A. Appendix

A.1. Feature engineering
As explained in our indoor scene representation is an attributed graph. We now describe these attributes in detail.
¢ Room node features X g,

1. Node Type: A 4D 1-hot embedding of the node type. The four categories are wall, door, floor, window.

2. Room Type: A 4D 1-hot embedding of the room type. The four categories are living room, bedroom, dining room,
library.

3. Location: A 6D vector representing the minimum and maximum vertex positions of the 3D bounding box corre-
sponding to the room node.

4. Normal: A 3D vector representing the direction of the normal vector corresponding to the room node.
¢ Furniture node features X r,
1. Super category: A 7D 1-hot embedding of the node type. The seven categories are Cabinet/Shelf, Bed, Chair,

Table, Sofa, Pier/Stool, Lighting.

2. Shape: A 1024D embedding of the 3D shape descriptor obtained by processing a 3D point cloud of the furniture
item through PointNet.

3. Location: A 3D vector representing the centroid of the furniture item.
4. Orientation: A 3D vector representing the direction the “front” side of the furniture is facing.
5. Size: A 3D vector representing the dimensions of the furniture along each axis.
* Furniture-furniture edge features X zr, let us arbitrarily chose a furniture-furniture edge and label its source node as
s with receiver node as r. We will describe the features for this edge.
Center-center distance: A scalar representing the distance between the centroids of furniture s and .
. Relative orientation: A scalar representing the signed dot product between the orientation feature of s and 7.
. Center-center orientation: A 3D vector representing the unit vector connecting the centroids of r and s.
. Orientation: A 3D vector representing the direction the “front” side of the furniture is facing.

O SO T

. Bbox-bbox distance: The shortest distance between the corners of the bounding box of s and r.

* Room-furniture edge features X g, let us arbitrarily chose a room-furniture edge and label its source node as s with
receiver node as r. We will describe the features for this edge.

1. Center-room distance: A scalar representing the distance between the centroid of furniture r and room node s.
This is computed in 2D as a point to line distance. Every wall/window/door can be treated as a line segment in 2D.

2. Center-room center: A scalar representing the distance between the centroids of r and s.

3. Bbox-room dist A scalar representing the shortest distance between corners of the bounding box of furniture item
r to the room node s. This is computed in 2D as a point-to-line distance.

4. Bbox-room center A scalar representing the shortest distance between corners of the bounding box of furniture
item 7 to the centroid of the room node s.

5. Relative orientation: A signed dot product between the normal of s with the orientation attribute of .

* Room-room edge features X g, let us arbitrarily chose a room-room edge and label its source node as s with receiver
node as r. We will describe the features for this edge.

1. Center-center distance: A scalar representing the distance between the centroids of room nodes s and r.

2. Relative orientation: A scalar representing the signed dot product between the normal vectors of s and r.

3. Longest distance: A scalar representing the longest distance between the corners of the bounding boxes of r and
s.

4. Shortest distance: A scalar representing the shortest distance between the corners of the bounding boxes of r and
s.

A.2. Architecture Details
A.2.1 Message-Passing Graph Neural Network (MP-GNN)

Here we describe the message-passing mechanism employed in the Graph Neural Networks used in this work. The design of
the MP-GNN is inspired by the work of [25], where each layer [= 1..., L of the MP-GNN maps a graph G~ to another
graph G' by updating the graph’s node and edge features. Specifically, let h! and hﬁj denote the features of node ¢ and edge
(i,7) of graph G, respectively. Let the input to the network be the graph G® = G, so that hY and h?j denote the node features
and edge features, respectively. At each iteration of node and edge refinement, the MP-GNN: (1) adapts the scalar edge
weights by using an attention mechanism; (2) updates the edge attributes depending on the edge type, the attention-based
edge weights, the attributes of the connected nodes and the previous edge attribute; and (3) updates the node attribute by
aggregating attributes from incoming edges , as described next.
Computing attention coefficients: At each step [of refinement, we update the scalar edge weights by computing an
attention coefficient a! ; that measures the relevance of node j for node i as follows:
Yy = p(wgis T Wb WY bl Wi hij]

exp(7L: (10)
al. = p() —, Y(i,j) € E.
EkeNe(i) exp(7;;)

)

