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1. Dataset Visualization

The supplementary zip file contains a dataset viewer, for
viewing all of the videos and annotations in the BURST
dataset. Please refer to the ‘readme’ file for further instruc-
tions. A screenshot from this viewer, showing examples of
some video frames with annotated masks from our training
set is shown in Fig. 1.

2. Extended Baseline Results

Tables 1 and 2 show extended results for our baselines
(Sec. 7 in main text) for the validation and test set, respec-
tively. Tables 3 and 4 show extended results for the open-
world class-guided task for the validation and test sets, re-
spectively. Here, aside from the HOTA score, we also pro-
vide the DetA, AssA and mAP scores. Additionally, we
provide another variant of HOTA called HOTAobj where
the final score is calculated by averaging the per-object
HOTA scores, instead of averaging over the object classes.
We draw the following observations and comparisons from
the tabulated results:

2.1. HOTA vs. mAP

mAP (mean average precision) is used as a metric by
several existing benchmarks related to video object track-
ing and segmentation [13, 11, 3]. It works by computing
the mask IoU at the track-level (i.e. across the whole video)
and then uses Hungarian matching to assign at most one
predicted track to each ground-truth track. All other pre-
dicted tracks are considered as false positives, even if they
intersect strongly with a ground-truth track. On the other
hand, HOTA gives weighting to both per-frame detection
accuracy (DetA) as well as temporal association accuracy

(AssA).

This difference can be noted by comparing the mask
exemplar-guided results with those for the common class-
guided task. We see in Table 1 that in terms of HOTA on
common classes, STCN achieves 52.2 which is only slightly
higher than the 51.2 achieved by the STCN Tracker. How-
ever, in terms of mAP, the difference is much larger (27.5 vs.
13.6). This is because the mask exemplar-guided task pro-
vides the first-frame ground-truth mask for every object dur-
ing inference. This often results in one predicted track hav-
ing reasonably good overlap with the ground-truth. How-
ever, once the target object is lost due to tracking errors, it
can no longer be recovered. This results in a higher mAP
score because there is usually one good match in the predic-
tions for each ground-truth track, and no false positives. For
the class-guided task however, the first-frame mask is not
given, and methods predict an arbitrary number of tracks
which may collectively capture a certain ground-truth ob-
ject (in multi-object tracking parlance, we would say that
the predicted tracks are fragmented). This results in a low
mAP score because there is no single high-quality predicted
track which has a high IoU with the ground-truth, and every
predicted track aside from the best-matched one is consid-
ered as a false positive.

With HOTA however, we can quantitatively analyze this
phenomenon (Table 1): in terms of DetA, the exemplar-
guided STCN achieves 44.7 which is lower than the 51.7 for
the class-guided STCN Tracker. This shows that in terms
of per-frame detections, the class-guided method correctly
predicts more of the ground-truth. In terms of AssA how-
ever, STCN achieves 62.5 which is higher than the 51.9 for
the STCN Tracker. This shows that temporal association
quality is better for the exemplar-guided method (as we hy-
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Table 1. Extended baseline results for the validation set with multiple metrics. Evaluation metrics are reported separately for ‘common’,
‘uncommon’ and ‘all’ classes. Object detector training data: *: COCO, †: LVIS.

Baseline Method All Common Uncommon

DetA AssA HOTA HOTAobj mAP DetA AssA HOTA HOTAobj mAP DetA AssA HOTA HOTAobj mAP

E
xe

m
pl

ar
-g

ui
de

d Mask STCN [2] 46.1 54.9 49.8 59.2 33.3 44.7 62.5 52.2 60.1 27.5 46.4 53.1 49.2 54.8 34.8
Box Tracker* [6] 15.1 22.5 18.0 47.7 12.5 28.7 46.3 35.8 52.3 12.5 11.8 16.6 13.6 18.8 4.4

Box
STCN (PointRend [7]) 41.1 51.1 45.8 57.1 26.7 40.9 60.2 48.9 58.5 23.5 41.1 48.8 44.3 50.9 27.5
STCN (Matched Det*) 20.0 32.4 24.5 54.4 13.3 38.7 60.8 47.6 57.6 22.7 15.4 25.3 18.7 34.2 11.0
Box Tracker* 10.9 18.8 13.7 48.6 4.4 27.1 45.0 34.2 52.8 10.8 6.9 12.2 8.6 18.3 2.8

Point STCN (Matched Det*) 19.9 32.1 24.4 48.4 12.8 34.4 59.0 44.0 51.6 20.6 16.3 25.4 19.4 31.4 10.8
Box Tracker* 9.9 17.6 12.7 43.7 3.2 24.2 43.7 31.7 48.0 9.7 6.3 11.2 7.9 17.1 1.6

