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In the supplementary material, the contents which are

not contained in the manuscript are described including the

actual structures of searched BNN models and additional

experimental results. First, Sec. 1 shows the experimental

results on various shortcut path candidates for the reduc-

tion binary MBConv block. We analyze the search cost of

our framework in Sec. 2. Structures of searched cells on

BNAS and that of searched models based on binary MB-

Conv block under various perturbation conditions are illus-

trated in Sec. 3 and Sec. 4. Lastly, we compare the perfor-

mance of our searched BNN models on CIFAR dataset with

that of previous works in Sec. 5.

1. Experiments on shortcut path in the reduc-
tion binary MBConv block

As we stated in Section 5.1 of the manuscript, the BNN

models based on modified binary MBConv block failed to

converge without any shortcut path in the reduction block.

We proposed and tested three candidates of shortcut path

without floating-point matrix-matrix multiplication illus-

trated in Fig. 1. Given the number of input channels Cin,

the number of output channels Cout in a reduction binary

MBConv block and the output of AvgPool XAP , the can-

didates are classified by the method to compute a matrix

with Cout − Cin channels which will be concatenated to

XAP for the addition to the output of second 1 × 1 convo-

lution. ‘Zero’ shortcut type (Fig. 1a) concatenates a zero

matrix OCin−Cout
to XAP , and partially duplicated matrix

XAP [: Cout−Cin, :, :] is concatenated to XAP in ‘Partially

duplicate’ type (Fig. 1b). In Fig. 1c (‘Global average’),

we compute the average matrix of XAP along channel di-

mension, copy it along channel dimension by Cout − Cin,

then concatenate the copied average matrix to XAP . Tab. 1

shows the experimental results of shortcut candidates with
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three BNN models of which C, k, and e are randomly se-

lected. In all models, ‘Partially duplicate’ method achieves

the highest accuracy among all candidates, thus we chose

‘Partially duplicate’ type as the shortcut path for the modi-

fied binary MBConv block.

Coutw

(a) Zero   

Binary
MBConv

Operations

RPReLU

AvgPool2x2
s=2

Concatenate

h

(b) Partially duplicate   

(c) Global average 

Cinw

h

Coutw

h

0

Cinw

h

Cout - Cin

Cout - CinCin

Coutw

h

Cinw

h

Cout - Cin

Cout - CinCin

Cout - CinCin

h

w

1

Global 
Pooling

Duplicate
Cout - Cin

Reduction block

Figure 1: Candidates of shortcut path named (a) ‘zero’, (b)

‘partially duplicate’, and (c) ‘global average’ in a reduction

binary MBConv block.
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Table 1: Test accuracy of three randomly selected models

R1 to R3 on CIFAR-100 dataset with various shortcut type

for the reduction block. ‘Z’, ‘PD’, and ‘GA’ means ‘zero’,

‘partially duplicate’ and ‘global average’ shortcut type, re-

spectively.

Equiv. Ops Test acc. (%)

Model (M) Z PD GA

R1 9.86 71.62 72.12 71.65

R2 12.49 73.20 73.83 73.67

R3 13.00 73.49 73.89 73.75

2. Analysis on search cost of BNN search with
bimodal parameter perturbation

Tab. 2 shows the search and evaluation cost required to

search for a model using our frameworks, which was mea-

sured with an RTX3090 GPU. Note that the noise injection

process increases the search time by 20%. Grid search for

the optimal noise scale point increases the total search cost

(search time + training time), but the overhead was man-

aged as follows. First, the range of noise scale is restricted

as shown in Table 2 in the paper because larger noise pre-

vents the search process from convergence. In case of Im-

ageNet, previous works utilized the information obtained

when searching for a model on smaller CIFAR dataset in

the same search space as the proxy to reduce the heavy

search cost [1]. We similarly searched for an optimal noise

scale point in binary MBConv-based search space on CI-

FAR dataset, then reused the found noise scale to find a

BNN model on ImageNet, and hence total search time was

not increased by grid search in case of ImageNet.

