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In this supplementary material, we present some addi-
tional ablation studies that could not be included in the main
paper due to space constraints, in particular:

• Training details of our experiments (in continuation to
Section 4).

• Discussion related of controllable generation of each
subspace used in our work (in continuation to Section
4.2).

• Discussion related to varying number of chances given
to baselines while computing ACG@r (in continua-
tion to Section 4.2).

• Experiments with different non-linearities used with
partition network (in continuation to Section 4.2).

• Experiments on using multiple domains (more than 2
domains) (in continuation to Section 4.2).

• Experiments on reference-guided image synthesis on
CeleA-HQ dataset (in continuation to Section 4.2).

1. Training details of our experiments
In all our experiments, we train our model on a single

P100 GPU with batch size of 8. All images are resized to
256×256. We train the models for 120K iterations (about 3-
4 days to train the models). The values of hyperparameters
as defined in Section 3.3 are kept as λpar = 1, λpc = 1 and
λo = 1 for CelebA-HQ, and λpar = 1, λpc = 1 and λo = 2
for AFHQ. Similar to [2], we use weight decay to stabilize
training where the weight λo is linearly decayed to zero over
the 120K iterations. The Lo loss (Equation 7) consists of the
non-saturating adversarial loss [3] with R1 regularization
[8] using γ = 1. For optimization, we rely on the Adam [6]
optimizer with β1 = 0 and β2 = 0.99. The learning rates for
all networks (G, E, PN, and M) are set to 10−4. The weights
of all modules are initialized using He’s initialization [4]
and all biases are kept as zero, except for biases associated
with the scaling vectors of AdaIN that are set to one.

male-to-female female-to-male
Non-linearity StarGAN v2 [2] proposed StarGAN v2 [2] proposed

Bags Under Eyes 0.504 0.672 0.920 0.940
Big Lips 0.940 0.984 0.672 0.788
Big Nose 0.568 0.572 0.908 0.912

Black Hair 0.360 0.504 0.444 0.644
Blond Hair 0.216 0.432 0.052 0.256
Brown Hair 0.504 0.684 0.424 0.656
Double Chin 0.068 0.408 0.164 0.816

Mouth Slightly Open 0.524 0.596 0.444 0.464
Smiling 0.648 0.808 0.492 0.628
Young 0.956 0.982 0.824 0.972

Young + Black Hair 0.428 0.437 0.376 0.688
Young + Blond Hair 0.128 0.540 0.052 0.268
Young + Brown Hair 0.452 0.532 0.344 0.760
Smiling + Black Hair 0.236 0.238 0.188 0.304
Smiling + Blond Hair 0.120 0.480 0.020 0.092
Smiling + Brown Hair 0.292 0.380 0.224 0.312

total 0.434 0.572 0.409 0.593

Table 1. Classification accuracies of individual subspaces used in
our work. We use a total of sixteen subspaces with ten individ-
ual subspaces and six subspace combinations. Total accuracy is
ACG@1.

2. Controllable generation of each subspace

In continuation to Section 4.2, here we present abla-
tions with each subspace used in our work. In celebA-
HQ dataset, we have 10 subspaces - ’Bags Under Eyes’,
’Big Lips’, ’Blond Hair’, ’Big Nose’, ’Black Hair’, ’Dou-
ble Chin’, ’Oval Face’, ’Mouth Slightly Open’, ’Smiling’,
’Brown Hair’, ’Young’. We introduce 6 more subspaces that
are combinations - ’Young+Black hair’, ’Young+Blonde
Hair’, ’Young+Brown Hair’,’Smiling+Black Hair’, ’Smil-
ing+Brown Hair’, ’Smiling+Blonde Hair’. We thus have a
total of 16 subspaces. The individual accuracies are shown
in 1 where we compare the proposed model with Star-
GAN v2 [2]. Note that the total accuracy corresponds to
ACG@1. Interestingly, the proposed method outperforms
a strong baseline like StarGAN v2 on accuracies of all in-
dividual subspaces. The difference in performance is larger
for combinations of subspaces.



