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In the supplementary material, we first introduce more
details about the architecture design in our framework (Sec-
tion A). Next, we demonstrate the implementation details
and training setup for our framework (Section B). Finally,
we provide more experimental results to evaluate the pro-
posed architecture including ablation studies (Section C).

A. Architecture Design

A.1 Representation of Structure Hierarchy

The structure used in our framework has two kinds of rela-
tionships: H and R, where H ⊂ P 2 describes the directed
connectivity between a parent node and its sibling nodes
and R is a M ×M matrix that describes the entire part rela-
tions between the nodes under the same parent node in the
structure. In the following script, we use (mi,mj , τ) to de-
scribe an edge betweenmi andmj with a set of types of part
relation τ ∈ T . The type of part relations T covers trans-
lational, reflective, rotational symmetry, and adjacency, de-
noted as {τ trs, τ ref , τ rot, τadj}. Same as StructureNet [6],
we assume that a part-relation τ only exists between the
nodes in the same subset of the tree and one pair of nodes
can have multiple types of relations among T . The part re-
lation τ is encoded as one-hot vector. We do not predict
transformation parameters for symmetry relations.

A.2 Parsing-based Structure Encoder

Structure Tree Construction. Given the shape point
cloud A ∈ RN×3, we first parse the input into a set of part
segments B = {bl}l∈L, where a part segment bl = (Xl, yl)
contains a set of points in the corresponding part region Xl

and a semantic label yl. By taking a point cloud of input
shape A, our backbone ψ decomposes it into a set of leaf
part instances. Based on the part segmentation output, we
get a set of leaf nodes {ml}l∈L for L number of the parts,
which will be used for the structure tree construction fol-
lowing. Here, as mentioned in our paper, we encode each
leaf part segment bl into a 128-dimensional part feature vec-
tor xl ∈ R128. The feature is encoded by a part feature
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Figure 1. Structure Hierarchy Representation. We represent the
part structure (left) in the tree hierarchy (right). For each subset in
the tree, a parent node and sibling nodes are connected hierarchi-
cally in H (black edges) and the sibling nodes have relationships
τ in R (orange edges). The part node in P comprises the oriented
bounding box parameters θ and the semantic label.

encoder fpart, which uses PointNet++ [8] with four set ab-
straction layers and two linear layers where each layer is
followed by ReLU activation and batch normalization.

xl = fpart(Xl) (1)

In the tree construction step, we denote a tree node as
m̄i = (xi, Xi, yi) for i ∈ M to distinguish it from the final
part node mi = (θi, yi). Based on the part node extracted
in the previous step, we operate node grouping recursively
until it reaches to root node m̄root.

To group a subset of nodes at each level of the hierarchy,
we take a heuristic approach based on their semantic labels
and spatial distances. Since the semantic label yi describes
the level of the tree where the part node belongs to by itself
as defined in StructureNet [6], we construct a structure tree
based on them. For instance, a leaf part with a semantic la-
bel named leg guarantees that it has to be grouped to a base
node (Fig. 1). We refer the readers to the StructureNet paper
for more details about the part annotation for the hierarchy.

In general, the node grouping based on semantic prior
works fine. For some cases where depending on the seman-



tic information yields an ambiguity, we apply the simple
heuristics based on the spatial information of the part points
Xl. For example, arms in a chair can be separated accord-
ing to the global center coordinates relative to the center of
the input shape. Here, we can approximate the center of
each node by its point cluster Xl by averaging their global
coordinates.

Hierarchical Feature Encoding. Once the hierarchi-
cal connectivity H is established, we calculate the encode a
parent node’s feature vector xr by aggregating the features
of its sibling nodes {xc}c∈Cr

, where Cr is the number of
the sibling nodes. For the parent feature encoding, we use a
feature encoder fchild with one single linear layer that takes
a set of features from child nodes::

xr = fchild({xc}) (2)

In this process, we encourage the parent features to have a
broader view of the subset’s sibling nodes. We recursively
iterate this process until it approaches to the root feature
xroot. Finally, we treat this root feature as an global context
throughout the entire structure, both in the decoding step
and merge prediction network later. As aggregate the node
features, we also gather the part point cloud to define a part
region for each parent node.

