
Supplementary material
Similarity Contrastive Estimation for Self-Supervised Soft Contrastive Learning

A. Pseudo-Code of SCE

1 # d a t a l o a d e r : l o a d e r o f b a t c h e s o f s i z e bsz
2 # epochs : number o f epochs
3 # T1 : weak d i s t r i b u t i o n o f d a t a a u g m e n t a t i o n s
4 # T2 : s t r o n g d i s t r i b u t i o n o f d a t a a u g m e n t a t i o n s
5 # f1 , g1 : o n l i n e e n c o d e r and p r o j e c t o r
6 # f2 , g2 : momentum e n c o d e r and p r o j e c t o r
7 # queue : memory b u f f e r
8 # t a u : o n l i n e t e m p e r a t u r e
9 # tau m : momentum t e m p e r a t u r e

10 # lambda : c o e f f i c i e n t be tween c o n t r a s t i v e and
r e l a t i o n a l a s p e c t s

11

12 f o r i i n r a n g e (epochs) :
13 f o r x i n d a t a l o a d e r :
14 x1 , x2 = T1 (x) , T2 (x)
15 z1 , z2 = g1 (f1 (x1)) , g2 (f2 (x2))
16

17 s t o p g r a d (z2)
18

19 s im2 pos = z e r o s (bsz)
20 s im2 neg = einsum (” nc , kc−>nk ” , z2 , queue)
21 sim2 = c a t ([s im2 pos , s im2 neg]) / tau m
22 s2 = so f tmax (sim2)
23 w2 = lambda * o n e h o t (s im2 pos , bsz +1) + (1 −

lambda) * s2
24

25

26 s im1 pos = einsum (” nc , nc−>n ” , z1 , z2)
27 s im1 neg = einsum (” nc , kc−>nk ” , z1 , queue)
28 sim1 = c a t ([s im1 pos , s im1 neg]) / t a u
29 p1 = so f tmax (sim1)
30

31 l o s s = c r o s s e n t r o p y (p1 , w2)
32 l o s s . backward ()
33

34 u p d a t e (f1 . params)
35 u p d a t e (g1 . params)
36 momentum update (f2 . params , f1 . params)
37 momentum update (g2 . params , g1 . params)
38 f i f o u p d a t e (queue , z2)

Algorithm 1: Pseudo-Code of SCE in a pytorch style

B. Proof Proposition 1. in Sec. 3.2
Proposition. LSCE defined as

LSCE = − 1

N

N∑
i=1

N∑
k=1

w2
ik log

(
p1ik
)
,

can be written as:

LSCE = λ · LInfoNCE + µ · LReSSL + η · Lceil,

with µ = η = 1− λ and

LCeil = − 1

N

N∑
i=1

log

(∑N
j=1 1i ̸=j · exp(z1i · z2j /τ)∑N

j=1 exp(z
1
i · z2j /τ)

)
.

Proof. Recall that:

p1ik =
exp(z1i · z2k/τ)∑N
j=1 exp(z

1
i · z2j /τ)

,

s2ik =
1i ̸=k · exp(z2i · z2k/τm)∑N
j=1 1i ̸=j · exp(z2i · z2j /τm)

,

w2
ik = λ · 1i=k + (1− λ) · s2ik.

We decompose the second loss over k in the definition of
LSCE to make the proof:

LSCE = −
1

N

N∑
i=1

N∑
k=1

w
2
ik log

(
p
1
ik

)

= −
1

N

N∑
i=1

w2
ii log

(
p
1
ii

)
+

N∑
k=1
k ̸=i

w
2
iklog

(
p
1
ik

)
=−

1

N

N∑
i=1

w
2
ii

(
p
1
ii

)
︸ ︷︷ ︸

(1)

−
1

N

N∑
i=1

N∑
k=1
k ̸=i

w
2
ik log

(
p
1
ik

)
︸ ︷︷ ︸

(2)

.

First we rewrite (1) to retrieve the LInfoNCE loss.

(1) = −
1

N

N∑
i=1

w
2
iilog

(
p
1
ii

)

= −
1

N

N∑
i=1

λ · log
(
p
1
ii

)

= − λ ·
1

N

N∑
i=1

log

(
exp(z1

i · z2
i /τ)∑N

j=1 exp(z1
i · z2

j /τ)

)
=λ · LInfoNCE .

Now we rewrite (2) to retrieve the LReSSL and LCeil

losses.

