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A. Asymmetric Inter-task Relation

Relative performance change Consider two models with
the same backbone (i.e., ResNet-50-GN) with different task
heads, where a single-task network is trained for task ¢
and a multi-task network is trained to jointly minimize
losses of tasks ¢ and ¢'. 'We measure the impact of task

t’ on task ¢ based on the relative accuracy change Ay _,; =
accy |{t,t'}—accy |{t}
acce|{t}

t of a multi-task network trained on tasks ¢ and ¢, accy|{t}

is the accuracy of a single-task network trained on task ¢.

A positive value of A, _,; indicates that training along
with task ¢’ results in performance increase on task ¢, while a
negative value indicates that performance decreases on task
t. This inter-task relation definition is illustrated in Fig.
The pairwise relative changes is summarized in Table

, where acc;|{t,?'} is the accuracy on task

Effect of threshold = Based on the relative accuracy
change, we define the directive relation ¢ — ¢. Concretely,
if Ay is smaller than a threshold 7, the directive re-
lation ¢ — ¢ is defined as negative. We further clarify
m € {0,1}7%7T defined in Eq.(2) as:

myy = {
(a-1)

In the main paper, we used 7 = —0.01 for all the experi-
ments, allowing the network to tolerate the relatively small
accuracy drop of 1.00%.

To study the effect of threshold, we report the model
performance for different threshold values in Table
{inf, 0, —0.009, —0.01, —0.015, —0.025, —inf}. When 7 =
—inf, GradSplit reduces to the multi-head baseline where
none of the inter-task relation is negative. When 7 = inf,
each group of filters is only updated by its assigned task
loss, which does not fully consider the inter-task relationship
during the gradient back-propagation.

As illustrated in Figure[A-2] when varying 7 value from
—inf to inf, the defined relation gradually changes. Starting
from the multi-head baseline (7 = —inf), overall accuracy
increases as the 7 increases until -0.01 ( Table [A-2), by
masking more gradients that are from conflicting tasks (e.g.,
Attribute — Parsing, ReID — Parsing). As 7 further in-

0
1 otherwise.

if ¢ # t’and relation ¢’ — ¢ is negative

single-task network relationB—=> A
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yes
|—> task B
multi-task network
Figure A-1. Inter-task relation definition. Given a single task net-
work for task A and a multi-task network for tasks A and B, we
compare the relative performance change on task A in a validation
set. If the relative change in task A accuracy, cal{A.Bl—aca|{A}

; ) acca [{A}
is smaller than a threshold 7, the relation B — A is negative.

Negative

Table A-1. Relative performance change of each task when trained
as a pair with every other task. For example, when RelD is trained
with Attribute in a two-task network, Attribute performs 2.05%
worse than when Attribute is trained alone. Both two-task network
and single-task network use the same backbone (ResNet-50-GN).
Best viewed in color.

Relative Performance Change On

Attribute RelD Pose Parsing
< Attribute - -2.16% -1.47% -9.87%
E RelD -2.05% - -1.36% | -16.22%
§ Pose 077%  -0.86% - 0.00%
& Parsing -0.91% -0.97% 0.11% -

creases from —0.009 to inf, overall multi-task performance
A,,, decreases as the gradients become sparser. Although the
gradients are sparser, 7 = inf achieves slightly higher accu-
racy than the multi-head baseline by avoiding task conflicts.
Interestingly, we observe that the multi-task performance
A, with 7 = 0 is 2.0% higher than multi-head baseline, but
it is still 1.6% lower than using 7 = —0.01. This implies
that defining negative inter-task relations with a tolerance to
allow a small drop in accuracy can be beneficial, by using
denser gradients during optimization.
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Table A-3. Comparison with gradient based methods on two tasks:
RelD, Attr. ADV denotes Adversarial task disentanglement [12].
ASTMT uses ResNet-26-TBN as backbone for a fair comparison.

P P o Methods Backbone A1 RelD
MA (1) Rank-1 (1) mAP (1)
(c) threshed = -0.009 (b) threshed =0 (f) threshed = inf
Attr.  RelD Pose  Par. Attr.  RelD Pose  Par. Attr.  RelD Pose  Par. ASTMT [12] R26_TBN 76‘6 89'3 73.4
o - B - - BEEREE - e - ASTMT + ADV [12] R26-TBN  77.4 894  73.0
Zrem L - bR L - L ZRaD L - GradDrop [4] R50-GN 745 60.2 35.0
- Ll S S i S . PCGrad [13] RS0-GN 748 916 746
Figure A-2. Asymmetric pairwise task relations for different thresh- Multi-head baseline R50-GN 76.4 90.8 76.9
old 7. In each table, an entry (¢',¢) corresponds to the relation GradSplit ‘ 78.0 ‘ ’ 92.1 ‘ ‘ 79.9 ‘

t’ — t. Negative relation is indicated using |.