After the construction step, we get all the part nodes
and hierarchical connectivity (P̄ ,H), where the part nodes
{m̄i} ∈ P̄ involve the global context. We further demon-
strate how can we take advantage of these context features
and the hierarchy prior to support the structure decoding
step in the following.

A.3 Multi-level Context-Aware Structure Decoding

In this section, we introduce the part structure decoder G
using multi-level context across the structure hierarchy in
top-down manner. The goal of our part structure decoding
is two-fold: regressing the part bounding box θi and clas-
sifying the part relationship among the nodes (mi,mj , τ).
Though it is possible to directly decode them directly from
segmentation output, we found this yields an inconsistent
aligned part structure. This is mainly due to the nature of 3D
shape, the parts in the structure are strongly co-related not
only horizontally, but also the vertical (hierarchical) way.

To tackle this, we propose a hierarchical message pass-
ing gh, to learn the structural context based on the hierar-
chy prior. Our previous segmentation-based structure con-
struction enables us to map the part regions in the geometry
space into the hierarchical representation. Based on this, we
build an association between part segments and part nodes
in the form of a skip connection connecting the correspond-
ing parts (Fig 2). By fully exploiting both hierarchical con-
nectivity and the association from the skip connection, we
perform two types of message passing: 1) global context
learning and 2) local part relation learning.
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Figure 2. The illustration of Hierarchical Message Passing.
Given the constructed hierarchy and all the features encoded us-
ing fchild, we perform hierarchical message passing gh to make
features learn a multi-level context in the structure. In global con-
text learning fctx, the parent feature xr and the sibling feature
connected via a skip connection xc are aggregated. Then, the local
part message passing gmp classifies a part relation τ and performs
inter-part communication between connected sibling nodes. The
multi-level context-aware node feature x′

c is again used for the re-
cursive message passing to its sibling subset.

Global Context Learning. The main purpose of this
step is to make our part features aware of the global context
across the constructed hierarchy in vertical way. Here, the
feature vector of each node xi is updated through parent
feature aggregation before learning inter-part relationships.
This ensures that the part feature not only contains the local
relationship between neighboring part nodes but also covers
the global context across the different levels of structures.
Starting from the root node feature xroot, we propagate each
level of global context by decoding it down to the sibling
nodes.

To do this, we use xc using fctx, a single linear layer that
consumes a concatenated feature vector of child and parent
nodes [xc; xr] ∈ R256:

x̃c = fctx([xc; xr]) (3)

Here, we consider x̃c as a global context-aware feature,
which supports the part-relation learning and the bounding
box decoding further.

Local Part Relation Learning. After aggregating the
global context to each part node, we perform a local mes-
sage passing to learn an inter-part communication for each
subset horizontally.

Inspired by StructureNet [6], we aim to make the part
nodes learning predefined local part relations, i.e. symme-
try and adjacency by classifying the accurate type of part
relation τ ∈ T . For T , we consider three types of symme-
try {τ trs, τ rot, τ ref} and the adjacency τadj as mentioned
earlier. With the accurately predicted part relations, the co-



related part features can achieves more consistent part ge-
ometry prediction further, e.g. preserving a reflective sym-
metry between arms in a chair. Analogous to StructureNet.
we connect the whole part nodes inside the subset to each
other and compute a set of corresponding edge feature vec-
tors for each pair of nodes through the message passing. To
compute the edge feature yij ∈ R256, we use gedge, a two-
layer multi-layer perceptron that takes two context-aware
feature vectors {x̃i, x̃j}:

yij = gedge([x̃i; x̃j ]) (4)

Then we classify which types of relationships exist be-
tween them among the part-relations T for the number of
types |T | given the edge feature yij .

(p(m̄i,m̄j ,τ1), ..., p(m̄i,m̄j ,τ|T |)) = σ(gτ (yij)) (5)

where σ and p are a sigmoid and a probability function,
respectively. Note that we do not predict any parameters
for each relation here. Here, we treat edge prediction as a
classification problem where we predict the probability of
edge types ∈ [0, 1].

Finally, we perform an inter-part message passing,
adopted from StructureNet [6]. We prune out the edges with
a probability lower than the edge threshold, i.e. 0.5, to keep
a valid set of edges. Next, we perform two iterations of
message passing for each part feature with the connected
neighbors in the subset, using the edge features with the
classified relationships. Lastly, we aggregate the features
from each iteration to get the finalized node feature x′i from
a set of connected parts {m̄k}k∈Ki

where Ki is the num-
ber of parts connected. We refer the readers to the paper of
StructureNet [6] for more details about the message-passing
network.

