
A. Proofs of Theorems
A.1. Proof of Theorem 1

Proof. From Eq. (7) and Eq. (8), for ∀δ ∈ {δ | δ ∈
X, ∥δ∥∞ ≤ ϵ}, the following holds:∑

c∈C

1

[
∥f(q + δ)− f(ĉ)∥2 < ∥f(q + δ)− f(c)∥2

]
≥

∑
c∈C

1

[
dĉ(q) < dc(q)

]
, (26)

∑
c∈C

1

[
∥f(q + δ)− f(c)∥2 < ∥f(q + δ)− f(ĉ)∥2

]
≥

∑
c∈C

1

[
dc(q) < dĉ(q)

]
(27)

where ĉ = IRf (q, C)j . Since Eq. (26) indicates that the
lower bound of the number of candidate images that are

more dissimilar to q+ δ than ĉ is
∑

c∈C 1

[
dĉ(q) < dc(q)

]
,

we obtain Eq. (9). Since Eq. (27) indicates that the lower
bound of the number of candidate images that are more sim-

ilar to q + δ than ĉ is
∑

c∈C 1

[
dc(q) < dĉ(q)

]
, we obtain

Eq. (10).

A.2. Proof of Theorem 2

Proof. From Eq. (7) and Eq. (8), for C̃ = {IRf (q, C)i +
δi}Ni=1 where ∀δ1, ...,∀δN ∈ {δ | δ ∈ X, ∥δ∥∞ ≤ ϵ}, the
following holds:∑

c+δ∈C̃

1

[
∥f(q)− f(ĉ+ δj)∥2 < ∥f(q)− f(c+ δ)∥2

]

≥
∑
c∈C

1

[
dq(ĉ) < dq(c)

]
, (28)

∑
c+δ∈Ĉ

1

[
∥f(q)− f(c+ δ)∥2 < ∥f(q)− f(ĉ+ δj)∥2

]

≥
∑
c∈C

1

[
dq(c) < dq(ĉ)

]
(29)

where ĉ = IRf (q, C)j . Since Eq. (28) indicates that
the lower bound of the number of perturbed candidate im-
ages in C̃ that are more dissimilar to q than ĉ + δj is∑

c∈Ĉ 1

[
dq(ĉ) < dq(c)

]
, we obtain Eq. (11). Since Eq.

(29) indicates that the lower bound of the number of per-
turbed candidate images in C̃ that are more similar to q than

ĉ+ δj is
∑

c∈Ĉ 1

[
dq(c) < dq(ĉ)

]
, we obtain Eq. (12).

A.3. Proof of Theorem 3

Proof. When Eq. (13) is satisfied,

−α ≤ Rankf (q + δ, IRf (q, C)j , C)− j ≤ α

is satisfied for ∀δ ∈ {δ | δ ∈ X, ∥δ∥∞ ≤ ϵ} from Theorem
1, which is equivalent to Eq. (5).

A.4. Proof of Theorem 4

Proof. When Eq. (14) is satisfied,

−α ≤ Rankf (q, IRf (q, C)j + δj , C̃)− j ≤ α

is satisfied for C̃ = {IRf (q, C)i + δi}Ni=1 where
∀δ1, ...,∀δN∈ {δ | δ ∈ X, ∥δ∥∞ ≤ ϵ} from Theorem 2,
which is equivalent to Eq. (6).

A.5. Proof of Theorem 5

Proof. Since f(x1)i ≤ f(x1+δ)i ≤ f(x1)i holds for ∀δ ∈
{δ | δ ∈ X, ∥δ∥∞ ≤ ϵ} from the definitions of f(x)i and
f(x)i, the following holds:

max
δ∈X,∥δ∥∞≤ϵ

(f(x1 + δ)i − f(x2)i)
2

≤ max
{
|f(x1)i − f(x2)i|, |f(x2)i − f(x1)i|

}2
.

Then, we obtain

max
δ∈X,∥δ∥∞≤ϵ

∥f(x1 + δ)− f(x2)∥2

= max
δ∈X,∥δ∥∞≤ϵ

( ∑
i∈{1,..,d}

(
f(x1 + δ)i − f(x2)i

)2) 1
2

≤ (
∑

i∈{1,..,d}

max{|f(x1)i−f(x2)i|, |f(x2)i−f(x1)i|}2)
1
2 .