Table A-2. Effect of threshold 7 on GradSplit when ResNet-18-GN

Table A-4. Comparison on three tasks: RelD, Attribute, and Pose.
Overall multi-task performance A, is calculated by comparing to
the reference single-task networks (ResNet-50-GN)

is used as the backbone architecture. () When 7 = —inf, GradSplit Attribute RelD Pose A, #Param
. . . Methods Backbone
reduces to the multi-head baseline where none of the inter-task @M ™M
lation i . Wh —inf h £ il . / MA (1) mAP (1)Mean (1)
e 3“;’1‘11; n,etga“"‘?’ | ten 1Z o m Ifach dg“’“p ‘1 ; lfers s qu Single-task  R50-GN 78.0  81.1 882 +0.0 85
the iner-task rlationship during the gradient back-propagation. 00 I3l ResSOGN” 500 508 162 516 38
(+) threshold 7 = —0.001 is used for all the experiment in the ~ ~SIMT[12] R50-TBN 59.0 9.1 48
main paper. Overall multi-task performance A,, is calculated by ASTMT + ADV R50-TBN _ 78.2 74.1 63.1 -123 48
comparing to the reference single-task networks. GradNorm [3] R50-GN 74.0 54.5 85.1 -13.8 38
MTAN [9] 717.4 50.0 855 -14.0 38
Methods Pose Attribute ReID Parsing Am Multi-head R50-GN 759 76.5 86.3 -3.5 38
GradSplit 77.6 80.2 86.3 |-1.3| 38
Mean (1) MA (1) mAP ()mloU (1) radop -13]
Single-task 87.0 76.9 74.9 42.4 0.0 .
fmeretas - under three-task setting (Table[A-4). Pose has much smaller
MU1ti'lfad.baSiline 849 755 647 380 71 loss than the remaining task. When introducing ADV, it
(1= —inf) £ might need carefully balancing the weights between Pose
= -0.025 84.6 77.1 67.9 372 -6.0 and ADV losses, which is out of scope of this work.
T =-0.015 84.8 77.2 68.1 37.6 -5.6 PCGrad [15] and GradDrop [4] directly compare task
T=-0.010} 85.4 77.1 71.4 \ 39.1 ‘ ‘ -3.5 ‘ gradients, and then manipulate them to alleviate conflicts.
7= —0.009 85.1 ‘ 774 ‘ 71.4 387 37 They implicitly assume the compared task gradients to come
=0 85.1 773 67.5 387  -5.1 from the same image or domain, which does not hold in our
7 = inf 84.8 76.9 67.6 38.1 -5.6 problem. This might the reason why the two strategies for

B. Additional Experimental Results
B.1. Comparison to gradient manipulation methods

Gradient manipulation methods (e.g., PCGrad and Grad-
Drop) implicitly assume the compared task gradients to come
from the same image [[15] or domain [4]. However, in our
setting, gradients of different tasks are calculated on images
from different domains because each dataset has annotations
only for a single task.

In Table[A-3|and Table[A-4] we report the results of three
gradient based methods, including PCGrad [15], Adversar-
ial task disentanglement (ADV) [12], and GradDrop [4].

ADV is used in ASTMT to force task gradients be statis-
tically indistinguishable through adversarial training. While
ADV brings 0.8% improvement for ASTMT on Attribute
under two-task setting (Table[A-3), it does not help ASTMT
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gradient manipulation are not suitable in our setting, and
achieve limited accuracy. For example, on two-task setting
(Table[A-3), GradDrop only achieves 35.0% mAP on RelD.
One three-task setting (Table[A-4), PCGrad achieves 50.8%
mAP in ReID, which is 29.4% lower than our GradSplit.

B.2. Comparison to task balancing methods

In our problem, the magnitude of pose loss is much
smaller than the magnitudes of other task losses. To this
end, we include two task balancing methods in the experi-
ment and report results in Table@} GradNorm [3] aims to
balance task losses by stimulating the task-specific gradients
to be of similar magnitude. However, GradNorm failed to
handle this imbalance effectively and achieved low overall
accuracy. MGDA [14] seeks to find Pareto optimal solutions.
‘We observe that it still cannot address imbalanced losses,
and produces undesirable performance on three-task setting
(e.g., 16.0% in Pose).



B.3. Result on three-task setting

In Table[A-3] we report the results under three-task setting
(Parsing, Pose, and Attr). We also observe that GradSplit
achieves +4.8% higher overall multi-task performance than
multi-head baseline.

Table A-5. Comparison on three tasks: RelD, Attr, and Parsing.

Attribute ReID  Parsing A,, #Param

Methods Backbone
MA (1) mAP () mloU () (P M4
Sinole-task R50-GN  78.0 81.1 456 +0.0 89
& RIS-GN 769 749 424 - 47
Multi-head 76.6 79.0 388 -64 44
GradSplit R50-GN 77.2 80.4 435 -1.6 44
Table A-6. Results on synthetic dataset: Digit classification,

CIFAR image recognition and Digit segmentation. We report the
two-task performance to show pair-wise task relation. We compare
the multi-head baseline and GradSplit under the three-task setting.