(2) = −
1

N

N∑
i=1

N∑
k=1
k ̸=i

w
2
ik log

(
p
1
ik

)

= −
1

N

N∑
i=1

N∑
k=1
k ̸=i

(1 − λ) · s2ik · log
(
p
1
ik

)

= − (1 − λ) ·
1

N

N∑
i=1

N∑
k=1

s
2
ik · log

(
p
1
ik

)

= − (1 − λ) ·
1

N

N∑
i=1

N∑
k=1

[
s
2
ik · log

(
exp(z1

i · z2
k/τ)∑N

j=1 exp(z1
i · z2

j /τ)

)]

= − (1 − λ) ·
1

N

N∑
i=1

N∑
k=1

[
s
2
ik ·

(

log
(
exp(z

1
i · z2

k/τ)
)
− log

 N∑
j=1

exp(z
1
i · z2

j /τ)

)]

= − (1 − λ) ·
1

N

N∑
i=1

N∑
k=1

[
s
2
ik ·

(

log
(
exp(z

1
i · z2

k/τ)
)
− log

 N∑
j=1

exp(z
1
i · z2

j /τ)

+

log

 N∑
j=1

1i̸=j · exp(z1
i · z2

j /τ)

−

log

 N∑
j=1

1i̸=j · exp(z1
i · z2

j /τ)

)]

= − (1 − λ) ·
1

N

N∑
i=1

N∑
k=1

[
s
2
ik ·

(
log

(
exp(z1

i · z2
k/τ)∑N

j=1 1i̸=j · exp(z1
i · z2

j /τ)

)
+

log

(∑N
j=1 1i̸=j · exp(z1

i · z2
j /τ)∑N

j=1 exp(z1
i · z2

j /τ)

))]

= − (1 − λ) ·
1

N

N∑
i=1

N∑
k=1

[
s
2
ik · log

(
exp(z1

i · z2
k/τ)∑N

j=1 1i̸=j · exp(z1
i · z2

j /τ)

)]
−

(1 − λ) ·
1

N

N∑
i=1

N∑
k=1

[
s
2
ik · log

(∑N
j=1 1i̸=j · exp(z1

i · z2
j /τ)∑N

j=1 exp(z1
i · z2

j /τ)

)]
.

Because s2ii = 0 and s2i is a probability distribution, we
have:

N∑
k=1

s
2
ik · log

(
exp(z1

i · z2
k/τ)∑N

j=1 1i̸=j · exp(z1
i · z2

j /τ)

)
=

N∑
k=1
k ̸=i

s
2
ik · log

(
1i̸=k · exp(z1

i · z2
k/τ)∑N

j=1 1i̸=j · exp(z1
i · z2

j /τ)

)
,

N∑
k=1

s
2
ik · log

(∑N
j=1 1i̸=j · exp(z1

i · z2
j /τ)∑N

j=1 exp(z1
i · z2

j /τ)

)
=

log

(∑N
j=1 1i̸=j · exp(z1

i · z2
j /τ)∑N

j=1 exp(z1
i · z2

j /τ)

)
.

Then:

(2) = − (1 − λ)·

1

N

N∑
i=1

N∑
k=1
k ̸=i

[
s
2
ik · log

(
1i̸=k · exp(z1

i · z2
k/τ)∑N

j=1 1i̸=j · exp(z1
i · z2

j /τ)

)]
−

(1 − λ) ·
1

N

N∑
i=1

[
log

(∑N
j=1 1i̸=j · exp(z1

i · z2
j /τ)∑N

j=1 exp(z1
i · z2

j /τ)

)]
=(1 − λ) · LReSSL + (1 − λ) · LCeil.

C. Classes to construct ImageNet100

To build the ImageNet100 dataset, we used the classes
shared by the CMC [1] authors in the supplementary ma-
terial of their publication. We also share these classes in
Tab. 1.

100 selected classes from ImageNet
n02869837 n01749939 n02488291 n02107142
n13037406 n02091831 n04517823 n04589890
n03062245 n01773797 n01735189 n07831146
n07753275 n03085013 n04485082 n02105505
n01983481 n02788148 n03530642 n04435653
n02086910 n02859443 n13040303 n03594734
n02085620 n02099849 n01558993 n04493381
n02109047 n04111531 n02877765 n04429376
n02009229 n01978455 n02106550 n01820546
n01692333 n07714571 n02974003 n02114855
n03785016 n03764736 n03775546 n02087046
n07836838 n04099969 n04592741 n03891251
n02701002 n03379051 n02259212 n07715103
n03947888 n04026417 n02326432 n03637318
n01980166 n02113799 n02086240 n03903868
n02483362 n04127249 n02089973 n03017168
n02093428 n02804414 n02396427 n04418357
n02172182 n01729322 n02113978 n03787032
n02089867 n02119022 n03777754 n04238763
n02231487 n03032252 n02138441 n02104029
n03837869 n03494278 n04136333 n03794056
n03492542 n02018207 n04067472 n03930630
n03584829 n02123045 n04229816 n02100583
n03642806 n04336792 n03259280 n02116738
n02108089 n03424325 n01855672 n02090622

Table 1: The 100 classes selected from ImageNet to con-
struct ImageNet100.