C
la

ss
-g

ui
de

d

Common STCN Tracker* - - - - - 51.7 51.9 51.2 66.8 13.6 - - - - -
Box Tracker* 51.7 43.0 45.5 62.9 9.9 - - - - -

Long-Tail STCN Tracker† 8.0 13.4 5.5 13.5 0.9 27.0 13.4 17.5 14.4 0.7 3.2 2.4 2.5 8.9 0.6
Box Tracker† 8.3 29.5 8.2 18.6 1.4 28.0 29.5 27.0 19.8 3.0 3.4 4.3 3.6 11.7 0.9

Table 2. Extended baseline results for the test set with multiple metrics. Evaluation metrics are reported separately for ‘common’,
‘uncommon’ and ‘all’ classes. Object detector training data: *: COCO, †: LVIS.

Baseline Method All Common Uncommon

DetA AssA HOTA HOTAobj mAP DetA AssA HOTA HOTAobj mAP DetA AssA HOTA HOTAobj mAP

E
xe

m
pl

ar
-g

ui
de

d Mask STCN [2] 48.8 57.3 52.4 60.7 34.4 45.0 59.2 51.1 61.0 30.0 49.6 57.0 52.7 59.5 35.3
Box Tracker* [6] 12.1 17.2 14.1 44.4 3.5 21.9 37.3 28.0 48.5 9.2 10.2 13.2 11.4 16.9 2.4

Box
STCN (Pointrend [7]) 41.9 51.7 46.0 58.1 25.6 42.2 58.0 48.9 59.0 26.2 41.9 50.5 45.4 53.6 25.4
STCN (Matched Det*) 20.6 32.9 25.0 53.9 13.6 33.1 55.5 41.9 56.6 20.5 18.1 28.4 21.7 36.6 12.2
Box Tracker* 11.6 16.9 13.6 44.2 3.0 21.5 37.2 27.7 48.3 8.3 9.6 12.8 10.8 17.0 1.9

Point STCN (Matched Det*) 20.6 32.5 24.9 49.6 12.5 30.8 53.8 39.5 52.3 17.7 18.6 28.3 22.0 34.6 11.5
Box Tracker* 8.0 14.1 10.1 41.6 2.5 17.8 36.1 24.4 45.5 6.7 6.1 9.7 7.3 16.1 1.7

C
la

ss
-g

ui
de

d

Common STCN Tracker* - - - - - 37.1 34.9 34.6 58.8 6.8 - - - - -
Box Tracker* - - - - - 37.1 35.5 34.3 56.9 6.8 - - - - -

Long-Tail STCN Tracker† 5.4 4.6 4.5 13.4 0.3 19.6 16.7 17.1 14.3 1.7 2.6 2.2 2.0 8.0 0.0
Box Tracker† 5.4 6.8 5.7 15.4 0.3 19.6 23.2 20.1 16.3 1.7 2.6 3.6 2.9 10.7 0.0

Table 3. Extended baseline results for the open-world class-guided task for the validation set.

Baseline Method All Common Uncommon

DetRe AssA OWTA DetRe AssA OWTA DetRe AssA OWTA

STCN Tracker 67.0 62.6 64.6 78.8 64.1 71.0 20.0 33.3 25.0
Box Tracker 66.9 55.8 60.9 78.7 57.1 60.9 20.1 30.5 24.0
OWTB [9] 70.9 45.2 56.2 76.8 47.0 59.8 46.5 34.3 38.5

Table 4. Extended baseline results for the open-world class-guided task for the test set.

Baseline Method All Common Uncommon

DetRe AssA OWTA DetRe AssA OWTA DetRe AssA OWTA

STCN Tracker 61.6 54.1 57.5 71.5 55.7 62.9 21.0 28.6 23.9
Box Tracker 61.5 51.1 55.9 71.4 52.5 61.0 21.1 30.0 24.6
OWTB [9] 70.7 45.5 56.3 76.6 47.3 59.9 45.7 33.6 38.3
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pothesized earlier).
Finally, we note that some methods have an mAP score

of 0.0 for some settings e.g. uncommon class set for the
long-tail class-guided task (Table 1). This happens when
the predicted object tracks cannot be associated with any
ground-truth track because their IoUs are all below the ac-
ceptance threshold. Note that mAP is computed as an av-
erage over several different threshold values, so an over-
all mAP of 0.0 implies that even the lowest threshold was
not satisified by any predicted track in the entire dataset.
This further highlights the potential for improvement for the
long-tail task, both in terms of per-frame object detections
as well as temporal association.