In the first equation, each edge (¢, j) of G; = (V, E, X;) is associated with a score, vﬁj, obtained by applying a nonlinearity
p (e.g., a leaky ReLU) to the dot product between a vector of attention weights wg” for edge type ¢;j € {RR,RF,FF},
and the concatenation of five vectors: (1) the receiver node feature hi € R% weighted by a matrix W} for node type
v; € {R, F'}, (2) the sender node feature hé» weighted by a matrix W5’ for node type v;, and (3) the receiver-sender edge
feature héj weighted by a matrix W, for edge type €; ;. All weight matrices are also indexed by the GNN layer [which is
suppressed to prevent notational clutter.
Updating the node and edge features: At each step [of refinement, we update the edge and node features as:
iy =al; (U WERT + Weshish), V(i,j) € E

17 edge

Wi=phit Y UpsaWshly), VeV (an

node
keN, ; (1)

The first equation updates the features of edge (4, j) by taking a weighted combination of the features of node j and the
features of edge (i,) in the previous layer, with weight matrices Ws’ and Wy, respectively. The matrix U;jge is a
learnable projection matrix to change the dimensionality of the first term (transformed node feature) with that of the second
term (transformed edge feature).

The second equation updates the feature of node ¢ as the sum of the feature of node ¢ from the previous layer (a residual
connection) and the sum of the features of all edges connected to node ¢ after applying a non-linearity p, such as a ReLU or
leaky-ReLU. Here, U/, denotes a learnable projection matrix for edge type €;;.

All weight matrices are also indexed by the GNN layer [which is suppressed to prevent notational clutter.

A.2.2 Encoder, Decoder and Room Aggregator networks

We employ three MP-GNNSs in this work. One for the VAE encoder, one for the decoder and one for the Room Aggregator
component of the prior network. Each of these MP-GNNSs are three layered graph neural networks. In Table we
summarize the architecture of the Encoder, Decoder and Room Aggregator networks respectively.

The RNN Prior network (second component of our Graph Prior) is implemented by a single layer Gated Recurrent Unit
(GRU) with hidden vector of size 64 x 64 (the latent space is 64D).

A.3. The Reconstruction Loss of the ELBO

The reconstruction loss is the first term in the ELBO (9).

Ezqs(2inp.c,m)l0gpe (GF | Z,np,Gr,T)]

Table 2. Encoder architecture. The network parameters are as defined in Section|A.2.1|

Encoder
Network Layer 1 Layer 2 Layer 3
parameters

Ws 17x17 17x17 17x17
Ws 256%x1034 128x256 64x128
WEF 26X6 52%26 6X52
WRR 26X4 52%26 6Xx52
W,RF 26X5 52%26 6X52
wEF 1x538 1x308 1x134
wkR 1x60 1x86 1x40
wEF 1x299 1x197 1x87
Usdge 26X256 52%x128 6X64
USe 2617 52x17 6x17
Usige 26X17 52x17 6x17
Urr.. 256X26 128x52 64X6
URR . 17x26 17x52 17x6
URE. . 256x26 128x52 64X6

In subsection3.2|we described the distribution pg/ (Gr | Z,np, Gr,T) as

por(Gr | Z,np,GRr,T)
ng
:Hpg/ (shape; | Z,Gr, T)pe: (orien; | Z,Gr,T)
i=1
po(loc; | Z,Gr,T)pe (size; | shape;)pg (cat; | shape;).

Here shape;, orien;,loc;, size; and cat; refer to the ground truth values of the 3D shape descriptor (PointNet features),
orientation, location, size and category respectively for furniture node ¢ in G.

We will now describe each of these distributions in detail along with the corresponding loss term. For the normal and
lognormal distributions used we assume the variance parameter is a fixed constant equal to 1 and do not learn them.

por(shape; | Z,Gr,T) = N(ug'*"*(Z,GR,T), const.)

