A. Proofs of Theorems
A.l. Proof of Theorem 1

Proof. From Eq. (7) and Eq. (8), for V6 € {0 | 0 €
X, |6]]co < €}, the following holds:

1 [f<q+6> CF@ < g+) - f<c>||2]

ceC
> 3 tfa)

ceC

< dc(Q)] , (26)

Y1 [f<q+5> 5@l < f (g + 8) f<a>||2]

ceC
>>1 {dc(Q)

ceC

where ¢ = IRf(¢,C);. Since Eq. (26) indicates that the
lower bound of the number of candidate images that are

< da(t})} (27)

more dissimilar to ¢ + ¢ than ¢is) .~ 1 [dé(q) < dc(q)} ,

we obtain Eq. (9). Since Eq. (27) indicates that the lower
bound of the number of candidate images that are more sim-

ilartog+dthanéis) -1 {dc(q) < dc(q)] we obtain
Eq. (10).
A.2. Proof of Theorem 2

Proof. From Eq. (7) and Eq. (8), for C' = {IR4(q,C); +
§; V., where Vo1, ...,¥5y € {0 |6 € X,||0]|oc < €}, the
following holds:

3 [nf() e+ 8)lls < (@) - f(0+5)2}

ct+seC
>> 1 {dq@)

ceC

< dq(c)], (28)

3 [nf() Fle+8)lla < 1£(a) f<é+6j>2}

ct+seC
2 Z 1 [dq(c)

ceC

< dq(é)} (29)

where ¢ IRf(¢,C);. Since Eq. (28) indicates that
the lower bound of the number of perturbed candidate im-
ages in C that are more dissimilar to ¢ than ¢ + §; is

ZCGC 1 |:d () < dq(c)
(29) indicates that the lower bound of the number of per-
turbed candidate images in C' that are more similar to g than

C+65is) el { q(c) < d,(¢)],WeobtainEq. (12). O

}, we obtain Eq. (11). Since Eq.

A.3. Proof of Theorem 3
Proof. When Eq. (13) is satisfied,
—a < Rankf(q +6,IR¢(¢,C);,C) —j <«

is satisfied for Vo € {0 | § € X, ||0]|cc < €} from Theorem
1, which is equivalent to Eq. (5). O]

A.4. Proof of Theorem 4
Proof. When Eq. (14) is satisfied,
—a < Rank(q,IRf(q, C); + 65, C)

is satisfied for C = {IRf(¢,C); + &}, where
Vo1,...Von€ {6 | 6 € X, ||0]loc < €} from Theorem 2,
which is equivalent to Eq. (6). L]

A.5. Proof of Theorem 5

Proof. Since f(x1); < f(z1+40); < f(x1); holds for V6 €
{010 € X,[|0]|]sc < €} from the definitions of f(x); and

f(z);, the following holds:

-Jj<a«

ma. T 0); —
s, < @+ o)

f@2)i)?

< max{[F(@1)i — f(@2)il. [f(@2)i — fla)il}.
Then, we obtain
se iz Mo+ 0 = Sl
2\ 3

- SGX{IIT?I)\(OCSE ieg;,d}(f(xl " 5)i : f<x2)l))
<Y max{[F(e0)i—)il 1f @) f)i}

i€{1,..,d}

O

A.6. Proof of Theorem 6

Proof. Since f(x1); < f(z1+6); < f(x1); holds for Vo €
{010 € X,[|0]]oc < €} from the definitions of f(x); and

f(z);, the following holds:

f(w2):)?
f(ﬂfz)i7f(172)i

min (f(.’l?l + (5)1 —

d€X,|18]lc <€
> min{0, f(z1); — - i(xl)l}z

Then, we obtain

. .
sex e/)

f(z2)]2
> (flar+0)

ie{1,..,d}

> (> min{0, f(wr)i—f(2)i, f(w2)i

i€{1,..,d}

- f($2)i)2)%

= min
0EX,||0]lc <€

N

N CORES

O

B. Comparison Methods

We compare our proposed robustness training Eq. (20)
(TBT) and Eq. (21) (FCTB) with three existing methods:
(1) triplet Loss (Triplet) [6], (ii) anti-collapse triplet (ACT),
which is an adversarial training for CBIR to improve em-
pirical robustness [9], (iii) training for classification using
interval bound propagation (C-IBP) to improve certified ro-
bustness for the classification task [2].

