
Supplementary material for
PLS: Robustness to label noise with two stage detection

1. Interpolated contrastive label

Figure 1 illustrates the process for computing the con-
trastive label L using the probability for a pseudo-label to be
correct w, the guessed pseudo-labels and the positional en-
coding vector. Instead of simply ignoring the samples whose
pseudo-label we can’t reliably guess, we learn unsupervised
features by enforcing the network to learn similar features
between augmented views of a same image. For samples that
are clean or whose pseudo-label we can rely on, we enforce
the network to learn inter-image semantics between images
of a same class.

2. Hyper-parameter study

Table 1 reports a study for values of µ (consistency regu-
larization temperature) and γ (contrastive loss temperature).
We report the top-1 accuracy for different on CIFAR-100
corrupted with 40% of synthetic in-distribution noise.

3. Pseudo-loss selection vs confidence threshold

A common strategy which has been used in the semi-
supervised litterature [3, 4] and to some extent in the label
nosie litterature [2] is to only keep pseudo-label whose con-
fidence is superior to a threshold. We compare this approach
against our pseudo-loss selection in Table 2 where we find
that our pseudo-loss selection produces a better final vali-
dation accuracy. This is probably due to the fact that our
selection computes a new threshold every epoch using an
unsupervised Gaussian mixture. We believe that this allows
to dynamically adapt to the learning state of the network as
training progresses.

4. PLS algorithm

Algorithm 1 presents pseudocode for the PLS algorithm
where we train a neural network ϕ robustly on a label noise
dataset D

References
[1] Paul Albert, Eric Arazo, Noel O’Connor, and Kevin McGuin-

ness. Embedding contrastive unsupervised features to cluster

Table 1. Ablation study on CIFAR-100 corrupted with rin = 0.4.
µ 0.1 0.15 0.2 0.25 0.3 0.5

Top-1 val accuracy 77.86 78.65 78.45 78.78 78.45 77.74

γ 0.5 1 1.5 2 2.5 3

Top-1 val accuracy 76.39 78.54 78.43 78.33 78.45 77.99

Table 2. Thresholds on pseudo-label confidence vs our selection.
CIFAR-100 corrupted with rin = 0.4.

thresh 0.8 0.9 0.95 0.98 0.99 ours

Top-1 val accuracy 77.40 77.38 77.18 77.19 77.05 78.45

in-and out-of-distribution noise in corrupted image datasets. In
European Conference on Computer Vision (ECCV), 2022.

[2] Junnan Li, Caiming Xiong, and Steven CH Hoi. Learning from
noisy data with robust representation learning. In IEEE/CVF
International Conference on Computer Vision (ICCV), 2021.

[3] K. Sohn, D. Berthelot, C.-L. L, Z. Zhang, N. Carlini, E. Cubuk,
A Kurakin, H. Zhang, and C. Raffel. FixMatch: Simplifying
Semi-Supervised Learning with Consistency and Confidence.
arXiv: 2001.07685, 2020.

[4] Bowen Zhang, Yidong Wang, Wenxin Hou, Hao Wu, Jindong
Wang, Manabu Okumura, and Takahiro Shinozaki. Flexmatch:
Boosting semi-supervised learning with curriculum pseudo la-
beling. In Advances in Neural Information Processing Systems
(NeurIPS), 2021.



1 0 0

0 1 0

0 0 1

0 0 0 1 0

0 0 0 1 0

0 0 0 0 0

0 0 0

0 0 0

0 0 1

Positional encoding Ycont,b 

1

1

0

0

0

1

w 1-w

1 1 0

1 1 0

0 0 1

L

Ycont,b .Ycont,b 
T

0 0 0 1 0

.10 .05 .03 .80 .02

.20 .20 .10 .40 .10

One-hot and pseudo-labels

0 0 0 1 0

0 0 0 1 0

0 0 0 1 0

Argmax   filtering

Figure 1. Toy example for the interpolated contrastive label between labeled and unlabeled with a mini-batch size b=3 and 5 classes.
Multiplications are computed row-wise and the + sign indicates a concatenation. In this example, the sample in the first row is detected
clean, the second is noisy but reliably corrected and the third is noisy but unreliably corrected.

