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1. Detail Settings
In this section, we show the detail settings of our exper-

iments, including the setting of our human character and
training hyperparameters.

Body Structure Figure. 1 illustrates the upper body of the
human character used in our experiments. There are eight
active joints (shown in red) and each joint has different num-
bers of DoFs and rotation axes (shown in the text box next
to each joint). Rotations of all joints are not limited. This
setting allows our system to generalize among all human
subjects. Though this compromises some physical plausibil-
ity when it comes to people with different shapes, it greatly
increases the feasibility and versatility of our application.

Experimental Setup We run all of our experiments on a
machine with one TITAN RTX GPU using CUDA version
10.0. Our system consists of three major components: (1)
dynamic model. We split 80% of our dataset as training
data, 10% for validation, and 10% for testing. For hyper-
parameters, we use Adam as our optimizer with the initial
learning rate 0.001. The learning rate will be decayed by
0.1 after 10 epochs without improvement in the validation
loss; (2) policy model. The weights of the reward terms are
wtask = 0.1, wupright = wctrl = 0.01, walive = 1 for the track-
ing task, as mentioned Section 3.2. For the reaching model,
we set wtask = 1 to encourage our model to better reach
the target point. To stable the training process, we set the
random seed of the environment to 666; (3) pose-to-image
generator. Most settings of our model are the same as [1].
The rendered image size is 256× 256, and the learning rates
of the generator and discriminator are both set as 0.0001.

Testing Algorithm After obtaining the dynamic model,
the policy model and the photorealistic generator, we can

infer the desired video through Algorithm 1. For each step
t, the policy model derives the optimal a(t) according to the
current state s(t) and the goal g. Afterward, our dynamic
model can generate the new state s(t+1) via the output of
the policy model. Note that a state st = (xt,4xt) is a
concatenation of a 2D pose and its offset from the 2D pose
at the previous time step. With the new pose xt+1, the
photorealistic renderer ψ can generate (t+ 1)th image It+1

in the output video.

Figure 1: The body struc-
ture of our model.

Full Body Experiments
In Figure 13 of the paper,
we show an extension of
our method for the full-body
tracking task. The model can
generate results for human
subjects tracking wrist and
ankle target points specified
by the user. The dynamic
model is trained on the full
Human 3.6M dataset [3]
with all joints free except
the root pelvis. Since the
increase in DOF will make
the policy model more likely
to generate unreal poses, we add a reward term rimitate to
encourage the model to minimize the difference between the
generated pose and the ground-truth pose:

rtimitate = −wimitate
(
‖xt+1 − gt+1‖

)
, (1)

where xt and gt are the character pose and the ground-
truth pose at time t respectively. The weights of the reward
terms are wtask = 0.05, rimitate = 0.05, wupright = wctrl =
0.01, walive = 0.5. Other settings of the policy are identi-
cal to those of the upper-body tracking model described in
Section 4.1.
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Methods realism precision

Ground truth 24% 24%
Hao et al. [2] 86% 72%
3D simulation 58% 57%

(a) User assessment on tracking task

Methods realism precision

Ground truth 34% 53%
Hao et al. [2] 91% 88%
3D simulation 62% 65%

(b) User assessment on reaching task

Table 1: The results of the user study. The matrices include the percentage (%) of users that prefer our method over the left method. The
following columns are the user assessment of video realism, and the tracking precision, in terms of how accurately the wrists track the
provided targets. (a) User assessment of tracking videos. (b) User assessment of reaching videos.

Algorithm 1 Controlling 2D poses using trained πθ

. Input: Initial 2D keypoint coordinates x0, dynamics
model φ, policy network π, photorealistic renderer ψ,
user-specified goal g
. Output: image sequence {I1:T }

s0 ← [x0,0]
for t← 0 : T − 1 do

at ∼ π(·|st, g)
if user adds perturbation ã then

at+ = ã
end if
st+1 ← φ(s0,a0:t)
It+1 = ψ(xt+1)

end for

2. More Results
2.1. Human Preference Study

Procedure and interface The user study includes three
types of tasks: tracking, reaching, and recovery from
perturbation. The instructions of the user study are described
as follow:

Task

• We are analyzing various computer (automatically) gen-
erated human videos with physic simulated body and
controllable wrists. And we are trying to understand
which one is better.

• We will show you two videos side by side for compar-
isons of different methods. Please choose which one
looks more realistic and whose wrists fit the target tra-
jectories better. The target trajectories will be shown as
green dots.

