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Supplementary

A. Algorithms

This section provides the Algorithms for different
optimization techniques, including diffGrad (Algorithm
1), diffGradInject (Algorithm 2), Radam (Algorithm 3),
RadamInject (Algorithm 4), AdaBelief (Algorithm 5) and
AdaBeliefInject (Algorithm 6).

Algorithm 1: diffGrad Optimizer
Initialize: θ0,m0 ← 0,v0 ← 0, t← 0
Hyperparameters: α, β1, β2

While θt not converged
t← t+ 1
gt ← ∇θft(θt−1)
ξt ← 1/(1 + e−|gt−gt−1|)
mt ← β1mt−1 + (1− β1)gt
vt ← β2vt−1 + (1− β2)g

2
t

Bias Correction
m̂t ←mt/(1− βt

1), v̂t ← vt/(1− βt
2)

Update
θt ← θt−1 − αξtm̂t/(

√
v̂t + ϵ)

B. Convergence Proof

Lemma 1. Let η
△
=

β2
1√
β2

. For β1, β2 ∈ [0, 1) that satisfy
β2
1√
β2

< 1 and bounded gt, ||gt||2≤ G, ||gt||∞≤ G∞, et ≤
G∞, et

||gt||2 ≤
G∞
G , the following inequality holds,

T∑
t =1

m̂2
t,i√
tv̂t,i

≤ 2G3
∞

G2(1− η)2
√
1− β2

||g1:T,i||2

Proof. Under the assumption,
√

1−βt
2

(1−βt
1)

2 ≤ 1
(1−β1)2

. We can
use the update rules of AdamNorm and expand the last term

Algorithm 2: diffGradNorm (diffGrad +
AdaNorm) Optimizer

Initialize: θ0,m0 ← 0,v0 ← 0, e0 ← 0, t← 0
Hyperparameters: α, β1, β2, γ
While θt not converged

t← t+ 1
gt ← ∇θft(θt−1)
ξt ← 1/(1 + e−|gt−gt−1|)
gnorm ← L2Norm(gt)
et = γet−1 + (1− γ)gnorm
st = gt
If et > gnorm

st = (et/gnorm)gt
mt ← β1mt−1 + (1− β1)st
vt ← β2vt−1 + (1− β2)g

2
t

Bias Correction
m̂t ←mt/(1− βt

1), v̂t ← vt/(1− βt
2)

Update
θt ← θt−1 − αξtm̂t/(

√
v̂t + ϵ)

in the summation,

T∑
t =1

m̂2
t,i√
tv̂t,i

=

T−1∑
t=1

m̂2
t,i√
tv̂t,i

+

√
1− βT

2

(1− βT
1 )

2

(
∑T

k=1 (1− β1)β
T−k
1 sk,i)

2√
T
∑T

j=1 (1− β2)β
T−j
2 g2j,i

≤
T−1∑
t=1

m̂2
t,i√
tv̂t,i

+

√
1− βT

2

(1− βT
1 )

2

T∑
k=1

T ((1− β1)β
T−k
1 sk,i)

2√
T
∑T

j=1 (1− β2)β
T−j
2 g2j,i

≤
T−1∑
t=1

m̂2
t,i√
tv̂t,i

+

√
1− βT

2

(1− βT
1 )

2

T∑
k=1

T ((1− β1)β
T−k
1 sk,i)

2√
T (1− β2)β

T−k
2 g2k,i



Algorithm 3: Radam Optimizer
Initialize: θ0,m0 ← 0,v0 ← 0, t← 0
Hyperparameters: α, β1, β2

While θt not converged
t← t+ 1
gt ← ∇θft(θt−1)
mt ← β1mt−1 + (1− β1)gt
vt ← β2vt−1 + (1− β2)g

2
t

ρ∞ ← 2/(1− β2)− 1
ρt = ρ∞ − 2tβt

2/(1− βt
2)

If ρt ≥ 5
ρu = (ρt − 4)(ρt − 2)ρ∞
ρd = (ρ∞ − 4)(ρ∞ − 2)ρt
ρ =

√
(1− β2)ρu/ρd

α1 = ρα/(1− βt
1)

Update
θt ← θt−1 − α1mt/(

√
vt + ϵ)

Else
α2 = α/(1− βt

1)
Update

θt ← θt−1 − α2mt

Algorithm 4: RadamNorm (i.e., Radam +
AdaNorm) Optimizer

Initialize: θ0,m0 ← 0,v0 ← 0, e0 ← 0, t← 0
Hyperparameters: α, β1, β2, γ
While θt not converged

t← t+ 1
gt ← ∇θft(θt−1)
gnorm ← L2Norm(gt)
et = γet−1 + (1− γ)gnorm
st = gt
If et > gnorm

st = (et/gnorm)gt
mt ← β1mt−1 + (1− β1)st
vt ← β2vt−1 + (1− β2)g

2
t

ρ∞ ← 2/(1− β2)− 1
ρt = ρ∞ − 2tβt

2/(1− βt
2)

