A. Supplementary Material
A.1. Implementation Details

Our code is implemented using PyTorch for automatic
differentiation. We use Adam [21] with a learning rate of
0.015 over 500 epochs to optimize the parameters. Opti-
mizing 36 bounding boxes over a single pair of point clouds
with 40,000 points each takes about 1.7 minutes and uses
1.4 GB on a Nvidia Titan RTX GPU. While this is slow,
it is still sufficient for performing offline inference over a
small dataset, and since the memory consumption is mod-
est, it can be easily parallelized for faster inference over
large datasets as well. This could potentially be used to an-
notate data for supervised learning methods. Additionally,
because our method does not need to train, we do not share
the exorbitant training memory requirements of most learn-
ing based methods.

In the stereo setting, the initial bounding box grid has
grid cells 4 m wide and 8 m long. For LiDAR they are
instead 6 m long. Every other column is shifted forward
by half the length of the grid cell, forming a diamond grid
pattern, as shown in Figure 5.

Some of our scene flow parameters cannot be optimized
directly and need to be computed from latent parameters.
Inspired by [23], we represent rotations as 3x3 matrices
and project them onto SO(3) via SVD. We find that con-
fining the per-box rotations to SE(2) on the ground plane
produces more consistently accurate scene flow predictions
in practice. The confidences are computed by applying a
sigmoid function to latent logits. The latent variables for the
bounding box dimensions are exponentiated and then mul-
tiplied by the default anchor box dimensions to compute the
true dimensions of the bounding box. Lastly, the heading is
parameterized by a 2D vector and converted to an angle via
atan?2.

When computing the NND, in practice, we concatenate
point cloud normals to the xyz coordinates and compute the
NND in 6 dimensions to draw better correspondences. Point
cloud normals are computed using [42], which finds the
main principal vector for a local region around each point.
In our case, we use the 30 nearest neighbors.

To improve efficiency, when computing the differen-
tiable bounding box weights, we only keep points with
weight above 1e—6. Additionally, we only compute the loss
on boxes that contain points with weight above this thresh-
old i.e. they are not empty.

In Table 5, we list the hyperparameters we use on our
various datasets. Although there are several parameters to
tune, they are primarily adjusted to account for the sparsity
of point clouds in the dataset. Sparser point clouds require
larger € and \,4ss but smaller n,,;,. From Table 4, one
can see that our accuracy is not very sensitive to changes in
Langie. All other terms are largely the same across datasets.

\
h

M ‘H‘ﬂJ

H MMJ
\Hug i
T\

| \fﬂ

!

il
\U \U
u‘

Figure 5: Initial bounding boxes during optimization.

A.2. Computing Box Coordinates

To compute the membership weights of a differentiable
3D bounding box, we need to transform the points into the
local coordinate frame of the box, as mentioned in Section
3.3. Given the center of the bounding box z,y, z and the
heading angle 6, the transformed points can be computed
as:

Pbox = Rboa; (P - tbow) (13)

where p is the input point, Py, is the transformed point,
tyoo 1S the center of the bounding box, and Ry, is the fol-
lowing rotation matrix parameterized by the yaw angle of
the box, 60:

—sin(f) cos(8) 0
Rpor = | cos(d) sin(0) 0 (14)
0 0 1

A.3. Motion Segmentation Evaluation on Se-
manticKITTI

We also evaluate our method’s segmentation accuracy on
SemanticKITTI. We only consider moving vehicles and cy-
clists, as pedestrians move too slowly and non-rigidly for
our method to detect. Initially, we found our approach
struggled with the sparsity and occlusion present in Se-
manticKITTI, resulting in many false positives. To address
this, during inference, we filter out any positive predictions
that move less than 0.2 meters, corresponding to about 4.5

Table 5: Hyperparameters

Dataset ‘ k €(m))\shape Aheading)‘angle Amass Nmin
StereoKITTI 8 0.01 8 1000 0.01 0.001 500
StereoKITTI Downsampled | 8 0.02 8 1000 0.01 0.002 80
LidarKITTI 8 0.03 8 1000 0.01 0.002 50
nuScenes 8 0.04 8 1000 0.25 0.01 20
SemanticKITTI 8 0.05 8 1000 0.25 0.002 50

Table 6: Dataset Details. N refers to the number of points in a point cloud.