Through hierarchical message passing across the subsets
and the overall structure, we encourage the final part repre-
sentation x′i to incorporate much broader context across the
structure beyond a geometry-dependent feature vector.

Bounding Box Decoding. Finally, we regress the
bounding box parameters θi = (ti, si, qi) for each part node
in the hierarchy. Here, we use gbox built with a series of
linear layers to output the bounding box parameters. Em-
pirically, we observe that the decoder often fails to per-
form accurate regression if it works on the feature vector
alone. To address this, we utilize the part pointsXi for each
node to support the box decoding, which we gathered dur-
ing the tree construction. For the translation vector ti, we
first compute the rough center coordinates t̂i by averaging
the global coordinates of Xi. The decoder gbox predicts the
offset vector oi ∈ R3 to slightly tune the center coordinate
as ti = t̂i + oi. By doing so, we can achieve a much pre-
cise estimation of box parameters, not only the box center
but the others as well. Similarly, we have seen that it is

enough to approximate the scaling vector si by examining
the volume of part points along the rotation axis prediction
done for unit quaternion q. Our final formulation for box
parameter decoding is as follows:

(ti, si, qi) = gbox(x′i, Xi) (6)

Finally, we get a part node mi = (θi, yi) for all the nodes
in the structure and complete the part structure inference.

A.4 Training and Losses.

Structure Inference Network. The parameters for the en-
coder F and the decoder G are supervised both at the struc-
ture decoding step through backpropagation. As mentioned
in our paper, our overall loss design for structure inference
network is mostly brought from StructureNet [6] since ours
and StructureNet share the equivalent objective, inferring
the structure output. Similar to StructureNet, our total loss
Ltotal is computed by the following steps. First, a corre-
spondence map M ⊂ P × P̂ between the predicted parts P̂
and the target parts P is established to supervise network
parameters based on the geometric distance between the
parts using the hungarian algorithm [4]. Second, the geom-
etry reconstruction error is computed by summing up Lbox

and Lnorm, a bounding box fitting distance and an addi-
tional normal error for the precise orientation regression,
respectively. Third, we compute an edge prediction loss
Ledge, where we consider the edge prediction as a binary
classification problem, and the classifier is supervised using
cross-entropy loss.

Finally, we calculate a structure consistency loss Lcons

to make the relationship at parent nodes consistent with
their sibling subsets. For more detail, we refer the read-
ers to the StructureNet paper [6]. In summary, we compute
our total loss as follows:

Ltotal = λ1Lbox + λ2Lnorm + Ledge + Lcons (7)

where we define the coefficients λ1 and λ2 as 20 and 10,
respectively.

Segmentation Refinement Network. To train part seg-
mentation refinement network M, we use focal loss [5] as
discussed in our main paper. We define the focal loss F
taking a probability score ps ∈ [0, 1] and a target label p:

F (ps, p) = −αt(1− pt)
γ log(pt) (8)

where pt is ps if p = 1 and pt is 1 − ps otherwise. αt is a
weight and γ is a focusing parameter. Empirically, we opt
to set α as 0.15 and γ as 2. The merge loss Lmerge is then
calculated with ground-truth assignment C̄ as follows:

Lmerge =
∑

(i,j)∈C̄

F (pmerge
(mi,mj)

,1C̄(i, j)) (9)

where 1C̄ is an indicator function that gives 1 for the valid
candidate pair in C̄ and the others 0.



Table 1. Comparison on Structure Inference. Same as our paper, AP means part prediction accuracy (%) computed by average precision
with IoU threshold 0.25, and EE means edge prediction error calculated by one minus F1-score of edge prediction outputs. Please note
that the second and third baselines do not measure EE since they do not predict any part relationships. The columns for key components
describe which prior knowledge or the level of message passing each method takes. The bold text means the best results for each column.

Id Method
Key Components Categories AvgPrior Message Passing Chair Table Storagefurn.