2
log py: (shape; | Z,Gr,T) = — (4§ (2, Gr, T) = shape;

po: (orient; | Z,Gr,T) = Categorical (03" (Z,Gr,T))
log pg (orient; | Z,Gr,T) = —H (orient;, 09" (Z, Gr,T))

Table 3. Decoder architecture. The network parameters are as defined in Sectionm

Decoder

Network Layer 1 Layer 2 Layer 3

parameters
Wys 17%x17 17x17 17x17
W,)s 128x64 256x128 1034%256
WEF 26x128 52X26 6X52
W,RR 26x4 52X26 6X52
W,RF 26x81 52X26 6X52
wkF 1x282 1x564 1x2074
wiR 1X60 1x86 1x40
wikF 1x171 1x325 1x1057
Usdge 26%x128 52%256 6x1034
Uiige 26x17 52x17 6x17
Usige 26x17 52x17 6x17
Urr.. 128x26 256%52 1034x6
URR. . 17x26 1752 17x6
URE.. 128x26 256%52 1034x6

Table 4. Room Aggregator architecture. This network only processes the room subgraph G r and hence all the weight matrices associated

with furniture nodes are absent. The network parameters are as defined in §A.2.1

Room Aggregator
Network Layer 1 Layer 2 Layer 3
parameters
Ws 32x17 48%32 64x48
W,RR 26X4 52X26 6X52
whR 1x90 1x148 1x134
Usige 26X32 52x48 6X64
URR . 32Xx26 48x52 64X6

orient; is a 4D 1-hot embedding of the ground truth orientation and © is the parameter of the categorical distribution. H (., .)

denotes the cross entropy between two distributions.

pe(loc; | Z,Gr,T) = N(ul*(Z,Gr, T), const.)
2
log per(loc; | Z,GRr,T) = — (,ule'fc(Z, Ggr,T) - loci)

per (size; | shape;) = LogNormal (i (ugr**(Z, G, T)), const.)

size/, shape

2
log pe- (size; | shape;) = — (u(,/ (' P (Z,GRr,T)) —In sizei)

por (cat; | shape;) = Categorical(O5 (u5r*P*(Z, Gr, T)))
log per (cat; | shape;) = —H (cat;, @g?t(ugf””e(z, GRr,T)))

Each furniture node feature in the output of the MP-GNN Decoder is individually processed using a multi-layer Perceptron
(MLP). Specifically, let hX be the output feature of the decoder for furniture node i. In our experiments h- € R1034,

pehare (7, G, T) = Lineary (1034, 1024)

Qg™ (Z,Gr,T)) = SoftMax(Linearg: (1034, 4))

pse(Z,Gr, T) = Linearg (1034, 3)

pg~¢ = Linearg (1024, 512) — ReLU — Lineary (512, 3)

This is a three-layer MLP with ReLU activations and 1024 input neurons since the input is the mean of the shape features
shape
po' P(Z,GR, T)).
O4'* = Lineary (1024, 512) — ReLU — Lineary (512,7)
The output is 7D since there are 7 super-categories in our dataset, Cabinet/Shelf, Bed, Chair, Table, Sofa, Pier/Stool,
Lighting.

Lineary (z, y) denotes a linear layer with input neurons and y input neurons. Recall 6’ denotes all the parameters of the
Decoder including the GNN and the output MLPs.

A.4. Computing the KL divergence term
A4.1 Derivation for

Rewriting (3))
7 =argmin KL(¢y(Z | np,G,T) || po(Z | np,Gr, T;)) (12)

For simplicity let us denote the two distributions as

qd’(Z | nF7G7T) :N(MO,Z())
pa“(Z ‘ TLF,GR,T;TF)) :N(ﬁ'ﬂ/hﬁ'zlﬁ'T),

where 7 =7 ® Iy, xdp-

The KL divergence between two Gaussian distributions is known analytically,
KL((]¢(Z | nr, GvT) H p9”(Z | np,Gr,T; ﬂ-)))
1 a1~ - o1 ~T =
=5 (Tr(7r§]1 17TTZO) + (Fpg — po) T 7% 17TT(7T/,61 — Mo))
1 det(7¥177T)
—|In|——=—| —nrd
"3 (n { det(Xo) e
= (Tr(7S7 7 20) + (Fp — po) "7#57 77 (Fpa — po))
=Tr(S7 7 807) + pf 27 — i ST % o
— o X7 + g XA pg
= Tr(S7 7T S0m) — pf 207 o — g 7
+ g TR o
=Tr(3 7 '807) — 20T S % o + pd 7 7T o

13)

The third equivalence is obtained by observing that the constant npdp (which is the dimension of the support of the two
Gaussian distributions) does not affect the solution of and that permuting the rows and column of a matrix by the same
permutation does not change its determinant and hence the minimizer 7* will also not depend on this term. By similar
reasoning, we also ignore the factor of % In the fifth equivalence we again ignore terms that don’t affect 7*. Using the cyclic
property of the T'race operator we can rewrite the last term on the RHS of as

po 72 7 o = Tr (no 7877 o) = Tr (B 7T popg)
Substituting this results in we obtain the desired result.

