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Abstract

In this supplemental document, we show additional com-
parisons on HDR merging methods (Sec. [I), on multiple-
exposure images predicted by the network (Sec. [2) and
then provide details about the proposed network, includ-
ing network architecture (Sec.[3.1)) and the inference process

(Sec.B-2).

1. On HDR Merging Methods

We compare different HDR merging methods including
the commercial software Photomatix [4]], OpenCV’s merging
based on Debevec and Malik [2]] and Robertson et al. [|10].
The comparison results are shown in Tab. |l| with the evalu-
ation on HDR images. Additional to results of Photomatix
reported in the main paper, we provide evaluations on tone-
mapped images when the HDR merging method is Debevec
and Malik [2] (Tab. 2) and Robertson et al. [10] (Tab. B).
From these results it can be seen that our method is not sensi-
tive to HDR merging methods as in most cases, our method
outperform previous methods.

Note that in the HDR domain, HDR-VDP-2 is a more
preferred metric, which shows that Photomatix has better
performance in HDR reconstruction. This aligns with our
investigation as well, as we found that output images from
Photomatix has less visual artifacts than those from Debevec
and Malik [2] and Robertson et al. [10]].

2. Additional Results and Comparisons

Quantitative comparisons on multi-exposure images.
We use EV as input and compare the predicted bracketed
images as shown in Tab. [Z_f} As can be seen, our model’s
scores are better than other methods. This result can be in-
terpreted as that the overall structure of images using our
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model is well reconstructed as well as perceptually similar
to ground-truths.

Qualitative comparisons on multi-exposure images. A
significant advantage of our method compared to the pre-
vious works is that our approach allows the synthesis of
images at arbitrary exposure values. We demonstrate this
capability in Fig. [3] where the exposure value can be 0.75,
1.5, and 2.25. In the included video, our network can predict
a smooth change in the virtual exposures of a scene.
Qualitative comparisons on tone-mapped images. We
give further qualitative evaluation of tone-mapped images
on diverse scenes as shown in Fig. 5| (natural scenes), Fig. [6]
(outdoor scenes), and Fig. [/| (indoor scenes). Our method
can reconstruct the HDR that matches well to the reference
in color and contrast as well as produce minimal artifacts
compared to DrTMO (3], DRHDRI [6], and SingleHDR [/7]
method.

Application: virtual bracketed images. Our method can
be used as an application for virtually changing the expo-
sure for an input image. Figure |4|illustrates the generated
bracketed images by ours along with the references. We
can see that the predicted stack matches the ground truth
very well in terms of color and contrast. Our model can also
generate images with smooth changes in the exposure values
that are not defined in the training dataset. Please refer to
supplementary materials for a video demonstration.

3. Details of the Proposed Network
3.1. Network Architecture

As our goal is to generate different exposure images from
the input image, this can be seen as an image-to-image trans-
lation task. We adopt the U-Net [[11]] like architecture with
the encoder-decoder module, which has shown good perfor-
mance in this task. When the data goes to the next level,
the size of feature maps is reduced by half, vertically and
horizontally, and conversely doubled. Then, the abstracted
feature map is reassembled with the previous feature maps
for creating the desired output through a structure that in-



HDR Reconstruction Photomatix [4- Debevec and Malik [2! Robertson et al. [10

Method PSNR (1) SSIM (1) LPIPS(]) HDR-VDP-2 (1) PSNR (1) SSIM (1) LPIPS(]) HDR-VDP-2 (1) PSNR (1) SSIM (1) LPIPS(]) HDR-VDP-2(})
Lee et al. [6 19.56 0.7920 0.2096 53.86 + 4.46 21.07 0.9017 0.1362 39.21 +£2.94 19.20 0.8363 0.2012 39.03 £+ 2.79
Endo et al. |3 21.60 0.8493 0.1592 54.56 £ 4.29 24.27 0.9243 0.1404 39.32 £2.93 15.27 0.7342 0.2664 39.09 + 2.84
Ours 23.74 0.8916 0.1231 55.69 + 5.01 25.67 0.9434 0.0802 3942 £2.95 16.34 0.8035 0.1722 39.30 £ 2.90

Table 1: Quantitative comparisons on HDR images using different HDR merging methods.

Reinhard et al. [9)]

Photomatix [4]

Tone-mapping Method

PSNR (1) SSIM (1) LPIPS ({) PSNR (1) SSIM (1) LPIPS (})
Lee et al. [6] 27.97 0.9584 0.1118 23.85 0.9282 0.1362
Endo et al. 3] 29.99 0.9618 0.1257 25.98 0.9451 0.1482
Ours 32.08 0.9819 0.0508 28.01 0.9663 0.0723

Table 2: Quantitative comparisons on tone-mapped images with existing methods using Debevec and Malik [2] merging

algorithm.

Reinhard e al. [9]

Photomatix [4]

Tone-mapping Method

PSNR (1) SSIM (1) LPIPS (}) PSNR (1) SSIM (1) LPIPS (})
Lee et al. [6] 25.29 0.9271 0.1628 21.27 0.8758 0.1986
Endo et al. [3] 22.49 0.9271 0.1984 23.49 0.8967 0.2350
Ours 23.89 0.9522 0.1004 20.34 0.9015 0.1350

Table 3: Quantitative comparisons on tone-mapped images with existing methods using Robertson et al. [|[10] merging

algorithm.

creases the width and height of the feature map. In this struc-
ture, we add skip-connections between encoder and decoder
layers so that the characteristics of low-level features are
reflected in the output. The down-sampling block consists of
a convolutional layer followed by one batch normalization
layer [5] and ReLU activation function. The up-sampling
block contains a sub-pixel convolution layer [1] and one con-
volutional layer instead of a deconvolution layer or resized
convolution [8]] as Aitken et al. [1] showed that the sub-
pixel convolution has more modeling power with the same
computation as resize convolution [8]. The convolutional
layer’s output then gets passed onto the batch normalization
layer and one Leaky ReLU activation function. The same
architecture is used for all three sub-networks except for the
output convolutional layer of these.

