
Spike-Based Anytime Perception
Supplementary Material

Matthew Dutson, Yin Li, Mohit Gupta
University of Wisconsin–Madison

{dutson,yin.li,mgupta37}@wisc.org

This is the supplement to our main paper. Here we
present some additional results (section A). We also provide
further details on our methods (section B and section C) and
our experiments (section D). For sections, figures, tables,
and equations, we use numbers (e.g., Figure 1) to refer to
the main paper and capital letters (e.g., Figure A) to refer to
this supplement.

A. Additional Results

Simulator Runtimes. Table A compares the runtime per-
formance of SaRNN to two other SNN simulators: SNN-
TB [2] and NEURON [1]. Like SaRNN, SNN-TB has a
TensorFlow backend and is optimized for the NL-IAF neu-
ron model; however, it repeatedly invokes the Python in-
terpreter during simulation. In contrast, SaRNN compiles
the simulation to a static computation graph. NEURON is a
general-purpose simulator that supports a broader range of
neuron models, but it only runs on the CPU. For this reason,
NEURON is much slower than SaRNN or SNN-TB.

We test the three MNIST and CIFAR architectures de-
fined in section D. We use an Intel Core i7-8700K CPU and
GeForce GTX 1080 GPU. The PyNN API used to inter-
face with NEURON does not support weight-sharing con-
volutions, which makes the NEURON convolutional mod-
els hugely inefficient. For this reason, we only report
NEURON results on the dense MNIST model (we expect
the actual runtimes on convolutional models to be at least
1× 104 s).

Generalization To Threshold Metrics. The main paper
shows results on the proposed Pareto metrics, Pl and Pp.
Table E shows that our improvements also generalize to
threshold metrics (time or synaptic events to an accuracy
threshold). We decrease the accuracy thresholds for the “af-
ter” models to account for the slight reduction in ANN ac-
curacy caused by sparsity fine-tuning (Table F). Figure A
show model accuracy as a function of time, with dotted lines
showing the point at which a model crosses its accuracy
threshold. Our optimizations reduce both Pareto latency and
the amount of time required to cross the threshold.

0 5 10 15 20 25 30
0

1

Ac
cu

ra
cy

Dense MNIST

Before
After
Cross Threshold

0 5 10 15 20 25 30
0

1
Ac

cu
ra

cy

Conv MNIST

0 50 100 150 200 250 300
0

1

Ac
cu

ra
cy

CIFAR-10

0 50 100 150 200 250 300
Time

0

1

Ac
cu

ra
cy

CIFAR-100

Figure A: Accuracy Time Series. Accuracy of the MNIST
and CIFAR models as a function of time, before and after
our optimizations. Dotted lines show the point at which a
model crosses the accuracy threshold in Table E.

Sparsity Improvements. Table F and Table G show the
change in ANN sparsity and accuracy after sparsity fine-
tuning. The activation sparsity Sa is the measured fraction
of zero activations on the test dataset. The weight sparsity



Table A: Simulator Runtimes. We simulate 50 time steps over 1000 dataset items.

Simulator Dense MNIST Conv MNIST Conv CIFAR-10

NEURON 261 s – –
SNN-TB 23.7 s 266 s 1047 s
SaRNN (ours) 2.93 s 28.5 s 139 s

Sw is the measured fraction of zero synapses. The com-
bined sparsity Sc is defined as 1 − (1 − Sa)(1 − Sw). We
see that, in general, sparsity fine-tuning sacrifices a small
amount of accuracy for a significant increase in sparsity.

MNIST and CIFAR. Table H shows the data correspond-
ing to Figure 5 in the main paper. Figure B shows example
inferences on CIFAR-10.

B. Input and Output

This section expands on section 3 (Background) from the
main paper.

Input Layer. As part of conversion, we add a spiking in-
put layer to the SNN. During inference, each neuron in this
layer receives a real-valued input equal to the intensity of
one image pixel (in the range 0 to 1). This value is added to
the neuron’s membrane potential on each time step. Input
layer neurons spike according to the standard NL-IAF rules.
As a result, these neurons have an average firing rate equal
to the their pixel intensity.

Output Layer. Most classification ANNs have a final soft-
max layer which is paired with a cross-entropy loss during
training. Because our converted SNNs are used only for
inference, we can discard the softmax and determine the
class prediction simply by finding the maximum value of
the raw output logits. Logits, which may take negative val-
ues, would be truncated to zero by NL-IAF. Therefore, we
disable spiking in the final layer and read the membrane po-
tentials directly.