Table 3. Mitigating ID noise and OOD noise on CIFAR-100 corrupted with ImageNet32 or Places365 images. Accuracy numbers from [1].
We run PLS for 100 epochs. We bold the highest best accuracy and report standard deviation over 3 random noisy corruptions and network
initialization.

Corruption rout rin CE M DB JoSRC ELR EDM DSOS RRL SNCF PLS

INet32
0.2 0.2 63.68 66.71 65.61 67.37 68.71 71.03 70.54 72.64 72.95 74.12 ± 0.28
0.4 0.2 58.94 59.54 54.79 61.70 63.21 61.89 62.49 66.04 67.62 69.31 ± 0.19
0.6 0.2 46.02 42.87 42.50 37.95 44.79 21.88 49.98 26.76 53.26 52.25 ± 0.26
0.4 0.4 41.39 38.37 35.90 41.53 34.82 24.15 43.69 31.29 54.04 53.72 ± 0.49

Places365
0.2 0.2 59.88 66.31 65.85 67.06 68.58 70.46 69.72 72.62 71.25 74.69 ± 0.05
0.4 0.2 53.46 59.75 55.81 60.83 62.66 61.80 59.47 65.82 64.03 69.01 ± 0.61
0.6 0.2 39.55 39.17 40.75 39.83 37.10 23.67 35.48 49.27 49.83 54.34 ± 0.31
0.4 0.4 32.06 34.36 35.05 33.23 34.71 20.33 29.54 26.67 50.95 51.41 ± 0.55



Algorithm 1 PLS

Input: D = {(xi, yi)}Ni=1 a web noise dataset. ϕ a randomly initialized CNN and g a linear projection to the contrastive space.
Parameters: α, γ, µ, ewarmup, emax, gmmthresh
Output: Trained neural network ϕ

1: for e = 1, . . . ewarmup do ▷ Warmup
2: for t = 1, . . . batches do
3: Sample the next mini-batch (x, y) from D
4: xmixed, ymixed = mixup(x, y, α)
5: l = crossEntropy(ϕ(xmixed), ymixed)
6: h = updateNetworkWeights(l)
7: end for
8: end for
9:

10: for e = ewarmup + 1, . . . emax do ▷ PLS correction
11: isNoisy = detectNoise(D, ϕ, gmmthresh) ▷ Detect the noise using the small loss and a GMM
12: for t = 1, . . . batches do
13: Two weakly augmented views (x1, y) and (x2, y) from D
14: pseudoLab = constReg(ϕ(x1), ϕ(x2), γ) ▷ Pseudo-label guess from Eq. 1
15: y[isNoisy] = pseudoLab[isNoisy] ▷ Replace the labels of detected noise with the pseudo-labels
16: Unaugmented view (x, y) from D
17: pseudoLoss = crossEntropy(ϕ(x), pseudoLab) ▷ In practice, done in the detectNoise function
18: w = GMM(pseudoLoss) ▷ Compute the probability to belong to the low loss mode of the pseudoLoss
19: xmixed, ymixed = mixup(x1, y, α) ▷ Mixup with corrected labels
20: lclassif = w × crossEntropy(ϕ(xmixed), ymixed) ▷ Weighed cross-entropy
21:
22: y = oneHot(y) ▷ One-hot filtering
23: L = contLabel(y, w) ▷ Compute the interpolated contrastive label Sec. 3.2.4
24: Strong aug X ′ from D
25: sims = (g(ϕ(xmixed)).g(ϕ(X

′))T )/µ ▷ Contrastive feats through projection
26: lcont = contrastiveLoss(sims, L) ▷ From Eq. 5
27:
28: h = updateNetworkWeights(lclassif + lcont)
29: end for
30: end for
31: return ϕ ▷ Robustly trained network