A.6. Proof of Theorem 6

Proof. Since f(x1)i ≤ f(x1+δ)i ≤ f(x1)i holds for ∀δ ∈
{δ | δ ∈ X, ∥δ∥∞ ≤ ϵ} from the definitions of f(x)i and
f(x)i, the following holds:

min
δ∈X,∥δ∥∞≤ϵ

(f(x1 + δ)i − f(x2)i)
2

≥ min
{
0, f(x1)i − f(x2)i, f(x2)i − f(x1)i

}2

Then, we obtain

min
δ∈X,∥δ∥∞≤ϵ

∥f(x1 + δ)− f(x2)∥2

= min
δ∈X,∥δ∥∞≤ϵ

( ∑
i∈{1,..,d}

(
f(x1 + δ)i − f(x2)i

)2) 1
2

≥ (
∑

i∈{1,..,d}

min
{
0, f(x1)i−f(x2)i, f(x2)i−f(x1)i

}2
)

1
2 .



B. Comparison Methods

We compare our proposed robustness training Eq. (20)
(TBT) and Eq. (21) (FCTB) with three existing methods:
(i) triplet Loss (Triplet) [6], (ii) anti-collapse triplet (ACT),
which is an adversarial training for CBIR to improve em-
pirical robustness [9], (iii) training for classification using
interval bound propagation (C-IBP) to improve certified ro-
bustness for the classification task [2].

Triplet is one of the loss functions commonly used in
metric learning. Let Dt = {(a, p, n)i}Mi=1 be a training data
set where p belongs to the same class as a, and n belongs to
a different class than a. Then, Triplet trains the feature ex-
traction DNN f by minimizing the following loss function:∑
(a,p,n)∈Dt

max{∥f(a)−f(p)∥2−∥f(a)−f(n)∥2+m, 0},

(30)
where m is a margin parameter.

ACT trains feature extraction DNN f on generated ad-
versarial examples. Let Dt = {(a, p, n)i}Mi=1 be a training
data set. For each triplet (a, p, n) ∈ Dt, ACT generate p +
δp and n+δn so that the distance ∥f(p+δp)−f(n+δn)∥2
is small. Specifically, ACT minimize triplet loss with the
triplet (a, p+ δp, n+ δn) as follows:

∑
(a,p,n)∈Dt

max{∥f(a)− f(p+ δp)∥2

− ∥f(a)− f(n+ δn)∥2 +m, 0}, (31)

where

δp, δn = arg min
δp,δn∈X,

∥δp∥∞≤ϵ,∥δn∥∞≤ϵ

∥f(p+δp)−f(n+δn)∥2 (32)

In our experiments, we minimize Eq. (32) by using PGD
[4] with the step size of ϵ

10 and the number of updates of
20.

C-IBP trains the classifier fc by simultaneously minimiz-
ing the original cross-entropy loss and cross-entropy loss
due to the upper and lower bounds of the logits calculated
by IBP. Let f̂y

c (x) be the upper and lower bounds of the log-
its fc(x) where the logit of true class y is equal to its lower
bound and the other logits are equal to their upper bounds.
Then, C-IBP trains fc(x) by minimizing the following loss
function with training data Dt = {(x, y)i}Mi=1:∑
(x,y)∈Dt

κ · CE(fc(x), y) + (1− κ) · CE(f̂y
c (x), y). (33)

where CE represents Cross-Entropy loss. Note that we use
the classifier trained with IBP without the final layer (logit
layer) as a feature extractor in our experimentation.

Table 3: The model architectures of feature extraction
DNNs in our experiments. Conv-f -k-s-p denotes a con-
volutional layer with a number of filters f of size k × k,
stride size is s, and padding size is p. Linear-d denotes a
linear layer whose output dimension is d. When training
C-IBP, we add one more linear layer to Small and Large to
compute the logits. Note that there is a ReLU between each
layer.