Methods Backbone MNIST  CIFAR Parsing
Acc. (1) Acc. (1) mloU (1)
Single-task ~ R18-GN 91.7 75.8 78.3
84.5 67.8 -
Two-task R18-GN 929 - 77.6
- 85.2 471
Multi-head 85.0 73.0 73.6
GradSplit RI8-GN 88.8 76.4 73.9

C. Understand GradSplit with Synthetic
Dataset

We use MNIST and CIFAR-10 to create a three-task set-
ting: CIFAR classification, Digit classification, and Digit
segmentation. An example image (left) and its ground truth
segmentation (right) are shown in Fig.[A-3] We generate an
image by mixing randomly selected images from MNIST
and CIFAR-10. Specifically, we overlay the digit on the
random position of the image from CIFAR-10. There are
conflicts among these three tasks. Segmentation task dis-
criminates the foreground region (MNIST) and background
region (CIFAR), so it benefits the classification tasks. How-
ever, the opposite is not true. For example, MNIST classifica-
tion needs to distinguish different digits, while segmentation
needs digit-agnostic features.

GradSplit is beneficial, because it improves model perfor-
mance by reducing gradient conflicts during training, while
still exploiting task-specific features across tasks. As shown
in Table[A-6] GradSplit consistently outperforms the multi-
head baseline on all three tasks.

A-3

Figure A-3. [llustration of synthetic dataset. It has three tasks: Digit
classification, CIFAR-10 image recognition, and Digit segmenta-
tion. Asymmetric relations are apparent under this setting. For
example, segmentation features help classification tasks, but the
opposite is not true.

D. Implementation Details
D.1. Multi-head baseline

Data pre-processing and augmentation To maximize ac-
curacy while maintaining efficient computation, we allowed
different sizes of inputs for tasks. Specifically, we resized
the input image to 288 x 288 for Parsing, 256 x 256 for
pose estimation, and 256 x 128 for person re-identification
and attribute recognition. Random flip and RandomEras-
ing are used for Attribute and RelD; Multi-scale crop and
random flip are used for Parsing; Multi-scale crop, random
rotation(£40 degrees) and flip are used for Pose.

Mini-batch construction RelID uses Random-Identity
Sampler [7] to sample 64 images from 4 identities per mini-
batch. Attribute, Parsing, and Pose use Random-Sampler to
sample 64 images for each mini-batch.

Loss Pose uses MSE loss, Parsing uses pixel-wise cross
entropy loss, Attribute uses binary cross-entropy loss for
each attribute, ReID uses triplet loss and cross-entropy loss.
We adopt round-robin batch-level update regime [[11] for op-
timization. One multi-task iteration consists of a sequence of
each task batch forwarding and parameter updating. Namely,
for each iteration, we only train network on samples from
one task. With this strategy, we tried using large weights for
Pose (its loss is relative small than the other tasks) but em-
pirically observed its accuracy slightly changed. Thus, we
used uniform weights in all the experiments for simplicity.

D.2. Comparing methods

Cross-stitch Network [13], NDDR [5] Following the pa-
per, we first train task-specific networks separately and then
finetune the whole network, including the interaction mod-
ules, to minimize the joint task loss. We used o = 0.9 and
B =1/(N — 1) (N is the number of tasks). The interaction
modules are inserted from layer 1 to layer 4 of the ResNet.
ASTMT [12], MGDA [14], RCM [8], MTAN [9] and SFG
[2] are implemented based on the official codes.

PCGrad [15] PCGrad is implemented based on the official
code and applied to the last layer of the shared backbone.



GradDrop [4] GradDrop layer is applied to the last com-
mon feature maps which are the inputs to the task-specific
heads. GradDrop requires the size of the feature maps for
all tasks to be the same so that the feature map values across
tasks are element-wise comparable. Since we used different
sizes of inputs for tasks, we tested GradDrop on the two-task
setting, i.e., person re-identification and attribute recognition,
where inputs are resized to the same size.

GradNorm [3] We applied GradNorm to the last layer
of the common feature extractor. We normalized gradients
before calculating the gradient norm loss.

E. Potential Negative Social Impact

Since our work is related to human recognition, there is
a potential risk that our work can be utilized for unlawful
surveillance. To mitigate the unintended use of our work,
the code and model with downstream applications will be
accompanied with the precautions to highlight this risk. Our
work relied on the datasets consisting of human images,
which could be subject to privacy risks. We used publicly
released datasets and followed the protocol used in prior
works for evaluation (i.e., MPII [[1], PA-100k [10], LIP [6],
Market-1501 [16]]).
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