Dataset ‘ median N flow ego-motion segmentation correspondences
StereoKITTI 25218.5 v v v v
LidarKITTI 4388.5 v v v
SemanticKITTI 67532.5 v v
nuScenes 6727.5 v v v

miles per hour, which we assume to be the minimum speed
of a dynamic car or cyclist. Additionally, we introduce a
cycle consistency check. Specifically, for every bounding
box b;, we optimize an additional SF(3) transform 7} and
confidence parameter ¢! minimizing the loss function, but
this time using the NND from P» to P; and computing the
differentiable box weights using b; transformed according
to its forward transform 7;. During inference, we only keep
boxes where both confidence scores are above the thresh-
old. Furthermore, we assert that the two rigid transforms
must be similar to each other. We measure their similarity
by transforming the corners of the box by 77T} and comput-
ing the average displacement of the corners, removing any
predictions where the average displacement exceeds 0.2 m.
After applying these two checks to reduce false positives,
our method achieves 34.5% IoU on moving points, defined
as:

P
10U = rppprrn (15

LiDAR MOS [5], a state-of-the-art supervised method,
achieves 56% IoU, performing significantly better. How-
ever, it requires ground-truth segmentation masks for su-
pervised training, while our approach does not require any
labels. Note that LIDAR MOS preprocesses its point clouds
differently and does not exclude pedestrians in its evalua-
tion.

A.4. More Visualizations

We visually compare our method against another scene
in KITTI (Figure 6) and two scenes from nuScenes (Figure
7). These are visualized similarly to Figure 3. Again, our
method performs the best, while PointPWCNet and NSFP
are noisy and struggle to accurately predict the motion of
dynamic objects.

For a more exhaustive visualization of just our method,
we also display our predictions over six scenes from
StereoKITTI and LidarKITTI, visualized in 4 different
ways, shown in Figures 8, 9, 10, 11, 12, 13. Our method is
able to predict accurate scene flow and segmentation masks
on all scenes using both stereo and LiDAR, although the
stereo predictions are slightly more accurate. This is ev-
idenced in that while the LiDAR predictions successfully
detect most moving objects, the stereo predictions detect
all of them, illustrated in Figures 8 and 12. As a note, in
Scenes 11 and 13, there are moving bikers and motorcy-
clists. These points are cropped out in StereoKITTI, but
with LidarKITTI, we utilize the entire point cloud, so our
method detects these moving objects. They are shown as
empty boxes in the third visualization on these scenes.

Additionally, we include animated GIFs of the bound-
ing box optimization process for StereoKITTI in our sup-
plementary zip file. The color of the boxes indicate their
confidence score, with purple corresponding to 0 and red
corresponding to 1.

(a) Ours StereoKITTI (b) Ours LidarKITTI

(c) NSFP StereoKITTI (d) NSFP LidarKITTI

(e) PointPWCNet StereoKITTI (f) PointPWCNet LidarKITTI

Figure 6: Visualization of scene flow predictions for our method, NSFP, and the PointPWCNet loss function under direct
optimization on another scene in KITTI. Color indicates the EPE3D of the prediction, with red indicating high error and
purple indicating low error. For StereoKITTI, the colorscale ranges from 0-0.5 m error, while for LidarKITTI, it ranges from
0-1 m. In this scene, a van is driving ahead of the moving ego vehicle. Our method and NSFP are able to accurately predict
the flow on this scene in both settings, although our method is slightly more accurate. PointPWC also generally performs
well but struggles in the sparser regions of the point cloud.