Table 2: Search cost of our framework (with noise on both

architecture and weight parameters) and average training

cost of searched BNN models on each search space

Dataset
Search Search time Training time

Space (hours/GPU) (hours/GPU)

CIFAR-100 BNAS 9.8 21.4

CIFAR-100 MBConv 26.5 26.7

ImageNet-1K MBConv 73.3 853.3

3. Structures of searched cells on BNAS.
Figs. 2 to 5 illustrate the structures of searched cells on

BNAS [2] under various perturbation conditions. As we

compare Fig. 2 with Fig. 4, it is observed that injected noise

on architecture parameters makes normal cell prefer pool-

ing operations and reduction cell prefer convolutional op-

erations. Perturbation on weight parameters regularizes the

redundant operations: the number of operations in a cell is

decreased and convolutional operations with smaller kernel
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Figure 2: Searched (a) normal and (b) reduction cells on

BNAS search space without parameter perturbation.
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Figure 3: Searched (a) normal and (b) reduction cells on

BNAS search space with perturbation on weight parameters

(εW = 0.25).
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Figure 4: Searched (a) normal and (b) reduction cells on

BNAS search space with perturbation on architecture pa-

rameters (εA = 0.2).
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Figure 5: Searched (a) normal and (b) reduction cells on

BNAS search space with perturbation on weight and archi-

tecture parameters (εA = 0.2 and εW = 0.25).

size (e.g. 3) are preferred (Fig. 4 and Fig. 5).

4. Structures of searched models on binary
MBConv block-based search space

Fig. 6 and Fig. 7 describe the structures of searched mod-

els on CIFAR and ImageNet dataset under various perturba-

tion conditions. It is observed that injecting noise to weight

parameters leads the search algorithm to prefer smaller ker-

nel size (e.g. 3) and larger channel dimension of latter lay-

ers (Fig. 6). In case of the searched model on ImageNet

dataset (Fig. 7), it is noticed that larger kernel size (e.g.

5) is preferred in the front layers and smaller kernel size

(e.g. 3) is preferred in the latter layers. It seems that since

the front layers process high-resolution features, a kernel

with a larger reception field and representation capacity is

preferred. On the contrary, the latter layers which process

low-resolution features as input seem to prefer a small-sized

kernel.

5. Comparison with previous works on CIFAR-
10/100 datset

We compare our searched models on CIFAR-10/100

with the previous works in Tab. 3. Comparing the CIFAR-

10/100 accuracy of our models on BNAS with bimodal per-

turbation and that of previous BNAS models, our models

show similar accuracy with much smaller number of equiv-

alent operations. With our frameworks on binary MBConv-

based search space, our searched model (MBConv-A)

can achieve higher accuracy on CIFAR-10/100 (93.76%,

73.61%) with similar number of equivalent operations

(∼10M) compared with AresB-18 [3]. Our larger BNN

models (MBConv-B, C, and D) shows much higher accu-

racy up to (94.38%, 75.53%) on CIFAR-10/100, respec-

tively.

References
[1] Xiangning Chen and Cho-Jui Hsieh. Stabilizing differentiable

architecture search via perturbation-based regularization. In

International Conference on Machine Learning, pages 1554–

1565. PMLR, 2020.

[2] Dahyun Kim, Kunal Pratap Singh, and Jonghyun Choi. Bnas

v2: Learning architectures for binary networks with empirical

improvements. CoRR, abs/2110.08562, 2021.

[3] HyunJin Kim. Aresb-net: accurate residual binarized neural

networks using shortcut concatenation and shuffled grouped

convolution. PeerJ Computer Science, 7:e454, 2021.

[4] Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu,

and Kwang-Ting Cheng. Bi-real net: Enhancing the perfor-

mance of 1-bit cnns with improved representational capability

and advanced training algorithm. In Proceedings of the Euro-
pean conference on computer vision (ECCV), pages 722–737,

2018.

[5] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and

Ali Farhadi. Xnor-net: Imagenet classification using binary

convolutional neural networks. CoRR, abs/1603.05279, 2016.

[6] Tianchen Zhao, Xuefei Ning, Xiangsheng Shi, Songyi Yang,

Shuang Liang, Peng Lei, Jianfei Chen, Huazhong Yang, and

Yu Wang. Bars: Joint search of cell topology and layout for

accurate and efficient binary architectures, 2021.