Triplet is one of the loss functions commonly used in
metric learning. Let D; = {(a,p,n);}M, be a training data
set where p belongs to the same class as a, and n belongs to
a different class than a. Then, Triplet trains the feature ex-
traction DNN f by minimizing the following loss function:

> max{[[f(a) = f(P)l2— |1 f(a) = f(n)l|2+m, 0},

(a,p,n)EDy
(30)
where m is a margin parameter.

ACT trains feature extraction DNN f on generated ad-
versarial examples. Let D; = {(a,p,n);}}, be a training
data set. For each triplet (a,p,n) € D;, ACT generate p +
8, and n+ 4y, so that the distance || f(p+0,,) — f(n+8,) 2
is small. Specifically, ACT minimize triplet loss with the
triplet (a,p + 0p, n + 0,,) as follows:

Z max{||f(a) — f(p+dp)ll2

(a,p,n)ED;
— [f(a) = f(n+d,)[l2 +m,0}, (31)
where
Ops0p = argmin [|f(p+3p)— f(n+dn)ll2 (32)
6p75n€X7

19p o0 <€,[10n[lo0 <€

In our experiments, we minimize Eq. (32) by using PGD
[4] with the step size of {5 and the number of updates of
20.

C-IBP trains the classifier f. by simultaneously minimiz-
ing the original cross-entropy loss and cross-entropy loss
due to the upper and lower bounds of the logits calculated
by IBP. Let f¥(x) be the upper and lower bounds of the log-
its f.(xz) where the logit of true class y is equal to its lower
bound and the other logits are equal to their upper bounds.
Then, C-IBP trains f.(z) by minimizing the following loss
function with training data D; = {(z,y);}M:

Y. w-CE(fo(x).y) + (1= r)- CB(f!(2),y). (33)

(z,y)€D:

where CE represents Cross-Entropy loss. Note that we use
the classifier trained with IBP without the final layer (logit
layer) as a feature extractor in our experimentation.

Table 3: The model architectures of feature extraction
DNNSs in our experiments. Conv-f-k-s-p denotes a con-
volutional layer with a number of filters f of size k x k,
stride size is s, and padding size is p. Linear-d denotes a
linear layer whose output dimension is d. When training
C-IBP, we add one more linear layer to Small and Large to
compute the logits. Note that there is a ReLU between each
layer.

Small Large
Conv-16-4-2-1 Conv-64-3-1-1
Conv-32-4-1-1 Conv-64-3-1-1

Linear-128 Conv-128-3-2-1
Conv-128-3-1-1
Conv-128-3-1-1

Linear-128

C. Experimental Settings for MNIST, FM-
NIST, and CIFAR10

C.1. Architectures

In our experiments for MNIST, FMNIST, and CIFAR10,
we train the feature extractor f of embedding dimension-
ality 128 in two different model architectures, as shown in
the Table 3. We refer to each model as Small (3-layer CNN)
and Large (6-layer CNN), respectively.

C.2. Hyperparameters

The total number of training epochs is 100 for MNIST
and FMNIST and 200 for CIFAR10. We use the Adam op-
timizer [3] with a batch size of 100 and an initial learning
rate of 0.001. We decay the learning rate by times 0.1 at
25 and 42 epochs for MNIST and FMNIST and times 0.5
every 10 epochs between 130 and 200 epochs for CIFAR10.
The margin of triplet loss is set to m = 1.0. As data aug-
mentation, we use random crop and random horizontal flip
when training f on CIFARI10.

When training with TBT, to stabilize training, we use
scheduling strategy for € and « proposed in [2]. Specifically,
e is gradually increased from 0.0 to €., and the is gradually
decreased from 1.0 to k.. We use ¢, = 0.2 for MNIST and
FMNIST, and ¢, = 2?—5 for CIFAR10, respectively. We use
ke = 0.5 for Table 1, Table 2, Table 4, Table 5, Table 6,
and Table 7. Then, we linearly increase ¢ and decrease
between 2K and 10K steps. The results of other x. are
shown in Appendix G.