Method ACG@1 ACG@2 ACG@3 ACG@4 ACG@5

MUNIT-GAN [5] 0.403 0.409 0.413 0.415 0.415
ACL-GAN [9] 0.413 0.417 0.424 0.424 0.424

StarGAN v2 [2] 0.425 0.427 0.432 0.432 0.432
DosGAN [7] 0.453 0.459 0.465 0.466 0.466

Homomorphic [1] 0.471 0.478 0.484 0.484 0.484
Proposed 0.572 0.582 0.585 0.585 0.586

Table 2. Results on average controllable generation on male-to-
female task.

Method ACG@1 ACG@2 ACG@3 ACG@4 ACG@5

MUNIT-GAN [5] 0.371 0.375 0.387 0.389 0.390
ACL-GAN [9] 0.383 0.387 0.398 0.398 0.401

StarGAN v2 [2] 0.409 0.415 0.423 0.425 0.425
DosGAN [7] 0.452 0.459 0.468 0.470 0.470

Homomorphic [1] 0.471 0.478 0.485 0.491 0.491
Proposed 0.593 0.597 0.607 0.610 0.610

Table 3. Results on average controllable generation on female-to-
male task.

3. Varying number of chances given to base-
lines while computing ACG@r

In Section 4.2, we use ACG@r for evaluating the per-
formance of UDT methods that do not permit controllable
generation, where we demonstrate the results with r =1
and r=5. Here, we extend the results on all values of
r ∈ {1, 2, 3, 4, 5}. We also vary r for controllable gen-
eration methods as well. The results for male-to-female
are shown in Table 2 while the results for female-to-male
are shown in Table 3 We observe that for non-controllable
generation methods ,the ACG improves when r is increase
from 1 to 3; however, the ACG score doesn’t change much
when r is increased to 5 and beyond. We believe that when
such non-controllable generation methods have fair chances
to predict (i.e. r = 3), they show an increase in ACG score.
Nonetheless, their scores are significantly below those of
the proposed method; in particular, they do not do well on
generation of certain attributes such as ’old’ female transla-
tion from a ’young’ male image (shown in Figure 1 - main
draft). This is the reason for a steady value of ACG when
r is increased further. We observe the same trend for male-
to-female and female-to-male translation tasks.

4. Introducing non-linearity in the partition
network (PN)

The partition network (PN, defined in Section 3.1) de-
composes the style space into smaller subspaces. It is also
possible to use a non-linearity with the PN. We experi-
ment with the use of non-linearity over the representations
learned:

fx
p = σ([fp; fx]) and fz

p = σ([fp; fz]) (1)

where σ is the non-linearity introduced.

The results are shown in Table 4, where we experiment
with sigmoid, ReLU, leakyReLU, tanh, and concat (no non-
linearity). We observe that with sigmoid and concat, the
quality of translations (in terms of LPIPS and FID score) are
better while the ACG scores don’t have much difference.

5. Experiments on multiple domains
Since our method is capable of handling multiple do-

mains simultaneously, we present our experiments on
AFHQ dataset with 3 domains - cat, dog, wild animals. We
peform reference-guided image synthesis and the results are
shown in Figure 1. It is evident that we can handle multiple
domains simultaneously without introducing much compu-
tational cost (i.e. without multiple generators).

6. Scalability
We discuss the scalability of UD2D methods in Section

2 of our paper. Herein, we present more insights to this
issue. Most domain translation methods are based on gen-
erative models that are computationally expensive to train.
The number of trainable parameters becomes a bottleneck
when number of domains are increased, as the requirement
of generators and discriminators is dependent on the num-
ber of domains needed. For n domains, there are

(
n
2

)
com-

binations of functional mappings needed to be learned in
general. Thus, the number of generators and discriminators
that are needed by most methods are proportional to

(
n
2

)
.

However, the trainable parameters of the proposed method
does not grow proportionally to

(
n
2

)
, as there is no need to

add extra generator or discriminators (we only need to add
a linear MLP layer for each domain). This makes the pro-
posed method scalable as compared to most existing meth-
ods. Note that our method has a near-constant parameter
count with increase in domains, while almost all other meth-
ods increase with domains. In terms of training time, we
used a single NVIDIA P100 GPU (16 GB VRAM) to train
our method on all datasets with a training time on high-
resolution datasets (both celeba-HQ and AFHQ) of a max
of 2 days.

7. Reference-guided image synthesis on
CelebA-HQ

Here, we present qualitative results on celebA-HQ (in
continuation to our results from Section 4.2). The results
are shown in Figure 2.
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