
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Figure 3: Searched (a) normal and (b) reduction cells on
BNAS search space with perturbation on weight parameters
(eyy = 0.25).
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Figure 4: Searched (a) normal and (b) reduction cells on
BNAS search space with perturbation on architecture pa-
rameters (€4 = 0.2).
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Figure 5: Searched (a) normal and (b) reduction cells on
BNAS search space with perturbation on weight and archi-
tecture parameters (e4 = 0.2 and ey = 0.25).

size (e.g. 3) are preferred (Fig. 4 and Fig. 5).

4. Structures of searched models on binary
MBConv block-based search space

Fig. 6 and Fig. 7 describe the structures of searched mod-
els on CIFAR and ImageNet dataset under various perturba-
tion conditions. It is observed that injecting noise to weight
parameters leads the search algorithm to prefer smaller ker-
nel size (e.g. 3) and larger channel dimension of latter lay-
ers (Fig. 6). In case of the searched model on ImageNet
dataset (Fig. 7), it is noticed that larger kernel size (e.g.
5) is preferred in the front layers and smaller kernel size
(e.g. 3) is preferred in the latter layers. It seems that since
the front layers process high-resolution features, a kernel
with a larger reception field and representation capacity is
preferred. On the contrary, the latter layers which process
low-resolution features as input seem to prefer a small-sized
kernel.

5. Comparison with previous works on CIFAR-
10/100 datset

We compare our searched models on CIFAR-10/100
with the previous works in Tab. 3. Comparing the CIFAR-
10/100 accuracy of our models on BNAS with bimodal per-
turbation and that of previous BNAS models, our models
show similar accuracy with much smaller number of equiv-
alent operations. With our frameworks on binary MBConv-
based search space, our searched model (MBConv-A)
can achieve higher accuracy on CIFAR-10/100 (93.76%,
73.61%) with similar number of equivalent operations

(~10M) compared with AresB-18 [3]. Our larger BNN
models (MBConv-B, C, and D) shows much higher accu-
racy up to (94.38%, 75.53%) on CIFAR-10/100, respec-
tively.
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(a) Structure of searched network based on binary MBConv block without perturbation

(b) Structure of searched network based on binary MBConv block with perturbation on architecture parameters

indino

00VXpyXy

0vexgxg

v0LX91Xx9}

(c) Structure of searched network based on binary MBConv block with perturbation on weight parameters

| 100dBAY
l}

|
1
1
\\\\\\\ J

Yyyxyxy

(9681) san

|

(vz8) san

9l

82¢x8xg

IX91Xx9}

(d) Structure of searched network based on binary MBConv block with perturbation on architecture and weight parameters

Figure 6: Structures of searched networks for CIFAR dataset based on binary MBConv block under diverse perturbation

2) convolution and e expanded channels.

condition. ‘MBE (e)’ stands for a binary MBConv block with binary k x k group (g

and the size of its output activation is

changed as marked in the gray line. Real-valued operations are depicted by boxes with a dotted line.

Each MBConv block in front of each gray line is a downsampling layer with stride=2,
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Figure 7: Structure of searched network based on binary MBConv block with perturbation on architecture and weight param-

eters on ImageNet dataset.



Table 3: Test accuracy on CIFAR10/100 dataset for various BNN models. XNOR-Net and Bi-Real-Net are based on ResNet-
18. Ops and Params are calculated based on models for CIFAR-10 dataset, and in case of BNAS [2], Ops and Params are
calculated including real-valued convolutions at shortcut paths in reduction blocks. ‘Ours (BNAS-(mini, A, C,,))’ models
consist of (10,20,16) layers with (24,32,48) initial channels, respectively.

Search  BOPs FLOPs Equiv. Ops Params CIFAR-10 CIFAR-100

Model type G (M) (M) (MB)  Acc. (%)  Acc. (%)
XNOR-Net [5] Manual  0.554  1.77 10.43 1.44 90 55 N/A
Bi-Real-Net[4]  Manual 0.547  8.07 16.62 2.11 91.23 N/A

AresB-10 [3] Manual 0245 1.7 5.608 0.63 90.74 69.45
AresB-18 [3] Manual  0.547 1.7 1033 1.43 91.90 73.01
AresB-34 [3] Manual  0.849  1.77 15.05 2.23 92.71 74.73
BNAS-A [2] Gradient 0.697  87.98 98.86 4.10 92.70 N/A
BNAS-B [2] Gradient 1.330 273.8 294.6 11.7 93.76 N/A
BNAS-C [2] Gradient 5.028  773.5 852.1 34.7 94.43 N/A
BARS-A [6] Gradient 0.513 2.0 10.02 N/A 91.25 N/A
BARS-B [6] Gradient 1.048 2.0 18.37 N/A 92.98 N/A
BARS-C [6] Gradient 1.778 3.0 3227 N/A 93.43 N/A
Ours (BNAS-mini) Gradient 0.343  39.78 45.14 1.89 92.48 71.71
Ours (BNAS-A)  Gradient 1326  87.98 108.7 4.75 94.21 75.38
Ours (BNAS-C,,,) Gradient 1.961  155.1 185.7 8.00 95.07 76.26
Ours (MBConv-A) Gradient 0.567  1.36 10.58 1.94 93.76 73.61
Ours (MBConv-B) Gradient 0.703  1.48 12.47 231 93.88 74.23
Ours (MBConv-C) Gradient 0.821  1.60 14.43 2.64 94.20 74.72

Ours (MBConv-D) Gradient 1.064 1.83 18.46 3.30 94.38 75.53