KL

—~

4(Z | np, G, T) || por(Z | np,Gr, T;m)))
r(S7 7T Sow) — 2u] B 7 o + Tr (ST 7 popd 7)
(" [Bo + popd]) — 207 BT o

(57177 [Bo + popg | 7) — 2T (17 Sy 77 pao)
PSR (Do + pond] 7) — 2T (F po B7)

1
1

1
1
r
1

r

N 5 593

We again used the cyclic property of the T'race operator for the last equality. This concludes our derivation for .

A.4.2 Solving (7) using the FAQ approximation

. The FAQ algorithm proceeds as follows,

. . T
1. Choose an initial point: We choose the uninformative 7y = % as the initial estimate for the algorithm. Note, here

79 is a doubly stochastic matrix and not a permutation matrix.

2. Find a local solution: In each iteration i, we linearize the objective at the current iterate 7l

Film) = f(x') + T [V 4 ()T (7 —)
Here, f(7) =Tr (El_lfr (S0 + popd | #%) — 2T (ﬁ'uoulTEl_l). We then solve the following subproblem
minTr(V f (7T ()
B (14)
st.me D

Here D is the set of all doubly stochastic matrices. Notice is just a Linear Assignment Problem and can be efficiently
solved by the Hungarian Algorithm. Let ¢* denote the argmin of (T4).

3. Choose the next iterate: Finally choose 7t = ar’ + (1 — a)q, where a € [0, 1]. Here a is chosen by solve the 1D
optimization problem analytically.

m(in flar + (1 —a)¢’) st.acl0,1] (15)

4. Repeat steps 2 and 3 untill convergence. Steps 2-3 are repeated iteratively untill some termination criteria is met, say
|| — 7i~L||F < e. In practice, we do not run steps 2-3 untill convergence but terminate after just 1 iteration of the FAQ
algorithm. Running for longer iterations did not result in any significant gains in performance.

5. Project onto the set of permutation matrices. Upon termination, the final solution is obtained by projecting 7/

onto the space of permutation matrices by solving min,ep —7r(7/"*7T). Here P is the set of all permutation

matrices of size nr. This is against solved by the Hungarian Algorithm.

In step 2, we need to compute the gradient of f(7"). This can be done analytically. We will start our derivation by stating
some facts. First, the gradient of the dot product of two matrices A and X with respect to X is,

a

A X) = A (16)

Second, for every linear operator M, its adjoint operator M is defined such that
(A, M(X)) = (M"(4), X) (17)
Recall,

f(m)="Tr (21_177’ [Zo + MOM(I;] ﬁ'T) —2Tr (ﬁuoule_l)

We will fist look at the second term,

Tr (fpopi 1) = (X7 ppg , M ()

N XnNg

> e ([50mid),,) (18)
ij

= (M (ST pd) 7

Here, M (7) := 7 ® I4, x4, Given a matrix A € R"rdr*nrdr e define the operation [A], ; (used in the second equality)
as follows. First divide the matrix A into non-overlapping blocks of size dr x dr, there are ng X np such blocks. Now [A] ij
denotes the 5" block. In the last equality, we defined the adjoint LT (A) as A. Here A is ang X np matrix obtained from A
whose ijt" entry is,

Aij =Tr ([A]L]) .
Combining with we conclude

d ~ _ _
%TT (Froui =71) = M (57 g (19)

The gradient of the first term is calculated similarly,

Tr (Z;lﬁ' (S0 + popd] 77) = (o7t [So + poud], M (7))

d . . L (20)
%TT (21_171' [Eo + uouOT] 7TT) = QMT(Zl L [Eo + Moug])