In our implementation, our choice of U-Net for each sub-
network consists of 7 levels. Each level has two convolution
layers with a kernel size of 3 x 3, a stride of 1, and padding
of 1. The input is first extracted into 16 and 32 features in
HDR Encoding Net and Up/Down-Exposure Net, respec-
tively. The number of features then doubled at each level
until reaching 256 features for HDR Encoding Net and 512
for Up/Down-Exposure Net. In the decoder, the extracted
features get channel-wise concatenation from the previous
level encoder at each level’s start. The last convolution layer
in each sub-network applies 1 x 1 kernel to combine feature

maps. We define each sub-network to produce a 3-channel
output.
HDR Encoding Net. In the HDR Encoding Net, the last
layer contains one convolutional layer followed by tanh ac-
tivation function and normalization. Mathematically, given
the output features from the convolutional layer as F', our
network A7 output is:

X =

(tanh(F) + I +1) (1)

W =

with I is the input image for this network, and X is the
sensor exposure representation of its image. The tanh ac-
tivation function’s output gets added with the input image
before feeding into the following network. As tanh’s out-
put value is within the range of [—1, 1] thus can be seen as
a global adjustment on the input image /. With this, the
network can better find a representation that is suitable to
generate different exposure images. Then, as the physical
property of sensor irradiance can only have positive values,
we normalize the output to scale negative values after the
previous adjustment. We experimented and decide to use
the tanh activation function instead of ReLU as it showed
stable training and faster convergence under the use of tanh.
Up/Down-Exposure Net. As for Up and Down-Exposure
Net, the two sub-networks have to output the longer and
shorter exposures, respectively. For this reason, the last layer
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Figure 1: At inference, we take a single image as input and predict multiple exposures by passing the image to Up-Exposure
and Down-Exposure Net and varying the exposure time At. The HDR image can be reconstructed from multiple exposures

and tone-mapped using traditional methods.

is the combination between a convolutional layer followed
by the normalized tanh activation function that is defined
as:

tanhpom(z) = = (tanh (z) + 1) 2)

N | =

The activation output of the function will lie within [0, 1],
which can be seen as the normalized image. We opt for
this function as tanh has stronger gradients than the usual
sigmoid o (z) which helps speed up the learning process. We
then can use other reconstruction loss functions to optimize
the network.

Masked Regions. As mentioned before, our model takes
input with masked over- and under-exposed regions. The
input images first convert from RGB into YUV color space.
Then based on the luma component Y of the image, we
identify which pixel is over- or under-exposed. Particularly,
we denote A (.) as the indicator function for the well-exposed
regions of image:

L=LoAIL), i=12 3)

The function outputs a soft mask within the range [0, 1] that
helps to define how well-exposed each pixel is. The value
of 1 indicates that the pixel is well-exposed. Conversely, the
0 value is assigned to the pixels that are under-exposed or

saturated. Mathematically, A (/) is formulated as:

max (0, (1 —~) — 1)

A(I)=1- e
Ar(D) =1~ maxl(o_’fv —)
A (I) = max (A1 (I), Az (1)) @)

where -y is the threshold to determine whether a pixel is
over/under-exposed or not. In our implementation, we
choose v = 0.05. An example of the masks is shown in

Fig.[2]
3.2. Inference process

At inference, we take the input image and pass it to the
network to generate multiple exposures. Our network allows
us to vary the exposure time to obtain an image bracket
with exposures from EV_s to EV o, respectively. We then
apply traditional HDR reconstruction to merge the predicted
exposures into the final HDR image. Figure [I|demonstrates
our inference process.
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Figure 2: An example of the masks that are applied to the
input images before passing through our model.
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Figure 4: Predicted multi-exposure images. The predicted stack matches the ground truth very well in terms of color and
contrast. Input is EVy,.
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PSNR 17.71 25.11 20.16 24.22
SSIM 0.8277 0.9432 0.8696 0.9444

PSNR 18.64 18.46 19.84 19.24
SSIM 0.8682 0.8673 0.9187 0.9127

PSNR 17.55 18.95 25.93 28.67
SSIM 0.8400 0.8847 0.8559 0.9633

Figure 5: Tone-mapped HDR images comparison between ours, DrTMO , Deep Recursive HDRI |]§|], and SingleHDR
on nature scenes.



Reference DRHDRI DrTMO SingleHDR Ours

PSNR 21.58 24.68 27.70 25.11
SSIM 0.8614 0.9360 0.8951 0.9440

PSNR 22.09 26.20 21.20 27.09
SSIM 0.8709 0.9505 0.9282 0.9641

PSNR 17.80 22.16 21.07 26.13
SSIM 0.8359 0.8781 0.8104 0.9246

Figure 6: Tone-mapped HDR images comparison between ours, DrTMO [3|], Deep Recursive HDRI [6]], and SingleHDR 7]
on outdoor scenes.



Input Reference DRHDRI DrTMO SingleHDR Ours

PSNR 20.37 29.46 29.20 31.65
SSIM 0.9306 0.9737 0.9757 0.9857

PSNR 25.17 29.66 28.51 28.83
SSIM 0.9414 0.9698 0.9798 0.9820

Figure 7: Tone-mapped HDR images comparison between ours, Dr'TMO , Deep Recursive HDRI @], and SingleHDR
on indoor scenes.



