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A. Network Details
Our code base is built upon MMSegmentation [3].
A.1. Stereo Network

We use HITNet [ ! 1] as our per-frame stereo network to
extract disparity and features on a per-frame basis. HITNet
builds a initial cost volume with a pre-specified disparity
range. In our implementation, we set the maximum dispar-
ity to be 320 following the original implementation. The
channel size of extracted features is 24, which is used in fu-
sion network to evaluate disparity confidence. The memory
state generated by the stereo network includes the frame-
wise estimated disparity, the feature of left and right images
at the 1/4 resolution for disparity confidence computation,
and left RGB image.

Our HITNet code is adapted from open-sourced imple-
mentation'? in PyTorch [9] and confirmed by the authors
of HITNet. We note that the HITNet adapted is based
on Table 6 of [11] instead of the HITNet XL or HITNet
L in Table 1 of [11]. As HITNet works across different
datasets (Table 2-4 in [1 1]), we have chosen HITNet as our
stereo network. As described in Sect.4.2, we remove pix-
els with extreme scene flow (>210px) and disparity (<1px
or >210px). These removed pixels correspond to unreal-
istically fast, far or close objects during simulation, which
are not considered in our intended applications such as aug-
mented reality. In comparison, [ 1] removes pixels with
disparity >192px. Thus, the reported per-pixel accuracy
performance differs slightly on FlyingThings3D.

A.2. Motion Network

Our motion network builds on top of RAFT3D [I3].
Specifically, we adapt the inter-frame transformation T esti-
mation process. We first provide the necessary background
of the estimation process and detail the difference between
our motion network and RAFT3D next paragraph. Let p
be a location in pixel coordinates and P be a location in
Cartesian coordinates. RAFT3D uses a context extractor
to provide semantic information for object grouping, and a
feature extractor for cross-frame correspondence matching.
A piece-wise rigid constraint is realized by grouping pixels
based on their motion and appearance similarities and en-
forcing the motion within a group to be the same. The GRU

Uhttps://github.com/MJITG/PyTorch-HITNet-Hierarchical-Iterative-
Tile-Refinement-Network-for-Real-time-Stereo-Matching
Zhttps://github.com/meteorshowers/X-StereoLab

module takes the image context feature, correlation infor-
mation, current estimated transformation, and correspond-
ing scene flow as input. The GRU then makes corrections
AsF to the scene flow, extracts a set of rigid-embeddings V
and associated confidence of estimates w. A differentiable
Gauss-Newton (GN) optimization step is performed to up-
date the transformation based on the residual error (Eq. (1)).
The update scheme is iterative for K steps, with the trans-
formation T° and flow s° initialized to identity and zero
respectively. Given the i-th pixel at ¢ — 1 and its local m
neighborhood pixels AV;;, (i), the k-th iteration residual error
to be minimized is:
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EFG)= > Villpj+sf —m(e“ T 'P))low,

JEN M (1)
(1
sh=7(T;'P;) — p; + Ash 2)
Vij = Vi = Vjll2 &)

where eS¢ is the incremental motion on the SE3 manifold
to be made to the previous transformation T' f -1 s;? is the
raw predicted scene flow, || - [|2,w is weighted £ norm, w ;
is the flow confidence, and V;; is the {5 distance of rigid-

embeddings. The updated transformation is T = et TR,
The final scene flow induced transformation from transfor-
mation prediction T in image coordinate can be computed
as:

sr=m(T7~"(p)) — p @)
The magnitude sy and confidence w; of the flow is used
later in fusion network.

The difference between the transformation T prediction
process of our motion network and RAFT3D is summa-
rized in this paragraph. As shown in Eq. (1), the similar-
ities between rigid embeddings of pixels critically deter-
mines if two pixels are grouped together as the same ob-
ject. Thus, generating high-quality rigid embeddings has
a direct impact of motion accuracy. Originally, RAFT3D
uses a pre-trained ResNet-50 [4] as the context extractor to
provide semantics information. Instead, we replace the pre-
trained ResNet-50 with a network similar to HRNet [15]
that aggregates the context information in a hierarchical
level. An overview is shown in Fig. 1. The context extrac-
tor extracts the semantic information from four resolutions
—-1/4,1/8,1/16 and 1/32 resolutions. We use bilinear up-
sampling to resize all feature maps to the 1/8 resolution
and use one 1 x 1 convolution to aggregate the informa-
tion. Compared to ResNet-50, which has 40M parameters,
our context extractor only has 3M parameters. We found
that our motion network outperforms RAFT3D on the Fly-
ingThings3D [7] dataset while having 1/5-th of the param-
eters of RAFT3D. In our implementation, we use the RGB
image as semantic input instead of features from stereo to
reduce dependency on the stereo network.
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Figure 1: Overview of context extractor.

Once inter-frame motion T is recovered, we use differen-
tiable rendering [10] to forward-project all feature maps [6]
from previous frame to current frame, which is equivalent
to Lagrangian flow where pixels of past frame are pushed
to current frame. This is in contrast to Eularian flow, where
pixels are pulled [1], which is proposed in Spatial Trans-
former [5] and implemented as the “grid_sample” function
in PyTorch [9].