Here M (7) is again defined as ™ ® 14, x4, Putting it all together,

Vf(r) = 2MN (ST [Zo + popd]) — 2M (ST uapd) (20

A.5. Learning Under Constraints

Let furniture graph G be the input to the encoder and Gr be the furniture graph reconstructed by the decoder. Recall,
FErr denotes the edges between furniture nodes in G (and G has the same structure as G . We employ the following
constraints,

* furniture-furniture distance constraint: For every (v;,v;) € Epp, we define there relative position as ¢;; =
l|loc(v;) — loc(vj)||2, where loc(v;) denotes the 3D centroid of furniture item v; from Gp. We define cf;e‘i =
|[locP™e(v;) — locP"*(v;)||2 as the relative distance computed from the corresponding location mean prediction by
the decoder from G'. Finally we define d',, := MSE(c;j, ¢ f °d). Here M SE refers to mean squared error.

1,

* furniture-room distance constraint: This constraint restricts the relative position of the predicted furniture items with
the room nodes.

— For the windows and doors, dg r is defined analogously as
pred

d3 > = MSE(cij, cf;ed) where (v;,v;) € Erp, with the exception that for computing c;

truth room node location since they are not predicted by the decoder.

we use the ground

— For walls, ¢? jred is computed as the signed distance between the i*” wall node and the j** furniture centroid. This
ensures the decoder predicts furniture items on the correct side of the wall.

* furniture-furniture relative orientation constraint: This constraint enforces the relative orientation between two
predicted furniture centroid locations to be close to the ground truth. Specifically we define V(v;,v;) € Epp 0pp =
orient(v;, v;) T orientP™*d(v;, v;). Here orient(v;,v;) is the unit vector pointing in the direction loc(v;) — loc(v;)
computed from G. Similarly, orient?"®?(v;, v;) is the unit vector pointing in the direction locP™*4(v;) — locP™*4(v;)

computed from the reconstruction G .

We now present the complete optimization objective as

/ 2
X, L(0',6",)

1 g

s.t. — Il <
SO | > die|<e
=1 | (vi,v;)EEFF

n 1 (22)

1 y

s.t. — Il <
S| 2 diw| e
=1 | (vs,v;)EERF

>

| (vi,v;)EEFF

ij
Opp

>1—¢€

Here € is a user-defined hyperparameter that determines the strictness of enforcing these constraintsﬁ

L(0',0",¢) is as defined in (8) and 1 is in iterator over the scene graphs in the training set. We employ the learning under
constraints framework introduced by [3] which results in a primal-dual saddle point optimization problem. For completeness,
we will now describe this algorithm in detail. We begin by explicitly writing out the empirical lagrangian Lo/ 97 ¢ 31, A2, 25>

%0ne could also have used a different €; per constraint.

0@.0"0)=>3 | Y

i=1 | (vi,v;)€EEFF

00.0".0)=- 3| Y

i=1 | (vi,v;)EERF] (23)

93(0",0", ¢) := %Z Z O?F

1=1 | (vi,v;)EEFF

ﬁa'ﬁ/'y@)\l,)\z,/\a = £(9l7 9”’ ¢) + >‘3(1 —€— g3(9/, 9//5 ¢))
+ (916,07, 0) — €) + Xa(g2(0', 0",) —€)
Here A1, A2, A3 are the dual variables. The empirical dual problem is then defined as,

D7 = IS g L s e

It was shown in [3] that a saddle-point optimization of this empirical dual will give an approximate solution to (22). Algorithm
describes the exact steps. At step 5 we require a p-optimal minimizer to the empirical Lagrangian, in practice this is done
by running the ADAM optimizer for one epoch. After each epoch ¢, the dual variables are updated depending on the slack
evaluated with current parameters (8'(t=1) 9”(t=1) »(=1)) " At an intuitive level, the algorithm is similar to regularized
optimization with adaptive Lagrange multipliers (the dual variables). In each term after £(6’,60", ¢) can be thought of a
regularizer (one corresponding to each constraint). The Langrange multipliers are updated in each epoch to enforce or relax
the regularizer depending on whether the corresponding constraint is violated or satisfied.