C. Operation Counting

This section expands on section 6 (SNN Simulation)
from the main paper.

Computing the Pp term in LSNN requires counting the
number of synaptic operations. Counting synaptic opera-
tions is not as straightforward as it may seem. For example,
counting operations in a convolutional layer requires ac-
counting for strides, dilation, and padding. A naive imple-
mentation of operation-counting logic can easily be more
expensive than the inference itself.

We use the following method. Let Si,t be a tensor of
incoming spikes to layer i at time t, let W i be the weight
kernel for layer i, and let fi(Si,t;W i) be a function which

computes the linear component of the layer (i.e., multipli-
cation by synaptic weights before updating the membrane
potential). The number of synaptic operations is∑

fi(Si,t;1), (A)

where 1 is a tensor of ones with the same shape as W i.
Equation A can be computed within the RNN’s update loop,
preventing inefficient calls to the Python interpreter. To ac-
count for weight sparsity, we can replace 1 with a tensor
containing a zero wherever W i is zero and a one wherever
W i is nonzero.

D. Experiment Details
MNIST and CIFAR. Table B, Table C, and Table D show
the architectures of our MNIST and CIFAR models. Each
weighted layer except the last is followed by batch normal-
ization and ReLU. The final layer uses a softmax activation
and has no batch normalization. All weighted layers have
biases, and we fix the γ of all batch normalization to 1.

We train these ANNs using stochastic gradient descent
(SGD) for 50 epochs with a learning rate (LR) of 5× 10−2,
followed by 50 epochs with a LR of 5× 10−3. We apply
an L2 penalty of 10−3 to kernel weights for regularization.
We hold aside 10 000 items from each dataset for validation
and save the model at the epoch with the lowest validation
loss. All models take less than an hour to train on a single
GTX 1080 GPU.

For sparsity fine-tuning, we use activation and weight
sparsity penalties λa = 0.5 and λw = 20 (based on a grid
search over λa ∈ {0.2, 0.5, 1, 2} and λs ∈ {5, 10, 20, 50}).
We fine-tune using SGD for 100 epochs with a LR of
5× 10−3, followed by 100 epochs with a LR of 1× 10−3.
As before, we save at the epoch with the lowest validation
loss. All models take less than two hours to fine-tune on a
single GTX 1080 GPU.

For optimization over LSNN we set λl = 1/Pl(H0) and
λp = 1/Pp(H0), where we define H0 as the scaling set
generated by a heuristic method (e.g., percentile-based nor-
malization). For MNIST models we set λe to 200, and for
CIFAR models we set λe to 50. Our goal is for an x% in-
crease in latency or power to balance against a y% reduc-
tion in accuracy. For example, for the dense MNIST model
a 0.5% reduction in accuracy would be balanced by a 50%
reduction in Pl and Pp.



Table B: Dense MNIST Architecture

Layer Type Output Shape

1 Fully-connected 128
2 Fully-connected 128
3 Fully-connected 10

Table C: Convolutional MNIST Architecture

Layer Type Output Shape

1 Convolution 3× 3 28× 28× 32
2 Convolution 3× 3 28× 28× 32
3 Average pooling 2× 2 14× 14× 32
4 Convolution 3× 3 14× 14× 64
5 Convolution 3× 3 14× 14× 64
6 Average pooling 2× 2 7× 7× 64
7 Fully-connected 128
8 Fully-connected 10

Table D: Convolutional CIFAR Architecture

Layer Type Output Shape

1 Convolution 3× 3 32× 32× 64
2 Convolution 3× 3 32× 32× 64
3 Convolution 3× 3 32× 32× 64
4 Average pooling 2× 2 16× 16× 64
5 Convolution 3× 3 16× 16× 128
6 Convolution 3× 3 16× 16× 128
7 Convolution 3× 3 16× 16× 128
8 Average pooling 2× 2 8× 8× 128
9 Convolution 3× 3 8× 8× 256

10 Convolution 3× 3 8× 8× 256
11 Convolution 3× 3 8× 8× 256
12 Average pooling 2× 2 4× 4× 256
13 Fully-connected 512
14 Fully-connected 10/100

We optimize the MNIST models on a cluster node with
two GTX 1080 GPUs and the CIFAR models on a node with
four GTX 1080 GPUs. The MNIST optimizations take ap-
proximately one week each, and the CIFAR optimizations
take approximately three weeks each.