Seg. Hier. Skip. Local global AP (%) EE (↓) AP (%) EE (↓) AP (%) EE (↓) AP (%) EE (↓)
1 Fs + GSN ✓ ✓ ✓ 5.03 0.6824 2.02 0.8272 1.07 0.6491 2.71 0.7196
2 ψ + PCA ✓ 37.32 - 20.96 - 17.75 - 25.34 -
3 ψ + gbox ✓ 46.66 - 25.89 - 19.96 - 30.83 -
4 ψ + gbox + gmp ✓ ✓ 48.39 0.8576 24.19 0.8835 19.96 0.8933 30.85 0.8781
5 F + GSN ✓ ✓ ✓ ✓ 10.79 0.4211 1.28 0.7863 1.95 0.5191 4.68 0.5755
6 F + G − fctx ✓ ✓ ✓ ✓ 47.21 0.3006 22.91 0.4597 19.25 0.6664 29.79 0.4756
7 F + G − gmp ✓ ✓ ✓ ✓ 47.34 0.3448 26.41 0.5024 21.20 0.6867 31.65 0.5113
8 F + G (Ours) ✓ ✓ ✓ ✓ ✓ 48.41 0.2727 26.36 0.4400 21.57 0.6934 32.11 0.4687

B. Implementation Details

We implement our framework in PyTorch [7]. The train-
ing for each category is performed until convergence with
batch size 16, mostly requiring 1-2 days for structure infer-
ence network and less than two hours for segmentation re-
finement network on a single GeForce RTX 3090 and an In-
tel Xeon Silver 4210R CPU. We use the Adam optimizer [3]
with the initial learning rate as 0.5−3 for inference network
and 10−4 for refinement network, decayed by 0.8 per 500
steps.

C. More Experimental Results

C.1 Ablation Study on Structure Inference Network

To demonstrate the effectiveness of the key components in
our proposed hierarchical message passing gh, we perform
sets of ablation studies. For other methods not explained
here, we refer readers to our main paper.

Baselines. Here, we built another type of baseline,
which directly decodes the bounding box from extracted
part segments without having hierarchical priors or key
components used in our method. Based on our backbone
ψ and the part feature encoder fpart, the box decoder base-
line parses the input shape into leaf part instances, encodes
part features, and directly predicts bounding box parame-
ters {θl}l∈L. Here, we prepare three kinds of box decoder
baselines (2nd − 4th rows in Table 1) directly consuming
the output from backbone ψ: a PCA-based bounding box
estimator, a box decoder gbox, and the box decoder with
message passing network gmp. Since these box encoders
do not predict and learn any part relations except the last
one, the edge prediction error is not measured.

Note that the last one uses the reduced version of our
part-relation learning where the relationships are learned
across all the leaf instances, which makes the edge predic-
tion a lot more difficult. Then, we show how the level of
feature updates in the local part-relation learning and global
context learning affects the performance of structure infer-

ence for each. To this end, we built baselines by subtracting
each component of gh from our framework F + G, repre-
sented as the one without local part message passing gmp

and global context encoding fctx.
Results. We observe that our method based on hierar-

chical message passing beats the other baselines quantita-
tively in Table 1. For the baselines with different levels of
structural context, the mean part prediction accuracy also
increases. We find that learning global context even helps
to improve the local part relation classification on average,
which supports the necessity of our hierarchical message
passing. While the box decoder with leaf parts message
passing shows compatible part prediction accuracy to ours,
it extremely suffers to predict the precise part relationships
with the highest edge prediction error.

We illustrate how this negatively affects to the predic-
tion of the globally consistent structure in Figure 3. As we
gradually added the key component of our method, the leaf
parts are coherently arranged by learning hierarchical rela-
tionships in the structure (from left to right). Despite the
precise quality of the part segmentation output, the com-
pared baselines fail to capture co-relations between parts
across the structure. For the box decoder baselines in the
third and the fourth column, some parts pop out and degrade
the overall assembly quality. Even with part relation learn-
ing, the symmetry between nodes is easily corrupted (see
the chair cases). The cases of shapes with a cluttered set
of parts (see the table cases) get much severe where the ad-
jacency between parts is broken resulting in the scattered
output.