Algorithm 1 Learning under constraints

Require: Initializations: 0'9) 0" () Learning rate for dual variables n; Number of steps T
I:)\go) =0
2 A =0
3 A0 =0
4: fort=1,...,T do
5. Obtain =1 7(t=1) 4(t=1) gych that,

Lo o 623 000 < o, Lo 67,6, 21,7205 + P-

6: Update dual variables

A= [4t 00,0760, g00))]

AY — P\gt—l) 4 p(ga (070D, 0701 =1y E)L

/\gt) _ {)\gt—l) Fl—e 7gs(ol(t71)79//(t71)’(b(tfl)))}—‘r

7. end for

In Figure[5] we show training curves for ELBO objective (9) and the ELBO objective with constraints (22) which clearly
show the benefit of using constraints. The network performance without any constraints is comparable, to that with con-
straints, for the furniture category, shape and size loss terms. These are arguably much easier to learn than the orientation and
position in 3D.

a. Category Loss Location Loss Orientation Loss

1.1 55 I
0o 45 1.4
g
=2 35 13
g o7
2 o5 25 12
- 15
0.3 1.4
05
0.1 0.5 1
-10k 0 10k 20k 30k 40k 50k 60k -10k 0 10k 20k 30k 40k 50k 60k 70k -10k 0 10k 20k 30k 40k 50k 60k 70k
Iteration Number Iteration Number Iteration Number
Shape Loss Size Loss
160 0.75
o 120 0.65
2
S g 0.55
a
[]
= 40 0.45
0 0.35
10k O 10k 20k 30k 40k 50k 60k 70k -10k 0 10k 20k 30k 40k 50k 60k 70k
Iteration Number Iteration Number
b Furniture-furniture
. Furniture-furniture Furniture-room Relative orientation
distance constraint (g4) distance constraint (g,) constraint (g3)
8 25 01
2
S s 0.3
g 15
a4 1 -0.5
S
2 0.5 -0.7
0
0 1 -0.9
10k 0 10k 20k 30k 40k 50k 60k 70k -10k 0 10k 20k 30k 40k 50k 60k 70k -10k 0 10k 20k 30k 40k 50k 60k 70k
Iteration Number Iteration Number Iteration Number

Figure 5. Ablation studies showing the effect of constraints on training. The orange curve indicates learning under constraints whereas
the blue curve indicates learning without any constraints(a) Training curves for the terms in the reconstruction loss of the ELBO (first
term in (9); (b) Objective values of the constraints as training progresses. Note the x-axis is the number of iterations rather than epoch
(one iteration is one batch processed).

A.6. Diverse furniture layout recommendations for the same room layout

More examples for Figure[Tp in Figure(6]

Ground Truth Generation 1

Generation 2 Generation 3

II'J
3% n

Ua » n
Library
Jan

O

Living s l .
room . e

” - »
Living l [y
room o
Bed | = o B b 5
oom O il :
5]] —

Figure 6. Diverse furniture layout recommendations for the same room layout. Each row depicts a specific floor-plan, row 1: library;
row 2, 3: living room, row 4: bedroom. The first column is the ground truth design from the test set. The remaining columns are
recommendations made by our proposed model. All rooms are top-down rendering of the scene. We mark ceiling lamps with a white

asterisk in images where we believe it is hard to recognize from our top-down rendering. In row 1, column 4, the green furniture on top of
the sofa is a overhead cabinet.

A.7. Manipulating Latent Space for Design Recommendations from Database.
In this subsection, we show more Examples for Figurein Figure The procedure is as follows,

1. Create a Database:

* Iterate over the training set.

 For each scene, pass it through the GNN encoder to obtain the latent code. Store both the scene and the corre-
sponding latent code in the database.

2. Retrieving closest matched scenes

« Given an empty room layout G, we iterate over each scene i in the database.

ng.
« For every scene i, the corresponding latent Z; = {Z},...Z, "} where np, is the number of furniture items in
scene 4.

» Since Z; was sampled using our appr0x1mate posterior ¢, (Z | G;,T;, nr,) we solve (3] . using the FAQ algorithm
and the Graph prior py (Z | Gr.m,Tin F to find the optimal ordering 7*. Here G g is the given empty room
layout.

* We then evaluate the likelihood of Z; under our prior and optimal ordering 7*

* Finally we choose the top 3 scenes which have the highest likelihood under the prior as the closest “match”. In
other words, these latent codes are very likely under the prior for room layout G r and thus would result in good
designs when passed through our GNN decoder.

