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Supplementary
A. Algorithms

This section provides the Algorithms for different
optimization techniques, including diffGrad (Algorithm
1), diffGradInject (Algorithm 2), Radam (Algorithm 3),
Radamlnject (Algorithm 4), AdaBelief (Algorithm 5) and
AdaBeliefInject (Algorithm 6).

Algorithm 1: diffGrad Optimizer
Initialize: 6y, my < 0,v9 < 0,t < 0
Hyperparameters: «, 51, 52
While 6; not converged

t—t+1
gt < Vo fe(0—1)
& — 1/(1 + e l9e=9e-1l)
my < fimy_y + (1 — B1)g:
vy Bove—1 + (1 — B2)g7?
Bias Correction
M /(1= B1), B v, /(1 — 35)
Update
0, < 6,1 — aymy /(VU; + €)

B. Convergence Proof

Lemma 1. Let i 2 \Z% For (1, B2 € [0,1) that satisfy
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fé? < 1 and bounded g, ||gt]|2< [loo< Goo, €1 <
Goo, H;ﬁ < %”, the following inequality holds,
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Proof. Under the assumption, - ;ﬁf < (1_}31)2.

use the update rules of AdamNorm and expand the last term

We can

Algorithm 2: diffGradNorm
AdaNorm) Optimizer

(diffGrad  +

Initialize: 0y, mg < 0,vg < 0,eq9 < 0,t < 0
Hyperparameters: «, 51, 82,7
While 6; not converged
t—t+1
gt < Vo fi(6i-1)
&« 1/(1+ e_lgt_gt—ll)
Inorm — LaNorm(g:)
et ="yet—1 + (1 - ’y)gno’r'm
St =gt
If ey > Inorm
St = (et/gnorm)gt
my < Simy_1 + (1 - P1)s;
v Boviy + (1 — B2)g7
Bias Correction
i my/(1— BL), 6 vy /(1— 55)
Update
0, < 0,_1 — aymy /(VU; + €)

in the summation,
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Algorithm 3: Radam Optimizer

Algorithm 5: AdaBelief Optimizer

Initialize: 0y, mg <+ 0,vg <+ 0,t < 0
Hyperparameters: «, 31, 52
While 6, not converged

t—t+1

gt < Vo fi(0i—1)

my < Bimy_1 + (1 — P1)g:

vy < Bovy_1 + (1 — Ba)g?

poc = 2/(1 = B3) — 1

pr = poo — 2085/ (1 — B)

If Pt Z 5
pu=(pt —4)(pt — 2)poo
pa = (Poc —4) (P — 2)pt

p =/ (1—B2)pu/pa
a1 = pa/(1—ff)

Update
Bt — 0t,1 — almt/(\/E+ 6)
Else
ay = a/(1-p])
Update

0,5 < 0t—1 — QM

Algorithm 4: RadamNorm (i.e., Radam +

AdaNorm) Optimizer

Initialize: 6y, mg < 0,vg < 0,e9 < 0,t < 0
Hyperparameters: «, 51, 82,7
While 6; not converged
t—t+1
gt < Vo fi(0;-1)
Inorm — LaNorm(g;)
="ve—1 + (1 - V)Qnorm
St = gt
If ey > 9norm
St = (et/gnmvn)gt
my «— Bimy_1 + (1 — B1)s;
vy + Bovi_1 + (1 — B2)g?
Poo <—2/(1 —62) —1
Pt = poo — 2tB5 /(1 — B3)
Ifp, >5
pu = (pt —4)(pt — 2)pos
pa = (pos = 4)(poo = 2)p
p=+/(1—B2)pu/pa
ar = pa/(1—Bi)

Update
Gt < 015_1 — Oélmt/(\/’th+ 6)
Else
az = a/(1 = f)
Update

0, < 0: 1 — aamy

Initialize: 0y, mg <+ 0,vg <+ 0,t < 0
Hyperparameters: «, 51, 52
While 6, not converged

t+—t+1

gi < Vaft(etq)

my < fimy_1 + (1 — 51)g:

vy Bovi—1 + (1 — B2)(ge — my)?

Bias Correction
/(1 - B1). B /(1 - 55)

Update
0+ 6,1 — amy/ (VO +¢)

Algorithm 6: AdaBeliefNorm (AdaBelief +
AdaNorm) Optimizer

Initialize: 90, my < 0, vg +— 0,e0 0,0
Hyperparameters: «, 51, 82,y
While 6; not converged

t—t+1
gt < Vo fi(0:-1)
Inorm — LaNorm(gy)
et ="ve—1+ (1 - ’V)gnorm
St = gt
If €t > Gnorm
St = (et/gno’r'm)gt
my < fimy_1 + (1 — B1)s,
v < Bove—1 + (1 — B2)(g: — mt)2
Bias Correction
my < my /(1= B7), 0y + vy /(1 — B5)
Update
0, <01 — CXT/TE/(\/’EJF €)

Further, we can simplify as,
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By considering the bound of ey, and ||g||2, we can rewrite
the above relation as,
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Similarly, after considering the upper bound of the rest of
the terms in the summation, we can get as follows,
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We can obtain ), tn' < (1 mE for n < 1 using the upper
bound on the arithmetic-geometric series. Hence,
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By applying Lemma 10.3 of [1], we can get,
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Theorem 1. Let the bounded gradients for function f; (i.e.,

llgt.0l|2< G and ||gi0||co< Goo) for all 0 € R Also

assume that AdamNorm produces the bounded distance be-

tween any 0, (i.e., |10, — 0 ||2< D and ||0,, — 0|00 < Do
2

for any m,n € {1,..,T}). Letn = 6—1 B1, 82 € [0,1)
:\[,andﬁlt—/é’l)\tl)\e(o 1)
with X\ is typically close to 1, e.g., 1 — 1078, For all

T > 1, the proposed AdamNorm optimizer shows the fol-
lowing guarantee:
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Proof. Using Lemma 10.2 of Adam [1], we can write as

fe(0:) = [o(67) < g/ (6: — thz (0ri —07)

We can write following from the AdamNorm update rule,
ignoring e,
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where (1 ; is the 15 order moment coefficient at t* iter-
ation and B¢ is the " power of initial 1% order moment
coefficient.

For i** dimension of parameter vector 6; € R? we can
write
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The above equation can be reordered as
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Further, it can be written as
gt,i(gt,i - 9*1)
(=B Oni

*\2
C 204(1— By +) <(0m Rl

B, — | Brro—1(my—1,)?
+\/Oét 1(1—ﬁ1t) o 1Z\/ (1= B1,4)/ V-1
o (1= BY) (14)?
2(1 = Bit) /O

Based on Young’s inequality, ab < a?/2 + b?/2 and fact
that 8; ; < (4, the above equation can be reordered as
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We use the Lemma 1 and derive the regret bound by aggre-

gating it across all the dimensions fori € {1,...,d} and all
the sequence of convex functions for ¢ € {1,...,7} in the
upper bound of f;(6;) — f+(0*) as
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By utilizing the assumptions that o = av/%, ||0; — 0% || <
D and |10, — 05|00 < Doo, We can write as
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It is shown in Adam [1] that Zt L 161ﬁit)\[ <

Thus, the regret bound can be written as
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