For the baselines subtracting the key component of hi-
erarchical message passing, we also found that incorpo-
rating all the context information achieves the most plau-
sible results. Although the edge prediction quality seems
to have a relatively small margin in numbers (Table. 1),
we observe there is a more clear improvement in visuals.
While the symmetry between parts is preserved better than
the box decoder baselines, we observe that missing one of
the structural contexts still yields flawed prediction with
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Figure 3. The illustration of Ablation Study on Hierarchical Message Passing. The zoom-in images for each case describe the
continuous improvements of the structure output more clearly. As our key components for hierarchical message passing are applied, the
overall arrangement of part structure improves gradually.



Table 2. Comparison to Unsupervised Method. Same as
our paper, we use mean average precision (mAP) with an IoU
threshold 0.5. Note that the second column indicates which kind
of supervision is used for each method.

Method Supervision Chair
BSP-Net [1] None (Unsup.) 19.91

PointGroup [2] Segmentation 40.70
SEG&STRUCT (Ours) Segmentation, Structure 40.81

broken adjacency. As each context is added, we observe
the part structure accomplish globally-aligned arrangement
even with the cluttered set of parts. For example, in the
first chair case, the adjacency and alignment between a leg
(brown box) and a vertical frame (yellow box) become more
consistent.

C.2 Comparison to Unsupervised Part Segmentation
Method

To demonstrate the impact of the supervision used in our
framework, we compare ours with BSP-Net [1], an unsuper-
vised method that parses 3D shapes into a set of volumetric
primitives. Since BSP-Net abstracts a raw geometry to pro-
duce super-segments, rather than part bounding boxes, we
evaluate the performance on part segmentation task only.

As BSP-Net does not predict any semantics for prim-
itives, we assign semantics per points using ground-truth
semantic labels following the original paper [1] and treat
predicted primitives as part instances. For evaluation, we
use mean average precision (mAP) with an IoU threshold
0.5, as same as our paper. In Table 2, we demonstrate the
result of the quantitative evaluation for part segmentation in
Chair category. Ours clearly outperforms the unsupervised
method, while fully exploiting the supervision of part seg-
mentation and structure both.

C.3 Limitation and Discussion

We observe that our segmentation refinement method suf-
fers from the imperfect supervision given by the noisy an-
notations. For similar shapes, there are noisy annotations
that make our network hard to predict the correct merge op-
eration. In Figure 4, we illustrate these failure cases caused
by the noisy annotations. For example, given almost the
same shapes in Chair category, the leg part (dark brown)
is hard to be distinguished from the foot part (orange) even
for the annotators. When these confusing labels are found
in the part boundaries, the network cannot clearly describe
which part is falsely segmented and also examine the di-
rection of the merge process correctly. Unfortunately, we
found these failure cases also happen across the other cat-
egories. Since our framework solves a supervised problem
for the part segmentation, these noisy annotations largely

G.TSeg. Struct. Refined 
Seg.

Refined 
Struct.

Figure 4. Failure Cases. Both shapes in two rows share the same
Chair category. However, noisy labeling on the same region by hu-
man annotators, the orange color for foot part and the dark brown
color for leg part, confuses the network to predict correct merge
operations and yields false outputs.

restrain the improvement on the structure-to-segmentation
refinement task and the further refinement on the part struc-
tures.

C.4 More Qualitative Results

In this section, we provide more visuals of the qualitative
evaluation on both tasks: Segmentation-to-Structure Infer-
ence and Structure-to-Segmentation Refinement. As men-
tioned in our paper, we test our method on the three largest
categories from PartNet (e.g., chair, table, and storage fur-
niture), and report the results for each category in the fol-
lowing figures.

For the first three figures (Figure 5, 6, 7), we illustrate
more results of segmentation-to-structure inference network
per category, comparing our method to other baselines dis-
cussed in our paper. Next, in Figure 8, 9, 10, we depict
the results of structure-to-segmentation refinement includ-
ing the updated structure from the refinement output. Please
see the following pages for more qualitative results.
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Figure 5. More Results of Structure Inference: Chair
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Figure 6. More Results of Structure Inference: Table
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Figure 7. More Results of Structure Inference: Storagefurniture
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Figure 8. More Results of The Interplay between Part Segmentation and Structure Inference: Chair



Input G.T 
Seg.

Refined
Struct.

Refined
Seg.

Parsed 
Seg.

Predicted
Struct.

Figure 9. More Results of The Interplay between Part Segmentation and Structure Inference: Table
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Figure 10. More Results of The Interplay between Part Segmentation and Structure Inference: Storagefurniture
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