(g) Error Colorbar

(a) Ours Scene 1 (b) Ours Scene 2

(c) NSFP Scene 1 (d) NSFP Scene 2

(e) PointPWCNet Scene 1 (f) PointPWCNet Scene 2

Figure 7: Visualization of scene flow predictions for our method, NSFP, and the PointPWCNet loss function under direct
optimization on two scenes in nuScenes. Color indicates the EPE3D of the prediction, with red indicating 1 m and purple
indicating O m. In scene 1, the ego vehicle is driving forward along with two cars ahead of it and one behind it. Our method
is able to predict the motion of all cars but the one behind, due to the sparsity of points on that car. NSFP struggles with
two of the moving cars and also falsely predicts the motion of a parked car. PointPWC’s prediction exhibits a lot of artifacts,
especially at the boundary of the scene. In scene 2, the ego vehicle approaches an intersection as another car drives close
behind. In the other lane, three cars move in the opposite direction. Another car moves along the perpendicular street of the
intersection, totalling five dynamic vehicles in this scene. Our method successfully predicts three of them, while the other
methods show large errors on static parts of the scene and are less accurate on the dynamic objects as well.

(g) Error Colorbar

(a) StereoKITTI

(b) LidarKITTI

Figure 8: Scene 1 Visualizations. (a) shows StereoKITTI predictions and (b) show LidarKITTI predictions on the same
scene. The left visual in the first row of each subfigure shows the 3D end-point-error of our predictions, similar to Figures 3,
6, 7. The color can be interpreted using the same colorbar as the comparative visualizations, but with purple corresponding
to O m and red corresponding to 0.75 m. The middle visual shows the magnitude of the predicted scene flow vectors using
the same colorbar, with purple corresponding to O m and red corresponding to 2.5 m. The right visual shows the predicted
bounding boxes using arbitrary colors. Lastly, the bottom visual projects a convex hull of the segmented points onto the
image plane for each detected moving object, performing moving object instance segmentation on images. These colors are
also arbitrary. This figure displays the same scene as 3.

(a) StereoKITTI

(b) LidarKITTI

Figure 9: Scene 2 Visualizations. Same as Figure 8. In this scene, the ego vehicle is moving fast on a main street as an
oncoming car approaches on the other side of the road. Our method is able to identify the moving car in the stereo setting,
but in the LiDAR setting, the points on the car are extremely sparse, making it difficult for our method to identify it.

(a) StereoKITTI

(b) LidarKITTI

Figure 10: Scene 3 Visualizations. Same as Figure 8. In this scene, the ego vehicle drives forward slowly on a narrow street
as another car approaches in the opposite lane. Our method is able to accurately predict the flow on the dynamic car in both
settings.

(a) StereoKITTI

(b) LidarKITTI

Figure 11: Scene 4 Visualizations. Same as Figure 8. This figure displays the same scene as 6. Note that there is a biker in
the scene. These points are cropped out in StereoKITTT as they don’t posses ground truth scene flow annotations, but with
LidarKITTI, we utilize the entire point cloud, so our method is able to detect the biker, as shown by the empty green box.

- o pid L

==
A e

(b) LidarKITTI

Figure 12: Scene 5 Visualizations. Same as Figure 8. In this scene, the ego vehicle is driving behind another car as two cars
approach from the opposite lane. Our method predicts all three moving cars in the stereo setting, but misses the furthest car
in the LiDAR setting due to its sparsity.

(a) StereoKITTI

(b) LidarKITTI

Figure 13: Scene 6 Visualizations. Same as Figure 8. In this scene, the ego vehicle is stopped at a stop light at an intersection
while a car and a motorcyclist cross the intersection and approach from the other side of the street. Additionally, another car
coming from the same direction makes a left turn at the intersection. Our method is able to identify both moving cars in both
settings. Similar to 12, the points of the motorcyclist are not present in the stereo setting but are present in the LiDAR setting,
and our method successfully identifies at, as indicated by the empty red box.