When training with FCTB, we fine-tune the pre-trained
feature extractor with TBT. We set fixed € to 0.2 for MNIST
and FMNIST and % for CIFAR10. We set fixed & to 0.2
for MNIST and 0.1 for FMNIST and CIFAR10.

When training with ACT, we set the fixed maximum per-
turbation size of the adversarial examples as e = 0.2 for

MNIST and FMNIST and € = % for CIFAR10. Then we
generate them by using PGD [4] with the step size of {5 and
the number of updates of 20.

When training with C-IBP, to stabilize training, we also
use scheduling strategy for € and « proposed in [2]. Specif-
ically, € is gradually increased from 0.0 to €., and the « is
gradually decreased from 1.0 to k.. We use €, = 0.2 for
MNIST and FMNIST, and ¢, = % for CIFARI1O, respec-
tively. We use s, = 0.5 for Table 1, Table 2, Table 4, Table
5, Table 6, and Table 7. Then, we linearly increase € and de-
crease k between 2K and 10K steps. The results of other
Ke are shown in Appendix G.

D. Experimental Settings for CUB-200-2011
D.1. Dataset

CUB-200-2011 is a bird species dataset consisting of
200 classes [8]. We use the first 100 classes as training data
and the remaining 100 classes as test data. We train feature
extractors f on the training set and evaluate f using the test
set. Let @ = {(qi5)}1%; and € = {(ei,pe,) € X},
be the annotated set of query and candidate images, respec-
tively. We randomly select @ and C' without duplication
from the test set so that || = 1000 and |C| = 1000. We
resize images to 224 x 224. Pixel values of images are in
[0,1].

D.2. Architectures

To train feature extractor f for CUB-200-2011, we use
VGGI11 architecture [7] pre-trained on ImageNet [1] with
three linear layers replaced by a single linear layer. We ob-
tain the pre-trained model from torchvision library in Py-
Torch [5]. The feature dimension of f is 128.

D.3. Hyperparameters of TBT and C-IBP

The total number of training epochs is 200. We use
the Adam optimizer [3] with a batch size of 100 and
an initial learning rate of 0.00001. We decay the learn-
ing rate by times 0.5 every 10 epochs between 130 and
200 epochs. The margin of triplet loss is set to m =
1.0. As data augmentation, we use random crop and
random horizontal flip. We normalize each image chan-
nel with mean [0.485,0.456, 0.406] and standard deviation
[0.229,0.224,0.225].

When training with TBT, to stabilize training, we use
scheduling strategy for € and « proposed in [2]. Specifically,
e is gradually increased from 0.0 to €., and the « is gradually
decreased from 1.0 to k.. We use €, = ﬁ We use ke =
0.5. Then, we linearly increase € and decrease « between
2K and 10K steps.

When training with C-IBP, to stabilize training, we also
use same scheduling strategy as TBT training. We use €, =

5= for CIFAR10. We use k. = 0.5. Then, we linearly

increase € and decrease « between 2K and 10K steps.

E. Experimental Results for Large Models
3

with Perturbation Size ¢ = 0.1 and ¢ = 352

Table 4 shows the results for Large with perturbation size
e = 0.1 for MNIST and FMNIST and ¢ = 52 for CI-
FARI10. From Table 4, we can see similar results for pertur-

bation sizes € = 0.2 and € =

2
255"
F. Experimental Results for Small Models

Table 5, Table 6 and Table 7 show the results of Re-
call@K, ER-Recall@K, and CR-Recall@K for Small. Ta-
ble 6 represents results when we use € = 0.2 for MNIST
and FMNIST and € = % for CIFAR10. Table 7 represents
results when we use € = (0.1 for MNIST and FMNIST and
€= % for CIFAR10. Note that we use the same hyperpa-
rameters as Large for training Small. From Table 5, Table 6

and Table 7, We can see similar results to results of Large.