ImageNet. We train the MobileNet ANN using SGD for 25
epochs with a LR of 1× 10−2, followed by 25 epochs with
a LR of 1× 10−3. Otherwise, the training hyperparameters
are identical to those used in the basic experiments.

During sparsity fine-tuning, we set λa to 2 and λw

to 100 (based on a search over the values (λa, λs) ∈
{(0.1, 5), (0.2, 10), (0.5, 20), (1, 50), (2, 100), (5, 200)}).
We fine-tune for 25 epochs with a LR of 1× 10−3,

followed by 25 epochs with a LR of 1× 10−4. For
optimization over LSNN, we set λe to 50. Otherwise,
both sparsity fine-tuning and optimization over LSNN are
identical to the basic experiments.
SpiNNaker. Our SpiNNaker model uses the dense MNIST
architecture (Table B), with one modification. At the first
layer, the unmodified dense model has a fan-in of 784 : 1.
This fan-in appears to overwhelm the SpiNNaker commu-
nication fabric, so we add a 2 × 2 average pooling before
the first layer. Training, sparsity fine-tuning, and optimiza-
tion over LSNN are otherwise identical to the dense MNIST
model in the basic experiments.

Because of limits on our access to SpiNNaker, the be-
fore/after evaluations (Table 2) only cover 500 of the 10 000
MNIST test-set items. However, we are optimistic that the
improvements we see would generalize to the rest of the
dataset.

References
[1] Nicholas T. Carnevale and Michael L. Hines. The NEURON

Book. Cambridge University Press, Jan. 2006.
[2] Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu,

Michael Pfeiffer, and Shih-Chii Liu. Conversion of
continuous-valued deep networks to efficient event-driven net-
works for image classification. Frontiers in Neuroscience, 11,
2017.



Table E: Generalization to Threshold Metrics. Red values indicate that the threshold was not crossed during the simulation,
so the value shown is an underestimate.

Threshold Time Synaptic Events

Model Before After Before After Before After

Dense MNIST 98% 97.97% 12 3 1.75× 107 4.19× 106

Conv MNIST 99% 98.70% 26 4 1.77× 108 5.15× 106

CIFAR-10 88% 86.29% 1001 68 6.80× 109 1.12× 108

CIFAR-100 62% 61.71% 1001 101 5.89× 109 1.84× 108

Table F: Sparsity-Induced Accuracy Reduction. Model accuracy before and after sparsity fine-tuning.

Model Before After

Dense MNIST 98.36% 98.29%
Conv MNIST 99.55% 99.25%
CIFAR-10 89.39% 87.68%
CIFAR-100 63.68%/85.15% 63.39%/85.32%

Table G: Sparsity Improvements. Model sparsity before and after sparsity fine-tuning.

Activation (Sa) Weight (Sw) Combined (Sc)

Model Before After Before After Before After

Dense MNIST 0.618 0.812 0.152 0.431 0.676 0.893
Conv MNIST 0.535 0.959 0.013 0.839 0.541 0.993
CIFAR-10 0.545 0.781 0.012 0.615 0.550 0.916
CIFAR-100 0.537 0.723 0.012 0.498 0.543 0.861

Table H: MNIST and CIFAR. The effect of our optimizations on accuracy, latency, and power. This data corresponds to
Figure 5 in the main paper.

Peak Accuracy Latency (Pl) Power (Pp)

Model Before After Before After Before After

Dense MNIST 98.32% 98.29% 2.19 0.005 27 3.14× 106 7.34× 104

Conv MNIST 99.43% 99.22% 7.02 0.120 4.31× 107 1.51× 105

CIFAR-10 87.47% 87.04% 65.0 14.6 4.11× 108 1.34× 107

CIFAR-100 59.88% 62.45% 154 28.5 8.68× 108 2.72× 107



Input

Cat

Class Prediction Time Series
Before (Top) and After (Bottom) Optimization

Ship

Ship

Airplane

Frog

Frog

Automobile

Frog

Cat

Automobile

Airplane
Automobile
Bird
Cat
Deer
Dog
Frog
Horse
Ship
Truck

Figure B: Prediction Evolution. This figure shows example inferences on CIFAR-10. After our optimizations, the SNN
converges much more quickly to the correct prediction.