Small Large

Conv-16-4-2-1 Conv-64-3-1-1
Conv-32-4-1-1 Conv-64-3-1-1

Linear-128 Conv-128-3-2-1
Conv-128-3-1-1
Conv-128-3-1-1

Linear-128

C. Experimental Settings for MNIST, FM-
NIST, and CIFAR10

C.1. Architectures

In our experiments for MNIST, FMNIST, and CIFAR10,
we train the feature extractor f of embedding dimension-
ality 128 in two different model architectures, as shown in
the Table 3. We refer to each model as Small (3-layer CNN)
and Large (6-layer CNN), respectively.

C.2. Hyperparameters

The total number of training epochs is 100 for MNIST
and FMNIST and 200 for CIFAR10. We use the Adam op-
timizer [3] with a batch size of 100 and an initial learning
rate of 0.001. We decay the learning rate by times 0.1 at
25 and 42 epochs for MNIST and FMNIST and times 0.5
every 10 epochs between 130 and 200 epochs for CIFAR10.
The margin of triplet loss is set to m = 1.0. As data aug-
mentation, we use random crop and random horizontal flip
when training f on CIFAR10.

When training with TBT, to stabilize training, we use
scheduling strategy for ϵ and κ proposed in [2]. Specifically,
ϵ is gradually increased from 0.0 to ϵe, and the κ is gradually
decreased from 1.0 to κe. We use ϵe = 0.2 for MNIST and
FMNIST, and ϵe = 2

255 for CIFAR10, respectively. We use
κe = 0.5 for Table 1, Table 2, Table 4, Table 5, Table 6,
and Table 7. Then, we linearly increase ϵ and decrease κ
between 2K and 10K steps. The results of other κe are
shown in Appendix G.

When training with FCTB, we fine-tune the pre-trained
feature extractor with TBT. We set fixed ϵ to 0.2 for MNIST
and FMNIST and 2

255 for CIFAR10. We set fixed κ to 0.2
for MNIST and 0.1 for FMNIST and CIFAR10.

When training with ACT, we set the fixed maximum per-
turbation size of the adversarial examples as ϵ = 0.2 for



MNIST and FMNIST and ϵ = 2
255 for CIFAR10. Then we

generate them by using PGD [4] with the step size of ϵ
10 and

the number of updates of 20.
When training with C-IBP, to stabilize training, we also

use scheduling strategy for ϵ and κ proposed in [2]. Specif-
ically, ϵ is gradually increased from 0.0 to ϵe, and the κ is
gradually decreased from 1.0 to κe. We use ϵe = 0.2 for
MNIST and FMNIST, and ϵe = 2

255 for CIFAR10, respec-
tively. We use κe = 0.5 for Table 1, Table 2, Table 4, Table
5, Table 6, and Table 7. Then, we linearly increase ϵ and de-
crease κ between 2K and 10K steps. The results of other
κe are shown in Appendix G.

D. Experimental Settings for CUB-200-2011

D.1. Dataset

CUB-200-2011 is a bird species dataset consisting of
200 classes [8]. We use the first 100 classes as training data
and the remaining 100 classes as test data. We train feature
extractors f on the training set and evaluate f using the test
set. Let Q = {(qi, yqi)}

|Q|
i=1 and C = {(ci, yci) ∈ X}|C|

i=1

be the annotated set of query and candidate images, respec-
tively. We randomly select Q and C without duplication
from the test set so that |Q| = 1000 and |C| = 1000. We
resize images to 224 × 224. Pixel values of images are in
[0, 1].

D.2. Architectures

To train feature extractor f for CUB-200-2011, we use
VGG11 architecture [7] pre-trained on ImageNet [1] with
three linear layers replaced by a single linear layer. We ob-
tain the pre-trained model from torchvision library in Py-
Torch [5]. The feature dimension of f is 128.

D.3. Hyperparameters of TBT and C-IBP

The total number of training epochs is 200. We use
the Adam optimizer [3] with a batch size of 100 and
an initial learning rate of 0.00001. We decay the learn-
ing rate by times 0.5 every 10 epochs between 130 and
200 epochs. The margin of triplet loss is set to m =
1.0. As data augmentation, we use random crop and
random horizontal flip. We normalize each image chan-
nel with mean [0.485, 0.456, 0.406] and standard deviation
[0.229, 0.224, 0.225].