• (Optional, only shown for the perturbation recovery
task) We will show you two videos of people tracking
target trajectories with a force to push him from the

(a) tracking

(b) reaching

(c) perturbation recovery

Figure 2: Screenshots for the user study. The buttons will become
opaque once the participants choose them.
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Figure 3: The qualitative comparison with other methods on the tracking task. Our method matches the trajectories better. For each method,
we show the input image and the two input wrist trajectories (green) on the leftmost; and the rest columns show the trajectories of the
synthesized wrist positions (red). Note that [2] is not a pose-based approach, so the wrist position is not trackable. ‡SfV [4] requires the
whole ground truth video as the input for training. See Section 4.2 of the paper for more details.

Ours t = 20 t = 50

No data aug. t = 20 t = 50

Figure 4: Comparison of our dynamic model against the model
without data augmentation. Green keypoints represent the ground
truth; red keypoints are the predicted results. Without augmenta-
tion, body movement forced by 3D torques produces an error that
increases with time.

pelvis. Please choose which video can recover from the
sudden impulse torque better.

• The chosen videos should look more realistic and phys-
ically reasonable!

Rules

• Every page will have two videos at the top and two
questions at the bottom like the ones shown above.

• For each question, you have to choose one of the two
options at the bottom as your answer.

Figure 5: Screenshots for the user interface. User can specify the
reaching point by clicking arbitrary positions on the left picture
(green points). After submitting the task, our application will
automatically generate a video of the human reaching the target
points.

• There will be 15 to 20 (depending on different tasks)
pages, and every page will roughly take you 10-30
seconds to analyze and answer.

• Once you select your preferred video, click the blue
Next button on the bottom right of the page.

• The blue Next button will not be activated for the first
few seconds. Please take the time to check out the video.

• You will be paid ($0.5 to $3.5, depending on different
tasks) in total compensation.

• Please observe the videos carefully as your responses
are critical to us! Thank you!

After the participants read the instructions, they are asked
to answer 15 to 20 questions. Figure 2 shows the screenshots



of the questions for three different tasks. We compare our
method with the baseline methods ( [2] and 3D simulation)
on the three tasks. For tracking and reaching, since it is
possible to have ground truth, we also compare the ground
truth with our method. Each questionnaire takes roughly 5 to
10 minutes to finish, and the participants will approximately
be paid $10 per hour. In total, we spent $120 on participant
compensation for the user study.

2.2. Detailed analysis of different tasks

In Section 4.2.1 of the paper, we present the result of the
user study in Table 1. It is the combined result for tracking
and reaching tasks. This section shows the results of the
user study for different tasks. Table 1(a) gives the preference
matrices for the tracking task, while Table 1(b) reports for
the reaching task. By comparing Table 1(a) and Table 1(a), it
is clear that our method can synthesize more realistic videos
for the reaching tasks. The preference rate of our method
against the ground truth raises from 24% for tracking to 33%
for reaching. Similarly, in terms of precision, our method
performs better on the reaching task than tracking. Table 1(b)
shows that the supporters for our results and the ground truth
are even equally matched for reaching.

2.3. Other Qualitative Comparison

Figure 6 of the paper shows the qualitative comparison
of the perturbation task. Figure 3 shows the qualitative
comparison on a tracking task without perturbation. As
shown in the figure, although the 3D simulation method can
trigger the wrists to move in the same direction as the target
trajectories, 2D-to-3D projection generates inevitable errors
that make the wrists shift. As for SfV [4], the synthesized
motion cannot track as precisely as our method does.

2.4. Ablation on Data Augmentation

Section 3.1 of the paper describes data augmentation
techniques for increasing training data. Figure 4 provides a
qualitative comparison of our dynamic model and the model
without data augmentation. With data augmentation, our
dynamic model performs more accurately.

2.5. Application

To demonstrate the usage of our model, we design an
interface for the users to generate the controllable video on
their own. Figure 5 shows the screenshot of our application.
The users can edit the reaching goal point on the left part
of the interface, and the result will be displayed on the right
part. Also, the users can choose to add a perturbation force
or retarget the result to another human subject by clicking
the buttons under the result. In the future, we will design
a more flexible interface in which users can generate target
tracking points by dragging their mouses and can push any

amount of external force at arbitrary positions of external
force at arbitrary positions.
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