Improving the Robustness of Point Convolution on
k-Nearest Neighbor Neighborhoods with a
Viewpoint-Invariant Coordinate Transform

Supplementary Material
Xingyi Li, Wenxuan Wu, Xiaoli Z. Fern, and Li Fuxin

School of Electrical Engineering and Computer Science, Oregon State University
{lixin, wuwen, xfern, lif}Qoregonstate.edu

Input mIOU
XYZ 23.36
VI descriptor | 27.62

Table 1: mIOU results on ScanNet for DGCNN [8].

1 Experiment with DGCNN

To study the effectiveness of the VI descriptor on other point cloud convolution frameworks, we
replace edge inputs with VI descriptors on DGCNN][8], and the mIOU on ScanNet validation set
improved by about 4% (Table 1). It justified that the VI descriptor is quite useful in other point
cloud networks as well. DGCNN does not work well on this dataset because it does not include
downsampling and upsampling layers, hence unable to incorporate global context. Our literature
search found no other reference applying it on this dataset. Other prior work, e.g. PointNet, did not
consider point-point relations hence cannot benefit from VI. Since a proper convolutional network
(e.g. PointConv) outperforms most of these non-convolutional networks on point clouds, we felt
putting the emphasis of our analysis on PointConv is appropriate.

2 Additional details for the ScanNet experiment

2.1 Model Architectures

Table 3 demonstrates the 16-layer architecture of the network used in the paper. For general
hyperparameters, we set the learning rate to 1072 with Adam optimizer, the weight decay to 107>,
the number of neighbor points for kNN to 8, and the number of sub-sampled points for each
point cloud to 10°. In the case of VI-PointConv, we will just substitute all PointConv layers to
VI-PointConv layers.

2.2 4-Layer Architecture

Table 2 demonstrates a the same 4-layer model as in the paper [9].

Layer name

Layer description

Convl PointConv 48 kernels w/ ReLU
Subsamplingl voxel subsampling with voxel size 0.05
Conv2 PointConv 96 kernels w/ ReLU
Subsampling?2 voxel subsampling with voxel size 0.1
Conv3 PointConv 144 kernels w/ ReLU
Subsampling3 voxel subsampling with voxel size 0.2
Conv4 PointConv 192 kernels w/ ReLU
Subsampling4 voxel subsampling with voxel size 0.4

BottleNeck Conv

PointConv 240 kernels w/ ReLU

Upsampling4 retrieve results before Subsampling4
DeConvl PointDeConv 192 kernels w/ ReLU
Upsampling3 retrieve results before Subsampling3
DeConv2 PointDeConv 144 kernels w/ ReLU
Upsampling2 retrieve results before Subsampling?2
DeConv?2 PointDeConv 96 kernels w/ ReLU
Upsampling1 retrieve results before Subsamplingl
DeConv?2 PointDeConv 48 kernels w/ ReLU

Output Conv

1x1 convolution

Softmax layer

Table 2: The network architecture (4-layer) for ScanNet experiments. Every convolutional layer is
followed by a ReLU layer.

2.3 Extra Performance Reports for the 16 Layer Architecture

We provide more detailed results for the ScanNet experiment, starting from Table 5. The first row
of each Table indicates the number of subsampled points, and the first column represents rotation
angles. Note that the performance differences under each column are not significant, which indicates
that frameworks are robust against rotations. However, the performance decreases as the number
of sampled points gets smaller and smaller. When the 3D coordinates input is replaced with our
novel viewpoint-invariant descriptor, the performance and robustness are significantly improved for
PointConv networks.

3 Speed Analysis for SemanticKITTI Validation Dataset

We reported the running time on the SemanticKITTI Validation Dataset [1] for several popular
related work in Table 4. The dataset contains 4,071 point clouds and the model we selected is the
one as in Table 3. Compared with PointConv [9], our approach increased 0.02% on the number
of parameters and 15.9% on the running time. The setup is the same as in [2] with a single 2080
Ti GPU and 81,920 points per point cloud. The benefit of our approach is that our model can
accept any number of input points, and 1.4M is the maximal amount of points for each point cloud
in SemanticKITTI dataset [1]. PointConv and VI-PointConv is faster than KPConv [7] due to
k-nearest neighbors inducing the same amount of neighbors at each point, whereas with e-ball the
amount of neighbors is variable, reducing the efficiency of vectorization. Especially, in terms of the
pre-processing time, which includes computing of the nearest neighbors, there is a significant
benefit (4x faster) of kNN versus the e-ball used in KPConv on the same amount of points (81,920
per point cloud), as shown in Fig. 1 (c) of the main paper. RandL A-Net is significantly faster than

Layer name

Layer description

Convl-1 PointConv 48 kernels w/ ReLU
Conv1-2 PointConv 48 kernels w/ ReLU
Convl-3 PointConv 48 kernels w/ ReLU
Conv1-4 PointConv 48 kernels w/ ReLU
Subsampling1 voxel subsampling with voxel size 0.05
Conv2-1 PointConv 96 kernels w/ ReLU
Conv2-2 PointConv 96 kernels w/ ReLU
Conv2-3 PointConv 96 kernels w/ ReLU
Conv2-4 PointConv 96 kernels w/ ReLU
Subsampling?2 voxel subsampling with voxel size 0.1
Conv3-1 PointConv 144 kernels w/ ReLU
Conv3-2 PointConv 144 kernels w/ ReLU
Conv3-3 PointConv 144 kernels w/ ReLU
Conv3-4 PointConv 144 kernels w/ ReLU
Subsampling3 voxel subsampling with voxel size 0.2
Conv4-1 PointConv 192 kernels w/ ReLU
Conv4-2 PointConv 192 kernels w/ ReLU
Conv4-3 PointConv 192 kernels w/ ReLU
Conv4-4 PointConv 192 kernels w/ ReLU
Subsampling4 voxel subsampling with voxel size 0.4

