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1. Implementation Details
1.1. Model Details

Our model mainly consists of two modules: CNN back-
bone and transformer encoder-decoder. We test with Spar-
seConv [6] and PointPillars [7] with SECOND [14] as fea-
ture extraction network. nuScenes dataset: The point cloud
range is set to [—51.2m,51.2m] x [-51.2m,51.2m] x
[—5.0m,3.0m]. We employ SparseConv with voxeliza-
tion resolution set to [0.1m,0.1m,0.2m] and four blocks
of [3, 3, 3, 2] 3D sparse convolutions with [16, 32, 64,
128] dimensions and PointPillars with voxelization res-
olution set to [0.2m,0.2m,8m] and three blocks of [3,
5, 5] convolutional layers with [64, 128, 256] dimen-
sions. KITTI dataset: The point cloud range is set
to [0.0m,71.4m] x [—40.0m,40.0m] x [—3.0m, 1.0m)].
We employ SparseConv with voxelization resolution set
to [0.05m,0.05m,0.1m] and four blocks of [1, 3, 3, 3]
3D sparse convolutions with [16, 32, 64, 64] dimen-
sions and PointPillars with voxelization resolution set to
[0.16m, 0.16m, 4.0m] and three blocks of [3, 5, 5] convolu-
tional layers with [64, 128, 256] dimensions. We use FPN
[8] to transform the features and obtain four multi-scale lo-
cal LiDAR feature maps with 256 channel dimension. For
the transformer encoder, we use L.,. = 2 encoder layers
with multi-scale deformable self-attention [17] with [256,
256] dimensions, 8 heads, 4 levels and 4 sampling points
for each query and in each head. For the decoder, we use
Lgec = 6 decoder layers with hidden dimension 256 and
900 object queries.

1.2. Training Details

We implement our model in PyTorch [10] based on open-
sourced MMDetection3D [3]. We train Li3DeTr network
with AdamW optimizer with initial learning rate of 2x 104
and weight decay of 1072, Cosine Annealing is set as learn-
ing rate scheduler with 2K warm up iterations and with min-
imum learning rate of 2 x 10~%. The backbone is initialized
with pretrained network [13, 14] on the same dataset. The

model is trained for 30 epochs on two RTX 3090 GPUs with
a batch size of 4. During test time, we take the top 300 pre-
dictions with highest category score as final predictions and
we do not use any NMS.

2. More Quantitative Results

The performance of our Li3DeTr network compared
with other state-of-the-art approaches on the nuScenes val
dataset in terms of mAP and NDS is shown in Table 1. Our
network outperforms all the methods in terms of mAP and
stands second in terms of NDS on nuScenes val set. Al-
though VISTA [4] uses NMS to remove redundant boxes,
our method achieves improved performance in 3D object
detection without NMS. Moreover VISTA is a plug and play
module, but our approach is a standalone network for 3D
object detection. Our network surpassed the state-of-the-art
transformer based NMS-free network Object-DGCNN [13]
by 2.8 % mAP and 1.6 % NDS.

Table 1: Comparison of recent works in terms of mAP and
NDS on the nuScenes [1] val set. The scores in underline
represent second position in the corresponding metrics.

Method | NDST mAPT NMS
CenterPoint [15] 64.8 56.4 v
HotSpotNet [2] 66.0 59.5 v
VISTA-OHS [4] 68.1 60.8 v

Object-DGCNN (voxel) [13] 66.0 58.6 X
Ours (voxel) 67.6 61.4 X

The performance of our network compared with state-of-
the-art approaches on the KITTTI [5] val dataset for pedes-
trian and cyclist categories is shown in Table 2. The re-
sults of our approach on the car category shows competi-
tive performance with state-of-the-art approaches as shown
in Table 2 (in main paper). However, our method could
not achieve state-of-the-art performance on pedestrian and
cyclist categories. The number of object samples in the



Table 2: Comparison of recent works in terms of AP;p and APggy detection on KITTI [5] val set. We list results for
pedestrian and cyclist category for easy, moderate and hard samples with IoU=0.5. The scores in underline represent second
rank in the corresponding metric.