G. Effect of hyper parameter

TBT and C-IBP can control trade-off between accuracy
and certified robustness by changing x € [0,1.0] in Eq.
(20) and Eq. (33). Here, we validate the trade-off when
only Kenq is changed and the other hyperparameters are
fixed. Figure 1 and Figure 2 show Recall@20 and CR-
Recall@20 of TBT and C-IBP for Large and Small when
we use € = 0.2 (MNIST and FMNIST) and ¢ = % (CI-
FAR10) and change kenqg € {0.0,0.3,0.5,0.7}. Note that
we omit the results of TBT when its training collapse, which
means trained feature extraction models return the same val-
ues for any test data. From Figure 1 and Figure 2, we can
confirm that for smaller x.,q4, TBT reduces Recall more
than C-IBP, but TBT can significantly improve CR-Recall
than C-IBP. These results also suggest that TBT is more
successful than C-IBP in tightening Eq. (17) and Eq. (18).

References

[1] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pages 248-255. Ieee, 2009.

[2] Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth,
Rudy Bunel, Chongli Qin, Jonathan Uesato, Relja Arand-
jelovic, Timothy Mann, and Pushmeet Kohli. On the effec-
tiveness of interval bound propagation for training verifiably
robust models. arXiv preprint arXiv:1810.12715, 2018.

[3] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[4] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learning

Table 4: Comparison of empirical robust (ER) Recall @K and certified robust (CR) Recall @K (Large). QA and CA represents
query attack and candidate attack, respectively. For calculating ER-Recall@K and CR-Recall @K, we use € = 0.1 (MNIST
and FMNIST) and € = % (CIFAR10). Each value is rounded off to two decimal places.

ER-Recall@K (QA) CR-Recall@K (QA) ER-Recall@K (CA) CR-Recall@K (CA)
K 1 10 20 40 1 10 20 40 1 10 20 40 1 10 20 40

Triplet 0.00 0.12 0.19 0.27 | 0.00 0.00 0.00 0.00| 025 060 071 0.81 | 0.00 0.00 0.00 0.00

ACT 099 100 1.00 1.00 | 0.00 0.00 0.00 0.00| 099 100 1.00 1.00 | 0.00 0.00 0.00 0.00

MNIST C-IBP 097 099 1.00 1.00|0.00 0.04 011 02909 099 099 1.00 | 0.00 0.01 0.06 0.29
TBT 094 098 098 099 |0.15 066 080 089|094 098 099 099 |0.12 092 098 0.98

TBT+FCTB | 093 098 098 099 | 0.16 066 0.78 089|093 098 098 099 |0.12 092 097 098

Triplet 0.00 0.11 0.17 022 |0.00 0.00 0.00 0.00]| 003 009 0.11 0.17 | 0.00 0.00 0.00 0.00

ACT 080 097 098 0.99 | 0.00 0.00 0.00 0.00]072 09 098 0.99 | 0.00 0.00 0.00 0.00

FMNIST C-IBP 072 097 098 099 |0.01 0.16 028 042|071 096 098 0.99 | 0.00 0.06 020 049
TBT 0.61 093 097 098 | 0.11 044 059 071|059 093 097 098 | 0.01 049 0.76 0.94

TBT+FCTB | 0.63 093 097 099 | 0.11 047 059 0.70 | 0.61 093 096 098 | 002 047 0.80 0.94

Triplet 0.07 056 0.69 0.80|0.00 0.00 0.00 0.00| 000 000 003 0.17 | 0.00 0.00 0.00 0.00

ACT 036 081 090 0.95|0.00 0.00 0.00 0.00]| 007 045 068 091 | 0.00 0.00 0.00 0.00

CIFAR10 C-IBP 040 0.87 094 098 | 0.00 0.01 0.02 0.06 032 083 093 098 | 0.00 0.01 0.01 0.06
TBT 0.19 078 091 096 |0.01 0.12 020 033014 077 092 096 | 0.00 0.09 021 0.38

TBT+FCTB | 020 0.82 093 097 |0.01 0.2 022 036|015 078 092 097 |0.00 0.11 025 048

Table 5: Comparison of Recall@K (Small). Each value is rounded off to two decimal places.