When training with TBT, to stabilize training, we use
scheduling strategy for ϵ and κ proposed in [2]. Specifically,
ϵ is gradually increased from 0.0 to ϵe, and the κ is gradually
decreased from 1.0 to κe. We use ϵe = 1

255 . We use κe =
0.5. Then, we linearly increase ϵ and decrease κ between
2K and 10K steps.

When training with C-IBP, to stabilize training, we also
use same scheduling strategy as TBT training. We use ϵe =

1
255 for CIFAR10. We use κe = 0.5. Then, we linearly
increase ϵ and decrease κ between 2K and 10K steps.

E. Experimental Results for Large Models
with Perturbation Size ϵ = 0.1 and ϵ = 3

255

Table 4 shows the results for Large with perturbation size
ϵ = 0.1 for MNIST and FMNIST and ϵ = 3

255 for CI-
FAR10. From Table 4, we can see similar results for pertur-
bation sizes ϵ = 0.2 and ϵ = 2

255 .

F. Experimental Results for Small Models
Table 5, Table 6 and Table 7 show the results of Re-

call@K, ER-Recall@K, and CR-Recall@K for Small. Ta-
ble 6 represents results when we use ϵ = 0.2 for MNIST
and FMNIST and ϵ = 2

255 for CIFAR10. Table 7 represents
results when we use ϵ = 0.1 for MNIST and FMNIST and
ϵ = 3

255 for CIFAR10. Note that we use the same hyperpa-
rameters as Large for training Small. From Table 5, Table 6
and Table 7, We can see similar results to results of Large.

G. Effect of hyper parameter κ

TBT and C-IBP can control trade-off between accuracy
and certified robustness by changing κ ∈ [0, 1.0] in Eq.
(20) and Eq. (33). Here, we validate the trade-off when
only κend is changed and the other hyperparameters are
fixed. Figure 1 and Figure 2 show Recall@20 and CR-
Recall@20 of TBT and C-IBP for Large and Small when
we use ϵ = 0.2 (MNIST and FMNIST) and ϵ = 2

255 (CI-
FAR10) and change κend ∈ {0.0, 0.3, 0.5, 0.7}. Note that
we omit the results of TBT when its training collapse, which
means trained feature extraction models return the same val-
ues for any test data. From Figure 1 and Figure 2, we can
confirm that for smaller κend, TBT reduces Recall more
than C-IBP, but TBT can significantly improve CR-Recall
than C-IBP. These results also suggest that TBT is more
successful than C-IBP in tightening Eq. (17) and Eq. (18).
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Table 4: Comparison of empirical robust (ER) Recall@K and certified robust (CR) Recall@K (Large). QA and CA represents
query attack and candidate attack, respectively. For calculating ER-Recall@K and CR-Recall@K, we use ϵ = 0.1 (MNIST
and FMNIST) and ϵ = 3

255 (CIFAR10). Each value is rounded off to two decimal places.
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Triplet 0.00 0.12 0.19 0.27 0.00 0.00 0.00 0.00 0.25 0.60 0.71 0.81 0.00 0.00 0.00 0.00
ACT 0.99 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.99 1.00 1.00 1.00 0.00 0.00 0.00 0.00

MNIST C-IBP 0.97 0.99 1.00 1.00 0.00 0.04 0.11 0.29 0.96 0.99 0.99 1.00 0.00 0.01 0.06 0.29
TBT 0.94 0.98 0.98 0.99 0.15 0.66 0.80 0.89 0.94 0.98 0.99 0.99 0.12 0.92 0.98 0.98

TBT+FCTB 0.93 0.98 0.98 0.99 0.16 0.66 0.78 0.89 0.93 0.98 0.98 0.99 0.12 0.92 0.97 0.98

Triplet 0.00 0.11 0.17 0.22 0.00 0.00 0.00 0.00 0.03 0.09 0.11 0.17 0.00 0.00 0.00 0.00
ACT 0.80 0.97 0.98 0.99 0.00 0.00 0.00 0.00 0.72 0.96 0.98 0.99 0.00 0.00 0.00 0.00

FMNIST C-IBP 0.72 0.97 0.98 0.99 0.01 0.16 0.28 0.42 0.71 0.96 0.98 0.99 0.00 0.06 0.20 0.49
TBT 0.61 0.93 0.97 0.98 0.11 0.44 0.59 0.71 0.59 0.93 0.97 0.98 0.01 0.49 0.76 0.94