2.2. DetA vs. AssA

The ability to numerically quantify per-frame detection
and temporal association quality can prove useful in ana-
lyzing strengths and weaknesses of various methods. For
instance, when comparing STCN Tracker and Box Tracker
for class-guided tasks, we note that the difference in the fi-
nal HOTA scores arises mainly from the the difference in
AssA. This is understandable because both methods use the
same set of per-image detection masks. Any small differ-
ences in DetA arise from the fact that we perform a post-
processing step where very short object tracks (e.g. those
containing just one detection) are discarded.

2.3. HOTA vs. HOTAobj

In general, we note that the HOTAobj scores are higher
than HOTA. We recap that the former gives equal weight to
each object track when computing the final score, whereas
the latter gives equal weight to each object class, even if the
number of ground-truth tracks in the object classes are un-
balanced. As a result, the HOTA score is pushed down by
the poor performance of the method on a few object classes
even though they contain only a few object tracks.

2.4. Comparing Open-world to Other Tasks

In the main text, we discussed how the open-world class-
guided task uses OWTA as an evaluation metric, which is
a modified version of HOTA where DetA is replaced with
DetRe (Detection Recall). In other words, DetRe is a mod-
ification of DetA in which false positives are not penalized.

To quantitatively compare the open-world result to other
tasks, we can analyze the difference in DetA and DetRe
for the same class split and baseline method. We see that the
DetRe is consistently higher than DetA: for STCN Tracker
on the validation set, DetRe is 78.8 for the ‘common’ class
set (Table 3) compared to a DetA of 51.7 for the common
class-guided task (Table 1). The numerical difference be-
tween these two arises due to the presence of false positives
in the image-level object detector output.

Secondly, we point out that the metric OWTA can be
seen as an upper-bound for the HOTAobj metric which
neglects penalization for false positives. Hence, the 52.3
HOTAobj score achieved by STCN tracker for the com-
mon class-guided task (Table 1) is lower than the 71.0
OWTA achieved by STCN Tracker on common classes for
the open-world task (Table 3). This difference is again at-
tributable to the presence of false positive detections in the
method’s predicted output.

3. Baseline Runtime
Inference speed for the baselines are given in Table 5

Table 5. Run-time speed for baselines.

Baseline Image Detector Runtime (FPS)

STCN [2] - 3.12
Box Tracker Mask2Former [1] 1.35
STCN Tracker Mask2Former 0.95
Box Tracker Mask-RCNN [5] 3.90
STCN Tracker Mask-RCNN 1.76

4. Miscellaneous Implementation Details

Point Selection Criterion for Exemplar-guided
Task. For the point exemplar-guided task, we select
the point coordinate to provide to the method as follows:
we compute the distance between all points inside an
object mask to the closest point on the object boundary
and choose the point with the highest distance, i.e. the
‘inner-most’ point of the object mask. If multiple points
share the highest distance value, we select the point closest
to the centroid of the object mask.
Image-level Object Detector. As mentioned in the main
text, for obtaining image-level object masks for common
classes, we employ a Mask2Former [1] network trained on
COCO [8]. In particular, we use the best-performing model
checkpoint provided by the authors which uses a Swin-
L [10] backbone. For the long-tail task, we use the best-
performing Mask-RCNN [5] model provided by Detec-
tron2 [12] which is trained on LVIS [4] and has a ResNeXt-
101 backbone.
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Figure 1. Screenshot of the dataset viewer supplied in the supplemental.zip. Here assorted examples of annotated images from the BURST
training set are shown, however in the dataset viewer full videos with tracked mask annotations are shown.

4



References
[1] Bowen Cheng, Anwesa Choudhuri, Ishan Misra, Alexan-

der Kirillov, Rohit Girdhar, and Alexander G Schwing.
Mask2former for video instance segmentation. CVPR, 2022.

[2] Ho Kei Cheng, Yu-Wing Tai, and Chi-Keung Tang. Rethink-
ing space-time networks with improved memory coverage
for efficient video object segmentation. In NeurIPS, 2021.

[3] Achal Dave, Tarasha Khurana, Pavel Tokmakov, Cordelia
Schmid, and Deva Ramanan. Tao: A large-scale benchmark
for tracking any object. In ECCV, 2020.

[4] Agrim Gupta, Piotr Dollar, and Ross Girshick. LVIS: A
dataset for large vocabulary instance segmentation. In CVPR,
2019.

[5] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In ICCV, 2017.

[6] Arne Hoffhues Jonathon Luiten. Trackeval. https://
github.com/JonathonLuiten/TrackEval, 2020.

[7] Alexander Kirillov, Yuxin Wu, Kaiming He, and Ross Gir-
shick. Pointrend: Image segmentation as rendering. In
CVPR, 2020.

[8] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
ECCV. Springer, 2014.

[9] Yang Liu, Idil Esen Zulfikar, Jonathon Luiten, Achal Dave,
Deva Ramanan, Bastian Leibe, Aljoša Ošep, and Laura Leal-
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