In Flgurelwe showed multiple retrieval results for a library, here we give two more examples a bedroom and a living room.
Notice that the retrieved scenes can have very different room shape compared to G r however the furniture arrangements can
still look plausible in G .

A.8. Qualitative comparison of our method with ATISS and baselines
In this subsection, we show more Examples for Figure[2|in Figure([8]
A.9. More results for scene editing

In this subsection, we show more Examples for FigureE]in FigureE}

7Recall, given any ordering of the latent variables, 7, the Graph Prior simulates and auto-regressive model based on 7. See

A.10. Analyzing matched furniture nodes for the trained autoregressive prior

In this subsection we analyze the following question - After training, what is the category of the furniture’s latent, taken
from an encoded scene using the GNN encoder, that gets matched to the first Z! sampled using our autoregressive prior?
To answer this we carry out the following steps,

¢ Jterate over the scenes in the test set.

* Ever scene is a tuple consisting of the attributed scene graph, the room type and the number of furniture’s in the room
(G, T,ng). For each scene,

— Pass it through the trained GNN encoder to obtain the parameters for ¢4,(Z | np,G,T). Here Z :=
{ZY, 7%, ... Z"F} is the set of latent variables corresponding to the nz furniture items to be placed in the room.

— Next solve (5) using the FAQ algorithm and the Graph prior pg(Z | Gr, 7, T, n Fto find the optimal ordering
7m*. Here G g refers to the room layout graph derived from the input scene graph.

— This 7* is the optimal assignment between Z*’s obtained from the approximate posterior ¢4(Z | ng, G, T) and
the sequential latent nodes sampled using the auto-regressive prior (See).

* Since each Z* corresponds to a furniture item, we analyze the frequencies (over the test set) with which a certain category
is mapped to the first latent sampled by the auto-regressive prior. This can give insights into what the model has learnt
and whether the prior’s modelling of furniture placement in indoor scenes correlates with how interior designers begin
planning room layouts. In Table we present these results. We found that the first bedroom item matched by our model
is a nightstand/bed/light with probability 0.91 and the first living room item matched is a coffee-table/sofa/light with
probability 0.76. This is interesting since human designers often start planning with these items.

Table 5. Frequency of categories mapped to the first latent sampled by the auto-regressive prior

Categories | Bedroom | Livingroom

Bed 0.30 0.0
Light 0.19 0.19
Night-stand 0.43 0.0
Chair 0.02 0.11
Sofa 0.01 0.20
Table 0.04 0.10
Pier 0.01 0.01
Coffee-Table 0.0 0.39

8Recall, given any ordering of the latent variables, 7, the Graph Prior simulates and auto-regressive model based on 7. See

(a) Bedroom

Empty Room Layout

Gr
Database
Lookup
—
(b) Living Room
Empty Room Layout
Gr
Database
Lookup
—

Top 3 scenes retrieved
in terms of latent code

likelihood

—_—

Pass Latent
through GNN
Decoder to

furnishG g

3

Top 3 scenes retrieved
in terms of latent code
likelihood

Lij

7.\\

- =t
=W - a
® -
Pass Latent ® l
a through GNN (L)
Decoder to
furnish G
B =

Figure 7. Manipulating Latent Space for Design Recommendations from Database. We show results for two room types (a) bedroom and
(b) living room. The GNN decoder ensures the synthesized design in Gr has approximately the same spatial arrangement as the design of
the retrieved scene. However in some cases (middle room in (a) and top room in (b), the bed and sofa are rotated respectively to ensure the
satisfaction of constraints levied by the room layout, for example, sofa should be parallel to the closest wall.

Ground Truth ATISS Baseline 1 Baseline 2 Ours

Figure 8. More results for Qualitative comparison of our method with ATISS and baselines. Row 1,2 are bedrooms. Row 3 is a living room
and Row 4 is a library.

Figure 9. Scene Editing. Col 1 is a scene generated by our model. In row 1, we morph the bottom-left cabinet into a sofa by changing the
« parameter as explained in text (ﬂ In row 2 we morph the yellow chair in the top-center into a sofa. In row 3, we morph the cabinet
(marked with a yellow spot) into a chair.