If ρt ≥ 5
ρu = (ρt − 4)(ρt − 2)ρ∞
ρd = (ρ∞ − 4)(ρ∞ − 2)ρt
ρ =

√
(1− β2)ρu/ρd

α1 = ρα/(1− βt
1)

Update
θt ← θt−1 − α1mt/(

√
vt + ϵ)

Else
α2 = α/(1− βt

1)
Update

θt ← θt−1 − α2mt

Algorithm 5: AdaBelief Optimizer
Initialize: θ0,m0 ← 0,v0 ← 0, t← 0
Hyperparameters: α, β1, β2

While θt not converged
t← t+ 1
gt ← ∇θft(θt−1)
mt ← β1mt−1 + (1− β1)gt
vt ← β2vt−1 + (1− β2)(gt −mt)

2

Bias Correction
m̂t ←mt/(1− βt

1), v̂t ← vt/(1− βt
2)

Update
θt ← θt−1 − αm̂t/(

√
v̂t + ϵ)

Algorithm 6: AdaBeliefNorm (AdaBelief +
AdaNorm) Optimizer

Initialize: θ0,m0 ← 0,v0 ← 0, e0 ← 0, t← 0
Hyperparameters: α, β1, β2, γ
While θt not converged

t← t+ 1
gt ← ∇θft(θt−1)
gnorm ← L2Norm(gt)
et = γet−1 + (1− γ)gnorm
st = gt
If et > gnorm

st = (et/gnorm)gt
mt ← β1mt−1 + (1− β1)st
vt ← β2vt−1 + (1− β2)(gt −mt)

2

Bias Correction
m̂t ←mt/(1− βt

1), v̂t ← vt/(1− βt
2)

Update
θt ← θt−1 − αm̂t/(

√
v̂t + ϵ)

Further, we can simplify as,
T∑

t =1

m̂2
t,i√
tv̂t,i

≤
T−1∑
t=1

m̂2
t,i√
tv̂t,i

+
1

(1− β1)2

T∑
k=1

T ((1− β1)β
T−k
1 sk,i)

2√
T (1− β2)β

T−k
2 g2k,i

=

T−1∑
t=1

m̂2
t,i√
tv̂t,i

+
T√

T (1− β2)

T∑
k=1

(βT−k
1 sk,i)

2√
βT−k
2 g2k,i

=

T−1∑
t=1

m̂2
t,i√
tv̂t,i

+
T√

T (1− β2)

T∑
k=1

(
β2
1√
β2

)T−k
s2k,i
gk,i

=

T−1∑
t=1

m̂2
t,i√
tv̂t,i

+
T√

T (1− β2)

T∑
k=1

ηT−k

(
sk,i√
gk,i

)2

≤
T−1∑
t=1

m̂2
t,i√
tv̂t,i

+
T√

T (1− β2)

T∑
k=1

ηT−k

(
max(1, ek

||gk||2 )gk,i√
gk,i

)2



By considering the bound of ek and ||gk||2, we can rewrite
the above relation as,

T∑
t =1

m̂2
t,i√
tv̂t,i

≤
T−1∑
t=1

m̂2
t,i√
tv̂t,i

+
T√

T (1− β2)

T∑
k=1

ηT−kG
2
∞

G2
||gk,i||2

Similarly, after considering the upper bound of the rest of
the terms in the summation, we can get as follows,

T∑
t =1

m̂2
t,i√
tv̂t,i

≤ G2
∞

G2
√
(1− β2)

T∑
t=1

||gt,i||2√
t

T−t∑
j=0

tηj

≤ G2
∞

G2
√
(1− β2)

T∑
t=1

||gt,i||2√
t

T∑
j=0

tηj

We can obtain
∑

t tη
t < 1

(1−η)2 for η < 1 using the upper
bound on the arithmetic-geometric series. Hence,

T∑
t =1

m̂2
t,i√
tv̂t,i

≤ G2
∞

G2(1− η)2
√
1− β2

T∑
t=1

||gk,i||2√
t

By applying Lemma 10.3 of [1], we can get,

T∑
t =1

m̂2
t,i√
tv̂t,i

≤ 2G3
∞

G2(1− η)2
√
1− β2

||g1:T,i||2

Theorem 1. Let the bounded gradients for function ft (i.e.,
||gt,θ||2≤ G and ||gt,θ||∞≤ G∞) for all θ ∈ Rd. Also
assume that AdamNorm produces the bounded distance be-
tween any θt (i.e., ||θn−θm||2≤ D and ||θn−θm||∞≤ D∞

for any m,n ∈ {1, ..., T}). Let η ≜ β2
1√
β2

, β1, β2 ∈ [0, 1)

satisfy β2
1√
β2

< 1, αt =
α√
t
, and β1,t = β1λ

t−1, λ ∈ (0, 1)

with λ is typically close to 1, e.g., 1 − 10−8. For all
T ≥ 1, the proposed AdamNorm optimizer shows the fol-
lowing guarantee:

R(T ) ≤ D2

2α(1− β1)

d∑
i=1

√
T v̂T,i

+
α(1 + β1)G

3
∞

(1− β1)
√
1− β2(1− η)2G2

d∑
i=1

||g1:T,i||2

+

d∑
i=1

D2
∞G∞

√
1− β2

2α(1− β1)(1− λ)2

Proof. Using Lemma 10.2 of Adam [1], we can write as

ft(θt)− ft(θ
∗) ≤ gTt (θt − θ∗) =

d∑
i=1

gt,i(θt,i − θ∗,i)