TBT+FCTB 0.63 0.93 0.97 0.99 0.11 0.47 0.59 0.70 0.61 0.93 0.96 0.98 0.02 0.47 0.80 0.94

Triplet 0.07 0.56 0.69 0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.17 0.00 0.00 0.00 0.00
ACT 0.36 0.81 0.90 0.95 0.00 0.00 0.00 0.00 0.07 0.45 0.68 0.91 0.00 0.00 0.00 0.00

CIFAR10 C-IBP 0.40 0.87 0.94 0.98 0.00 0.01 0.02 0.06 0.32 0.83 0.93 0.98 0.00 0.01 0.01 0.06
TBT 0.19 0.78 0.91 0.96 0.01 0.12 0.20 0.33 0.14 0.77 0.92 0.96 0.00 0.09 0.21 0.38

TBT+FCTB 0.20 0.82 0.93 0.97 0.01 0.12 0.22 0.36 0.15 0.78 0.92 0.97 0.00 0.11 0.25 0.48

Table 5: Comparison of Recall@K (Small). Each value is rounded off to two decimal places.
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Table 6: Comparison of empirical robust (ER) Recall@K and certified robust (CR) Recall@K (Small). QA and CA represents
query attack and candidate attack, respectively. For calculating ER-Recall@K and CR-Recall@K, we use ϵ = 0.2 (MNIST
and FMNIST) and ϵ = 2

255 (CIFAR10). Each value is rounded off to two decimal places.

ER-Recall@K (QA) CR-Recall@K (QA) ER-Recall@K (CA) CR-Recall@K (CA)
K 1 10 20 40 1 10 20 40 1 10 20 40 1 10 20 40

Triplet 0.00 0.09 0.14 0.23 0.00 0.00 0.00 0.00 0.06 0.13 0.19 0.33 0.00 0.00 0.00 0.00
ACT 0.95 0.99 1.00 1.00 0.00 0.00 0.00 0.00 0.94 0.99 1.00 1.00 0.00 0.00 0.00 0.00

MNIST C-IBP 0.91 0.98 0.99 1.00 0.00 0.00 0.00 0.01 0.87 0.98 0.99 1.00 0.00 0.00 0.00 0.00
TBT 0.85 0.97 0.98 0.99 0.01 0.19 0.35 0.56 0.86 0.96 0.97 0.99 0.00 0.15 0.41 0.77

TBT+FCTB 0.83 0.96 0.98 0.99 0.01 0.21 0.35 0.57 0.84 0.96 0.97 0.99 0.00 0.16 0.45 0.81

Triplet 0.00 0.11 0.17 0.24 0.00 0.00 0.00 0.00 0.02 0.05 0.06 0.09 0.00 0.00 0.00 0.00
ACT 0.78 0.95 0.97 0.99 0.00 0.00 0.00 0.00 0.42 0.84 0.93 0.97 0.00 0.00 0.00 0.00

FMNIST C-IBP 0.71 0.96 0.97 0.99 0.00 0.02 0.05 0.14 0.62 0.94 0.97 0.99 0.00 0.00 0.01 0.03
TBT 0.57 0.91 0.95 0.98 0.04 0.19 0.27 0.37 0.54 0.91 0.94 0.98 0.00 0.08 0.23 0.51

TBT+FCTB 0.57 0.92 0.95 0.98 0.04 0.18 0.26 0.36 0.56 0.91 0.94 0.97 0.00 0.08 0.25 0.57

Triplet 0.26 0.80 0.90 0.95 0.00 0.00 0.00 0.00 0.02 0.27 0.54 0.83 0.00 0.00 0.00 0.00
ACT 0.41 0.86 0.93 0.97 0.00 0.00 0.00 0.00 0.13 0.66 0.85 0.95 0.00 0.00 0.00 0.00

CIFAR10 C-IBP 0.38 0.87 0.95 0.98 0.00 0.04 0.08 0.18 0.34 0.85 0.94 0.98 0.00 0.03 0.08 0.18
TBT 0.24 0.79 0.91 0.97 0.04 0.34 0.52 0.71 0.22 0.76 0.89 0.97 0.02 0.34 0.58 0.82

TBT+FCTB 0.22 0.77 0.90 0.98 0.04 0.32 0.51 0.74 0.23 0.74 0.90 0.97 0.03 0.36 0.60 0.84

Table 7: Comparison of empirical robust (ER) Recall@K and certified robust (CR) Recall@K (Small). QA and CA represents
query attack and candidate attack, respectively. For calculating ER-Recall@K and CR-Recall@K, we use ϵ = 0.1 (MNIST
and FMNIST) and ϵ = 3

255 (CIFAR10). Each value is rounded off to two decimal places.