M
B

5 
(2

02
)

M
B

3 
(3

68
)

M
B

5 
(3

64
)

M
B

5 
(3

24
)

M
B

5 
(3

36
)

M
B

5 
(7

96
)

M
B

3 
(7

56
)

M
B

5 
(7

88
)

M
B

3 
(7

52
)

M
B

5 
(1

68
8)

M
B

5 
(1

63
2)

M
B

5 
(1

62
0)

M
B

5 
(1

68
0)

M
B

3 
(2

23
6)

M
B

3 
(2

31
2)

M
B

3 
(2

26
0)

Co
nv

3

In
pu

t

Av
gP

oo
l

FC

O
ut

pu
t

16
x1

6x
10

4

8x
8x

23
6

4x
4x

36
0

32
x3

2x
56

(a) Structure of searched network based on binary MBConv block without perturbation
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(b) Structure of searched network based on binary MBConv block with perturbation on architecture parameters
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(c) Structure of searched network based on binary MBConv block with perturbation on weight parameters
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(d) Structure of searched network based on binary MBConv block with perturbation on architecture and weight parameters

Figure 6: Structures of searched networks for CIFAR dataset based on binary MBConv block under diverse perturbation

condition. ‘MBk (e)’ stands for a binary MBConv block with binary k×k group (g=2) convolution and e expanded channels.

Each MBConv block in front of each gray line is a downsampling layer with stride=2, and the size of its output activation is

changed as marked in the gray line. Real-valued operations are depicted by boxes with a dotted line.
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Figure 7: Structure of searched network based on binary MBConv block with perturbation on architecture and weight param-

eters on ImageNet dataset.



Table 3: Test accuracy on CIFAR10/100 dataset for various BNN models. XNOR-Net and Bi-Real-Net are based on ResNet-

18. Ops and Params are calculated based on models for CIFAR-10 dataset, and in case of BNAS [2], Ops and Params are

calculated including real-valued convolutions at shortcut paths in reduction blocks. ‘Ours (BNAS-(mini, A, Cm))’ models

consist of (10,20,16) layers with (24,32,48) initial channels, respectively.

Search BOPs FLOPs Equiv. Ops Params CIFAR-10 CIFAR-100

Model type (G) (M) (M) (MB) Acc. (%) Acc. (%)

XNOR-Net [5] Manual 0.554 1.77 10.43 1.44 90 55 N/A

Bi-Real-Net [4] Manual 0.547 8.07 16.62 2.11 91.23 N/A

AresB-10 [3] Manual 0.245 1.77 5.608 0.63 90.74 69.45

AresB-18 [3] Manual 0.547 1.77 10.33 1.43 91.90 73.01

AresB-34 [3] Manual 0.849 1.77 15.05 2.23 92.71 74.73

BNAS-A [2] Gradient 0.697 87.98 98.86 4.10 92.70 N/A

BNAS-B [2] Gradient 1.330 273.8 294.6 11.7 93.76 N/A

BNAS-C [2] Gradient 5.028 773.5 852.1 34.7 94.43 N/A

BARS-A [6] Gradient 0.513 2.0 10.02 N/A 91.25 N/A

BARS-B [6] Gradient 1.048 2.0 18.37 N/A 92.98 N/A

BARS-C [6] Gradient 1.778 3.0 32.27 N/A 93.43 N/A

Ours (BNAS-mini) Gradient 0.343 39.78 45.14 1.89 92.48 71.71
Ours (BNAS-A) Gradient 1.326 87.98 108.7 4.75 94.21 75.38

Ours (BNAS-Cm) Gradient 1.961 155.1 185.7 8.00 95.07 76.26
Ours (MBConv-A) Gradient 0.567 1.36 10.58 1.94 93.76 73.61
Ours (MBConv-B) Gradient 0.703 1.48 12.47 2.31 93.88 74.23
Ours (MBConv-C) Gradient 0.821 1.60 14.43 2.64 94.20 74.72
Ours (MBConv-D) Gradient 1.064 1.83 18.46 3.30 94.38 75.53