BottleNeck Conv

PointConv 240 kernels w/ ReLU

Upsampling4 retrieve results before Subsampling4
DeConv4 PointDeConv 192 kernels w/ ReL.U
Upsampling3 retrieve results before Subsampling3
DeConv3 PointDeConv 144 kernels w/ ReL.U
Upsampling2 retrieve results before Subsampling?2
DeConv2 PointDeConv 96 kernels w/ ReLU
Upsampling1 retrieve results before Subsamplingl
DeConvl PointDeConv 48 kernels w/ ReLU

Output Conv

1x1 convolution

Softmax layer

Table 3: The network architecture (16-layer) for ScanNet experiments. Every convolutional layer
is followed by a ReLU layer.

Method Feedforward time | Preprocessing time | Parameters | Maximum inference points
(seconds per frame) (seconds per frame) (millions) (millions)

PointNet [5] 0.047 - 0.8 0.49
PointNet++ [6] 241 - 0.97 0.98
PointCNN [4] 2.00 - 11 0.05
SPG [3] 10.70 - 0.25 —
KPConv [7] 0.18 0.83 14.9 0.54
RandLA-Net [2] 0.045 0.013 1.24 1.03
PointConv [9] 0.13 0.20 15.4896 1.4
VI-PointConv (ours) | 0.15 | 0.20 | 154914 1.4

Table 4: The computation time, network parameters and maximum number of input points of
different approaches for semantic segmentation on Sequence 08 of the SemanticKITTI [1] dataset.

Rotation angle | 60k 40k 20k 10k 5k
0° 60.8 | 59.7 | 55.3 | 44.4 | 32.5

90° 60.8 | 59.7 | 54.8 | 44.7 | 32.1

180° 60.3 | 59.6 | 54.7 | 44.7 | 324
270° 60.8 | 59.6 | 55.2 | 45.0 | 32.0

Rotation angle | 60k 40k 20k 10k 5k
0° 58.7 | 58.0 | 54.5 | 46.1 | 36.3

90° 58.7 | 58.0 | 53.6 | 46.0 | 36.3

180° 59.0 | 57.2 | 54.1 | 46.6 | 35.6
270° 58.1 57.9 | 54.5 | 46.3 | 36.2

Table 5: Performance results (mloU,%) for the settings
of KNN, VI descriptors as inputs for the MLP, and the
network is trained with rotation augmentation.

Table 6: Performance results (mIoU,%) for the same set-
tings as Table 5, expect that the network is trained with-
out rotation augmentation.

Rotation angle | 60k 40k 20k 10k 5k
0° 58.8 | 53.5 | 35.0 | 17.9 | 10.0
90° 58.6 | 53.2 | 343 | 17.6 | 9.9
180° 58.6 | 53.4 | 34.6 | 17.9 | 10.0
270° 58.8 | 53.5 | 34.5 | 17.8 | 9.9

Rotation angle | 60k 40k 20k 10k 5k
0° 54.2 | 51.1 | 40.4 | 27.3 | 16.1
90° 53.8 | 50.9 | 40.6 | 27.4 | 15.7
180° 54.0 | 51.1 | 40.6 | 27.3 | 16.1
270° 54.1 | 51.6 | 40.6 | 27.6 | 16.1

Table 7: Performance results (mloU,%) for the settings
of KNN, (z,y, z) coordinates as inputs for the MLP, and
the network is trained with rotation augmentation.

Table 8: Performance results (mIoU,%) for the same set-
tings as Table 7, expect that the network is trained with-
out rotation augmentation.

PointConv and VI-PointConv, however has significantly worse performance on the dataset.

References

1]

8]

[9]

J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stachniss, and J. Gall. SemanticKITTI: A
Dataset for Semantic Scene Understanding of LIDAR Sequences. In Proc. of the IEEE/CVF International
Conf. on Computer Vision (ICCV), 2019.

Qingyong Hu, Bo Yang, Linhai Xie, Stefano Rosa, Yulan Guo, Zhihua Wang, Niki Trigoni, and Andrew
Markham. Randla-net: Efficient semantic segmentation of large-scale point clouds. Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2020.

Loic Landrieu and Martin Simonovsky. Large-scale point cloud semantic segmentation with superpoint
graphs. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2018.

Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Pointcnn: Convolution
on x-transformed points. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, editors, Advances in Neural Information Processing Systems 31, pages 820-830. Curran
Associates, Inc., 2018.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets for
3d classification and segmentation. arXiv preprint arXiv:1612.00593, 2016.

Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature learning
on point sets in a metric space. arXiv preprint arXiv:1706.02413, 2017.

Hugues Thomas, Charles R. Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui, Francois Goulette, and
Leonidas J. Guibas. Kpconv: Flexible and deformable convolution for point clouds. Proceedings of the
IEEE International Conference on Computer Vision, 2019.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M. Solomon.
Dynamic graph cnn for learning on point clouds. ACM Transactions on Graphics (TOG), 2019.

Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep convolutional networks on 3d point clouds.
In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