MNIST FMNIST CIFAR10
K 1 10 20 40 1 10 20 40 1 10 20 40
Triplet 099 100 1.00 1.00 | 0.86 098 098 099|048 090 095 097
ACT 099 100 1.00 1.00|0.82 09 097 099|053 090 095 097
C-IBP 094 099 099 1.00|0.73 096 098 099|040 088 095 098
TBT 088 096 097 099|060 092 095 098|025 077 091 097
TBT+FCTB | 0.86 096 098 0.99 | 0.60 091 095 098 | 025 076 091 0.97

models resistant to adversarial attacks. In International Con-
ference on Learning Representations, 2018.
[5] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library. Ad-
vances in neural information processing systems, 32, 2019.
Florian Schroff, Dmitry Kalenichenko, and James Philbin.
Facenet: A unified embedding for face recognition and clus-
tering. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 8§15-823, 2015.
[7] Karen Simonyan and Andrew Zisserman. Very deep convo-
Iutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.
Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona,
and Serge Belongie. The caltech-ucsd birds-200-2011 dataset.
2011.
[9] Mo Zhou, Le Wang, Zhenxing Niu, Qilin Zhang, Nanning
Zheng, and Gang Hua. Adversarial attack and defense in deep
ranking. arXiv preprint arXiv:2106.03614, 2021.

[6

—_

[8

—

Table 6: Comparison of empirical robust (ER) Recall @K and certified robust (CR) Recall@K (Small). QA and CA represents
query attack and candidate attack, respectively. For calculating ER-Recall@K and CR-Recall@K, we use ¢ = 0.2 (MNIST
and FMNIST) and € = 2?—5 (CIFAR10). Each value is rounded off to two decimal places.

ER-Recall@K (QA) CR-Recall@K (QA) ER-Recall@K (CA) CR-Recall@K (CA)
K 1 10 20 40 1 10 20 40 1 10 20 40 1 10 20 40

Triplet 0.00 0.09 0.14 0.23|0.00 0.00 0.00 0.00]006 013 0.19 033 |0.00 0.00 0.00 0.00

ACT 095 099 1.00 1.00 | 0.00 0.00 0.00 0.00| 094 099 1.00 1.00 | 0.00 0.00 0.00 0.00

MNIST C-IBP 091 098 099 1.00 | 0.00 0.00 0.00 0.01 087 098 099 1.00 | 0.00 0.00 0.00 0.00
TBT 085 097 098 099 |0.01 0.19 035 05608 096 097 099 |0.00 0.15 041 0.77

TBT+FCTB | 0.83 096 098 099 |0.01 021 035 057|084 09 097 099|000 0.16 045 0381

Triplet 0.00 0.11 0.17 0.24|0.00 0.00 0.00 0.00|0.02 005 006 0.09 | 0.00 0.00 0.00 0.00

ACT 0.78 095 097 099 | 0.00 0.00 000 0.00| 042 0.84 093 097 |0.00 0.00 0.00 0.00

FMNIST C-IBP 071 096 097 099 |0.00 0.02 0.05 0.14]062 094 097 099 | 0.00 0.00 0.01 0.03
TBT 057 091 095 098 |0.04 0.19 027 037054 091 094 098 | 0.00 0.08 0.23 0.51

TBT+FCTB | 0.57 092 095 098 | 0.04 0.18 026 036|056 091 094 097 | 0.00 0.08 025 0.57

Triplet 026 080 090 0.95|0.00 0.00 0.00 0.00] 002 027 054 0.83|0.00 0.00 0.00 0.00

ACT 041 086 093 097 |0.00 0.00 0.00 0.00]|0.13 066 085 095 | 0.00 0.00 0.00 0.00

CIFAR10 C-IBP 038 087 095 098 |0.00 0.04 0.08 0.18 034 085 094 098 | 0.00 0.03 0.08 0.18
TBT 024 079 091 097 |0.04 034 052 071]022 076 089 097 |0.02 034 058 0.82

TBT+FCTB | 0.22 0.77 090 098 | 0.04 032 051 074|023 0.74 090 097 | 0.03 036 0.60 0.84

Table 7: Comparison of empirical robust (ER) Recall @K and certified robust (CR) Recall@K (Small). QA and CA represents
query attack and candidate attack, respectively. For calculating ER-Recall@K and CR-Recall@K, we use € = 0.1 (MNIST

and FMNIST) and € = % (CIFAR10). Each value is rounded off to two decimal places.