We can write following from the AdamNorm update rule,
ignoring ϵ,

θt+1 = θt −
αtm̂t√

v̂t

= θt −
αt

(1− βt
1)

(β1,t√
v̂t
mt−1 +

(1− β1,t)√
v̂t

gt

)
where β1,t is the 1st order moment coefficient at tth iter-
ation and βt

1 is the tth power of initial 1st order moment
coefficient.
For ith dimension of parameter vector θt ∈ Rd, we can
write

(θt+1,i − θ∗,i)
2 = (θt,i − θ∗,i)

2 − 2αt

1− βt
1

( β1,t√
v̂t,i

mt−1,i

+
(1− β1,t)√

v̂t,i
gt,i

)
(θt,i−θ∗,i)+α2

t (
m̂t,i

v̂t,i
)2

The above equation can be reordered as

gt,i(θt,i − θ∗,i) =
(1− βt

1)
√
v̂t,i

2αt(1− β1,t)

(
(θt,i − θ∗,i)

2

− (θt+1,i − θ∗,i)
2
)

+
β1,t

1− β1,t
(θ∗,i − θt,i)mt−1,i

+
αt(1− βt

1)

2(1− β1,t)

(m̂t,i)
2√

v̂t,i
.

Further, it can be written as

gt,i(θt,i − θ∗,i)

=
(1− βt

1)
√
v̂t,i

2αt(1− β1,t)

(
(θt,i − θ∗,i)

2 − (θt+1,i − θ∗,i)
2
)

+

√
β1,t

αt−1(1− β1,t)
(θ∗,i − θt,i)2

√
v̂t−1,i

√
β1,tαt−1(mt−1,i)2

(1− β1,t)
√
v̂t−1,i

+
αt(1− βt

1)

2(1− β1,t)

(m̂t,i)
2√

v̂t,i

Based on Young’s inequality, ab ≤ a2/2 + b2/2 and fact
that β1,t ≤ β1, the above equation can be reordered as

gt,i(θt,i − θ∗,i) ≤
1

2αt(1− β1)

(
(θt,i − θ∗,i)

2

− (θt+1,i − θ∗,i)
2
)√

v̂t,i

+
β1,t

2αt−1(1− β1,t)
(θ∗,i − θt,i)

2
√
v̂t−1,i

+
β1αt−1(mt−1,i)

2

2(1− β1)
√

v̂t−1,i

+
αt

2(1− β1)

(m̂t,i)
2√

v̂t,i



We use the Lemma 1 and derive the regret bound by aggre-
gating it across all the dimensions for i ∈ {1, . . . , d} and all
the sequence of convex functions for t ∈ {1, . . . , T} in the
upper bound of ft(θt)− ft(θ

∗) as

R(T )

≤
d∑

i=1

1

2α1(1− β1)
(θ1,i − θ∗,i)

2
√
v̂1,i

+

d∑
i=1

T∑
t=2

1

2(1− β1)
(θt,i − θ∗,i)

2(

√
v̂t,i

αt
−
√
v̂t−1,i

αt−1
)

+
β1αG

3
∞

(1− β1)
√
1− β2(1− η)2G2

d∑
i=1

||g1:T,i||2

+
αG3

∞
(1− β1)

√
1− β2(1− η)2G2

d∑
i=1

||g1:T,i||2

+

d∑
i=1

T∑
t=1

β1,t

2αt(1− β1,t)
(θ∗,i − θt,i)

2
√

v̂t,i

By utilizing the assumptions that α = αt

√
t, ||θt − θ∗||2≤

D and ||θm − θn||∞≤ D∞, we can write as

R(T ) ≤ D2

2α(1− β1)

d∑
i=1

√
T v̂T,i

+
α(1 + β1)G

3
∞

(1− β1)
√
1− β2(1− η)2G2

d∑
i=1

||g1:T,i||2

+
D2

∞
2α

d∑
i=1

t∑
t=1

β1,t

(1− β1,t)

√
tv̂t,i

≤ D2

2α(1− β1)

d∑
i=1

√
T v̂T,i

+
α(1 + β1)G

3
∞

(1− β1)
√
1− β2(1− η)2G2

d∑
i=1

||g1:T,i||2

+
D2

∞G∞
√
1− β2

2α

d∑
i=1

t∑
t=1

β1,t

(1− β1,t)

√
t

It is shown in Adam [1] that
∑t

t=1
β1,t

(1−β1,t)

√
t ≤

1
(1−β1)(1−η)2 . Thus, the regret bound can be written as

R(T ) ≤ D2

2α(1− β1)

d∑
i=1

√
T v̂T,i

+
α(1 + β1)G

3
∞

(1− β1)
√
1− β2(1− η)2G2

d∑
i=1

||g1:T,i||2

+

d∑
i=1

D2
∞G∞

√
1− β2

2α(1− β1)(1− λ)2
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