ER-Recall@K (QA) CR-Recall@K (QA) ER-Recall@K (CA) CR-Recall@K (CA)
K 1 10 20 40 1 10 20 40 1 10 20 40 1 10 20 40

Triplet 0.09 0.44 0.60 0.71 0.00 0.00 0.00 0.00 0.31 0.73 0.82 0.91 0.00 0.00 0.00 0.00
ACT 0.98 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.98 1.00 1.00 1.00 0.00 0.00 0.00 0.00

MNIST C-IBP 0.93 0.99 0.99 1.00 0.00 0.01 0.04 0.15 0.91 0.99 0.99 1.00 0.00 0.00 0.03 0.13
TBT 0.87 0.97 0.98 0.99 0.09 0.58 0.75 0.89 0.87 0.96 0.97 0.99 0.04 0.71 0.91 0.96

TBT+FCTB 0.86 0.96 0.98 0.99 0.08 0.58 0.75 0.88 0.85 0.96 0.97 0.99 0.05 0.73 0.91 0.96

Triplet 0.00 0.14 0.21 0.31 0.00 0.00 0.00 0.00 0.02 0.05 0.08 0.16 0.00 0.00 0.00 0.00
ACT 0.78 0.95 0.97 0.99 0.00 0.00 0.00 0.00 0.66 0.94 0.96 0.98 0.00 0.00 0.00 0.00

FMNIST C-IBP 0.74 0.96 0.98 0.99 0.02 0.19 0.32 0.48 0.69 0.95 0.98 0.99 0.00 0.07 0.23 0.54
TBT 0.59 0.92 0.95 0.98 0.14 0.41 0.49 0.60 0.57 0.91 0.94 0.98 0.04 0.42 0.69 0.89

TBT+FCTB 0.60 0.91 0.95 0.97 0.12 0.40 0.49 0.59 0.58 0.91 0.95 0.97 0.04 0.44 0.69 0.90

Triplet 0.15 0.68 0.83 0.91 0.00 0.00 0.00 0.00 0.00 0.06 0.19 0.49 0.00 0.00 0.00 0.00
ACT 0.33 0.82 0.91 0.95 0.00 0.00 0.00 0.00 0.03 0.37 0.62 0.88 0.00 0.00 0.00 0.00

CIFAR10 C-IBP 0.38 0.87 0.95 0.98 0.00 0.01 0.02 0.05 0.30 0.83 0.93 0.98 0.00 0.01 0.02 0.05
TBT 0.22 0.79 0.90 0.97 0.02 0.21 0.39 0.56 0.21 0.75 0.89 0.97 0.01 0.21 0.40 0.66

TBT+FCTB 0.23 0.76 0.91 0.98 0.02 0.23 0.37 0.58 0.22 0.73 0.90 0.97 0.01 0.22 0.45 0.71
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Figure 1: Trade-off between Recall@20 vs. CR-Recall@20 of TBT and C-IBP with different κend ∈ {0.0, 0.3, 0.5, 0.7}
(Large). QA and CA represents query attack and candidate attack, respectively. For calculating ER-Recall@20 and CR-
Recall@20, we use ϵ = 0.2 (MNIST and FMNIST) and ϵ = 2

255 (CIFAR10).
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Figure 2: Trade-off between Recall@20 vs. CR-Recall@20 of TBT and C-IBP with different κend ∈ {0.0, 0.3, 0.5, 0.7}
(Small). QA and CA represents query attack and candidate attack, respectively. For calculating ER-Recall@20 and CR-
Recall@20, we use ϵ = 0.2 (MNIST and FMNIST) and ϵ = 2

255 (CIFAR10).