Cyclist Pedestrian
AP3p APBEpv AP3p APBpv
Method Easy Mod. Hard | Easy Mod. Hard || Easy Mod. Hard | Easy Mod. Hard || NMS
F-PointNet [11] 77.1 564 533 | 81.8 60.0 56.3 70.0 61.3 535 | 723 663 59.5 v
VoxelNet [16] 67.1 476 451 | 744 521 50.4 578 534 488 | 659 61.0 56.9 v
PVCNN [9] 814 599 56.2 - - - 732  64.7 56.7 - - - v
Complex-YOLO [12] 68.1 58.3 543 | 723 633 602 41.7 397 359 | 46.0 459 442 v
PointPillars [7] 80.0 62.6 59.5 - - - 577 522 479 - - - v
SECOND [14] 80.5 67.1 63.1 - - - 56.5 529 477 - - - v
Ours 770 60.0 580 | 80.5 64.0 60.3 51.1 44.1 40.0 | 56.5 50.0 452 X

Table 3: Performance of our network in terms of Average Precision (AP) by object category on the nuScenes fest set. CV
- Construction Vehicle, Motor - Motorcycle, Ped - Pedestrian, TC - Traffic Cone. *: MMDetection3D [3] implementation.
indicate the increase in performance with respect to scores in underline.

The scores in

Method ‘ Car Truck  Trailer Bus CV Bicycle Motor Ped TC Barrier ‘ mAP
CenterPoint [15] * | 84.6 51.0 53.2 60.2 17.5 28.7 53.7 834 76.7 709 58.0
VISTA [4] 84.4 55.1 54.2 63.7 25.1 454 70.0 828 785 714 63.0
Obj-DGCNN [13] | 84.0 48.5 54.0 57.5 25.2 32.2 64.5 81.7 738 65.6 58.7
Ours 85.6 50.0 56.5 60.3 30.3 38.3 65.9 83.0 755 68.0 61.3

training split of KITTI [5] dataset for car category is 83%,
whereas for pedestrian and cyclist categories is 13% and
4% respectively. Due to very less number of object samples
during training, our transformer network could not achieve
competitive results on pedestrian and cyclist categories. In
addition to this, as described in § 4.2.3 (in main paper), due
to quantization of point clouds and downsampling of fea-
ture maps, our network finds it difficult to detect small size
objects.

3. More Analysis and Ablation Studies
3.1. More Analysis on Object Category

The performance of our network in terms of Average
Precision (AP) for each object category compared to other
state-of-the-art networks on the nuScenes [1] fest dataset
is shown in Table 3. Similar to results on nuScenes val
dataset, the global voxel features by multi-scale deformable
attention [17] and our novel cross-attention block signifi-
cantly improves the AP of large size objects like trailer, bus,
construction vehicle compared with Object-DGCNN [13].
However, the performance on smaller objects like pedes-
trian and barrier is worse due to quantization of point cloud
and downsampling of feature maps in the backbone to in-
crease the receptive filed which results in information loss.

3.2. More Analysis on Inference Time

The inference speed of our approach is compared with
other state-of-the-art methods as shown in Table 4. Our
approach not only achieves improvement in performance
but also is faster than CenterPoint [15] and Object-DGCNN
[13].

Table 4: Comparison of inference speed measured on a
NVIDIA RTX 3090 GPU. *: MMDetection3D [3] imple-
mentation

Method ‘ CenterPoint x* ‘ Object-DGCNN ‘ Ours
FPS | 5.1 | 5.6 | 71

3.3. Ablation on Detection Layers

The performance of our network in terms of mAP, NDS
and other TP metrics on the nuScenes [1] dataset for differ-
ent number of layers in the transformer decoder is shown in
Table 5. The hypothesis that we iteratively refine the object
queries after each decoder layer to significantly improve the
performance of the model is proved to be correct as shown
in Table 5. The performance significantly improves as we
increase the number of decoder layers in the network. How-
ever, the performance of the model does not improve much
after 6 decoder layers, so we fix number of decoder layers



(Ldec) to 6.

Table 5: Performance of our network on the nuScenes val
set by number of decoder layers. Among TP metrics only
mATE, mASE, mAOE are shown.

Layer ‘ NDS1T mAP1T mATE|] mASE| mAOE |

1 63.1 54.5 37.9 27.1 30.1

2 65.7 58.4 342 26.6 29.5

3 67.0 60.6 32.9 26.6 28.7

4 67.4 61.2 32.8 26.5 28.6

5 67.5 61.3 327 26.2 28.5

6 67.6 61.4 32.7 26.1 28.5
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