ER-Recall@K (QA) CR-Recall@K (QA) ER-Recall@K (CA) CR-Recall@K (CA)
K 1 10 20 40 1 10 20 40 1 10 20 40 1 10 20 40

Triplet 0.09 044 060 0.71 |0.00 0.00 0.00 0.00| 031 073 082 091 |0.00 0.00 0.00 0.00

ACT 098 100 1.00 1.00 | 0.00 0.00 0.00 0.00| 098 1.00 1.00 1.00 | 0.00 0.00 0.00 0.00

MNIST C-IBP 093 099 099 1.00|0.00 0.01 0.04 0.15]091 099 099 1.00 | 0.00 0.00 0.03 0.13
TBT 087 097 098 099 |0.09 058 075 089|087 096 097 099 |0.04 071 091 0.96

TBT+FCTB | 0.86 096 098 099 | 0.08 058 0.75 088|085 09 097 099|005 073 091 0.96

Triplet 0.00 0.14 021 031 |0.00 0.00 0.00 0.00]| 002 005 008 0.16 | 0.00 0.00 0.00 0.00

ACT 078 095 097 0.99 | 0.00 0.00 0.00 0.00| 066 094 096 098 | 0.00 0.00 0.00 0.00

FMNIST C-IBP 074 096 098 099 |0.02 019 032 048|069 095 098 099 |0.00 0.07 023 0.54
TBT 059 092 095 098 |0.14 041 049 0.60 | 057 091 094 098 | 0.04 042 0.69 0.89

TBT+FCTB | 0.60 091 095 097 | 0.12 040 049 059|058 091 095 097 | 004 044 0.69 0.90

Triplet 0.15 0.68 0.83 091 |0.00 0.00 0.00 0.00| 000 006 0.19 049 |0.00 0.00 0.00 0.00

ACT 033 082 091 095 |0.00 0.00 000 0.00]003 037 062 0.88 | 0.00 0.00 0.00 0.00

CIFAR10 C-IBP 038 087 095 098 |0.00 0.01 0.02 0.05]030 083 093 098 | 0.00 0.01 0.02 0.05
TBT 022 079 090 097 0.02 021 039 056|021 075 089 097 |0.01 021 040 0.66

TBT+FCTB | 023 0.76 091 098 | 0.02 0.23 037 058|022 073 090 097|001 022 045 0.71

0.40

07 0.6 Y
0.35
A 0.5
0.6 -
0.30 '3 A
o o o
® 05 A 025 > 0.4
Z04 —&— TBT kappa=0.3 A = —A— TBT kappa=0.3 = —&— TBT kappa=0.3
g A~ TBT kappa=0.5 0201 —A— TBT kappa=0.5 9 0.3{ —A&— TBT kappa=0.5 A,
% 031 —A~ TBT kappa=0.7 % 0.15] “A TBT kappa=0.7 £ —A— TBT kappa=0.7 °
o —@- C-IBP kappa=0.0 o -@- C-IBP kappa=0.0 ° O .21 —@ C-IBP kappa=0.0
021 _@- C-IBP kappa=0.3 0.10{ @ C-IBP kappa=0.3 ~®- C-IBP kappa=0.3
0.1 ~@- C-IBP kappa=0.5 0.05 ~@- C-IBP kappa=0.5 Y 01 ~@- C-IBP kappa=0.5 @
C-IBP kappa=0.7 : C-IBP kappa=0.7 L4 : C-IBP kappa=0.7
0.0 m— 0.00
0.95 0.96 0.97 0.98 0.99 1.00 0.90 0.92 0.94 0.96 0.98 1.00 0.86 0.88 0.90 0.92 0.94 0.96
Recall@20 Recall@20 Recall@20
(2) MNIST (QA) (b) EMNIST (QA) (¢) CIFAR10 (QA)
0.40
A A
0.35 0.6
0.8
A
0.30
A 0.5
%o.s A %0.25 g
= —A— TBT kappa=0.3 = —— TBT kappa=0.3 A = 0.41 —A— TBT kappa=0.3
9 —A— TBT kappa=0.5 g 0201 —A— TBT kappa=0.5 9 —A— TBT kappa=0.5 A A
= 047 —A- TBT kappa=0.7 & 5151 A TBTkappa=07 b 031 4 TBT kappa=0.7
5] -@- C-IBP kappa=0.0 & 7] @ coiBP kappa=0.0 S ;.1 @ ciBrkappa=0.0 °
0.2 ~@- C-IBP kappa=0.3 0.101 -@- C-IBP kappa=0.3 A : ~@- C-IBP kappa=0.3
| -@ C-I1BP kappa=0.5 0.05 —@- C-IBP kappa=0.5 0.1{ —@ C-IBP kappa=0.5 Py
C-IBP kappa=0.7 . C-IBP kappa=0.7 C-IBP kappa=0.7
0.00 ‘)
.95 0.96 0.97 0.98 0.90 0.92 0.94 0.96 0.98 0.86 0.88 0.90 0.92 0.94
Recall@20 Recall@20 Recall@20
(d) MNIST (CA) (e) FMNIST (CA) (f) CIFAR10 (CA)