D. Data augmentations details for evaluation
protocol

The data augmentations used for the evaluation protocol
are:

• training set for large datasets: random crop to the
resolution 224×224 and a random horizontal flip with
a probability of 0.5.

• training set for small and medium datasets: ran-
dom crop to the dataset resolution with a padding of 4
for small datasets and a random horizontal flip with a
probability of 0.5.

• validation set for large datasets: resize to the res-
olution 256 × 256 and center crop to the resolution
224× 224.

• validation set for small and medium datasets: resize
to the dataset resolution.

E. Implementation details for pretraining
small and medium datasets

Implementation details for small and medium
datasets. We use the ResNet-18 encoder and pretrain for

Dataset τ τm = 0.03 τm = 0.04 τm = 0.05 τm = 0.06 τm = 0.07 τm = 0.08 τm = 0.09 τm = 0.1

CIFAR10 0.1 89.93 90.03 90.06 90.20 90.16 90.06 89.67 88.97
CIFAR10 0.2 89.98 90.12 90.12 90.05 90.13 90.09 90.22 90.34

CIFAR100 0.1 64.49 64.90 65.19 65.33 65.27 65.45 64.89 63.87
CIFAR100 0.2 63.71 63.74 63.89 64.05 64.24 64.23 64.10 64.30

STL10 0.1 89.34 89.94 89.87 89.84 89.72 89.52 88.99 88.41
STL10 0.2 88.4 88.23 88.4 88.35 87.54 88.32 88.80 88.59
Tiny-IN 0.1 50.23 51.12 51.41 51.66 51.90 51.58 51.37 50.46
Tiny-IN 0.2 48.56 48.85 48.35 48.98 49.06 49.15 49.66 49.64

Table 2: Effect of varying the temperature parameters τm and τ on the Top-1 accuracy on small and medium datasets.

200 epochs. Because the images are smaller, and ResNet is
suitable for larger images, typically 224 × 224, we follow
guidance from SimCLR and replace the first 7× 7 Conv of
stride 2 with a 3 × 3 Conv of stride 1. We also remove the
first pooling layer. The strong data augmentation distribu-
tion applied is: random resized crop, color distortion with
a strength of 0.5, gray scale with a probability of 0.2, gaus-
sian blur with probability of 0.5, and horizontal flip with
probability of 0.5. The weak data augmentation distribution
is composed of a random resized crop and a random hori-
zontal flip with the same parameters as the strong data aug-
mentation distribution.

We use 2 GPUs for a total batch size of 256. The mem-
ory buffer size is set to 4,096 for small datasets and 16,384
for medium datasets. The projector is a 2 fully connected
layer network with a hidden dimension of 512 and an output
dimension of 256. A batch normalization is applied after
the hidden layer. The SGD optimizer is used during train-
ing with a momentum of 0.9 and a weight decay of 5e−4.
A linear warmup is applied during 5 epochs to reach the
initial learning rate of 0.06. The learning rate is scaled us-
ing the linear scaling rule: lr = initial learning rate ∗
batch size/256 and then follows the cosine decay sched-
uler without restart. The momentum value to update the
momentum network is 0.99 for small datasets and 0.996 for
medium datasets.

F. Temperature influence on small and
medium datasets

We made a temperature search on CIFAR10, CIFAR100,
STL10 and Tiny-ImageNet by varying τ in {0.1, 0.2} and
τm in {0.03, ..., 0.10}. The results are in Tab. 2. As for
ImageNet100, we need a sharper distribution on the output
of the momentum encoder. Unlike ReSSL [2], SCE do not
collapse when τm → τ thanks to the contrastive aspect.
For our baselines comparison in Sec. 4.2, we use the best
temperatures found for each dataset.

References
[1] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive

multiview coding. In 16th European Conference on Computer
Vision, pages 776–794, 2020.

[2] Mingkai Zheng, Shan You, Fei Wang, Chen Qian, Chang-
shui Zhang, Xiaogang Wang, and Chang Xu. Ressl: Rela-
tional self-supervised learning with weak augmentation. In
Advances in Neural Information Processing Systems 34: An-
nual Conference on Neural Information Processing Systems,
pages 2543–2555, 2021.