Figure 1: Trade-off between Recall@20 vs. CR-Recall@20 of TBT and C-IBP with different .,q € {0.0,0.3,0.5,0.7}
(Large). QA and CA represents query attack and candidate attack, respectively. For calculating ER-Recall@20 and CR-
Recall@20, we use € = 0.2 (MNIST and FMNIST) and € = 2?—5 (CIFAR10).

0.6 0.30
A A 0.5 A
0.5 0.25 ¥y
0.4
S04 S 0.20 2
% —A— TBT kappa=0.3 A % —A— TBT kappa=0.3 %0_3 A
g 0.37 —A— TBT kappa=0.5 $ 0.151 —A— TBT kappa=0.5 Y g —A— TBT kappa=0.5
E —A— TBT kappa=0.7 : —A— TBT kappa=0.7 : 02 ~A~ TBT kappa=0.7
O 0.21 -@~ C-IBP kappa=0.0 A U 0.101 -@- C-IBP kappa=0.0 O 7| —@- C-IBP kappa=0.0 [
~@- C-IBP kappa=0.3 ~@- C-IBP kappa=0.3 L] —@- C-IBP kappa=0.3
0.1 @ C-IBP kappa=0.5 0.051 -@- C-IBP kappa=0.5 ® 0.11 -@ C-IBP kappa=0.5 L2
C-IBP kappa=0.7 C-IBP kappa=0.7 @ C-IBP kappa=0.7
0.0 - 0.00 L)
0.95 0.96 0.97 0.98 0.99 1.00 0.90 0.92 0.94 0.96 0.98 1.00 0.86 0.88 0.90 0.92 0.94 0.96
Recall@20 Recall@20 Recall@20
(a) MNIST (QA) (b) FMNIST (QA) (c) CIFAR10 (QA)
0.30
07 N 0.6 2
06 0.25 A 0.5
A
Q05 < 0.20 A Q04
%04 —A— TBT kappa=0.3 A % —A— TBT kappa=0.3 %
g A~ TBT kappa=0.5 g 0157 —A— TBT kappa=0.5 g 031 —A— TBT kappa=0.5 A
’f‘F 0.3{ —A— TBT kappa=0.7 ; —A— TBT kappa=0.7 ; A~ TBT kappa=0.7
] -@- C-IBP kappa=0.0 G 0.101 -@ C-IBP kappa=0.0 G 0.21 —@ C-IBP kappa=0.0 Y
021 _@- C-IBP kappa=0.3 A ~®- C-IBP kappa=0.3 -@- C-IBP kappa=0.3
0.1{ ~@ C-IBPkappa=0.5 0.051 ~@- C-IBP kappa=0.5 0.11 -@- C-IBP kappa=0.5 Y
C-IBP kappa=0.7 C-IBP kappa=0.7 o @ C-IBP kappa=0.7
0.0 o, _seo 0.00 L} 0.0 L
0.95 0.96 0.97 0.98 0.99 1.00 0.90 0.92 0.94 0.96 0.98 1.00 0.86 0.88 0.90 0.92 0.94 0.96
Recall@20 Recall@20 Recall@20
(d) MNIST (CA) (e) FMNIST (CA) (f) CIFAR10 (CA)

Figure 2: Trade-off between Recall@20 vs. CR-Recall@20 of TBT and C-IBP with different k.,q € {0.0,0.3,0.5,0.7}
(Small). QA and CA represents query attack and candidate attack, respectively. For calculating ER-Recall@20 and CR-
Recall@20, we use € = 0.2 (MNIST and FMNIST) and € = 2?—5 (CIFAR10).