We evaluate the accuracy of the transformation map T
of our motion network because accurate motion prediction
is critical to our process. We compare the performance of
our motion network and RAFT3D in Tab. 1. To quantify
accuracy of T, we report the flow EPE (FEPE) on optical
flow FEPE®f and scene flow FEPE®, and threshold metrics
of 1px following [13]. We evaluate the performance in two
settings, 1) taking the ground truth disparity as input and 2)
taking the noisy stereo disparity estimates as input. For fair
comparison, we re-train RAFT3D using our training setup
and report its result. CODD performs better than RAFT3D
in both FEPE*" and FEPE®' regardless of the input type, with
only 1/5-th of the parameters of RAFT3D.

A.3. Fusion Network

The fusion network uses a set of input cues to deter-
mine the Wieger and Wyysion. FOT appearance correlation, we
project the input features from stereo network to a feature
dimension of 32. The fusion weight is then regressed at

Table 1: Ablation study of the transformation prediction T
of the motion network. GT: ground truth disparity as input.
S: stereo network disparity estimates as input. : official
checkpoint.

Table 2: Results with different stereo networks on Fly-
ingThings3D [7].

| FEPE" 55t | FEPEY & | Parameters
RAFT3D (GT) [13]1 | 2.145 0.131] 2.177 0.138 | 45.0M
RAFT3D (GT)[13] | 1.808 0.133 | 1.847 0.141 | 45.0M
Motion (Ours, GT) | 1.754 0.127 | 1.793 0.135| 8.5M
RAFT3D (S)[13] | 2458 0.149 | 2.514 0.158 | 45.0M
Motion (Ours,S) | 1.902 0.134 | 1.949 0.142| 8.5M

| TEPE &y, | TEPE: &gy | EPE 3

STTR 0.482 0.014 | 11.434 0.374 | 0.449 0.014
STTR + CODD | 0.448 0.017 | 10.109 0.290 | 0.454 0.014
PSMNet 1371 0.056 | 35.136 0.466 | 1.079 0.045
PSMNet + CODD | 1.266 0.052 | 31.958 0.354 | 1.052 0.044
GwcNet 0.959 0.041 | 22.598 0.409 | 0.752 0.032
GwcNet + CODD | 0924 0.039 | 19.953  0.402 | 0.726  0.032

1/4 resolution for better context awareness while the reset
weight is regressed at the full resolution for better outlier
rejection.

B. Qualitative Visualization
B.1. Space-time volume

Similar to [18], we visualize the network’s output by
concatenating the predictions over the temporal axis to build
a space-time volume on the MPI Sintel dataset. We then
take a slice along the horizontal axis and visualize the depth
prediction over time in Fig. 2. Even though this does not
trace the same object point over time, it gives insights of
how stable the model’s prediction temporally. We find that
CODD contains less high frequency variation compared to
the per-frame model.

RGB

Ground truth

Stereo

CODD (Ours)

Figure 2: Space-time volumes created from MPI Sintel
dataset [2]. (a)-(b) RGB images of the start and end of the
video sequence. The blue line indicates the horizontal slice
taken. (c) RGB of the space-time volume slice. (d)-(f) Dis-
parity of the space-time volume slice. The high frequency
noise of the stereo prediciton is successfully removed with
our CODD framework, as highlighted in the black boxes.
© copyright Blender Foundation | durian.blender.org
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Figure 4: (a) Distribution of TEPE. (b) Pixel-wise improve-
ment comparison. Diagonal line indicates break-even.

B.2. Improvements over Per-frame Stereo

We visualize the improvements over stereo qualitatively
in Fig. 3. As ground truth disparity constantly increases, the
stereo predictions vary frequently. By incorporating tempo-
ral information, CODD removes many of the temporal jitter
of the stereo prediction and outputs more consistent and ac-
curate estimates.

We plot the distribution of TEPE comparing our and
stereo’s results in Fig. 4. We find that CODD success-
fully reduce TEPE across different magnitudes as shown
in Fig. 4a, suggesting more consistent predictions across
time. To understand how the performance of each pixel has
changed instead of the whole image, we additionally plot
the TEPE of each pixel of stereo network and CODD in
Fig. 4b with one-to-one correspondence, where the diago-
nal line indicates break-even (i.e., TEPE of both networks
are the same), top left region indicates that CODD success-
fully reduces the TEPE, and bottom right region indicates
that CODD makes the TEPE larger. As most of the plotted
points are clustered in the top left region, i.e., our TEPE is
smaller than stereo network TEPE, CODD reduces TEPE
of the stereo network for the majority of the pixels. We note
that even in the cases where the TEPE of stereo network is
large (y-axis), CODD can reduce the error close to zero (x-
axis), suggesting large improvements in terms of temporal
consistency over the stereo network for these cases.

C. Additional Experiments

We include additional experiments that sheds light on
CODD in the following sections.

C.1. Using Different Stereo Networks

We present additional experiments on FlyingThings3D
[7] to demonstrate that our framework works with different
stereo networks. We follow the same experiment setup as
Sect.5.2 and use other stereo networks to produce the per-
frame disparity estimates. Tab. 2 summarizes our findings,
which are consistent with our findings for HITNet. We note
that all metrics improves with the introduction of our mo-
tion and fusion networks, with the only exceptions of STTR
5", EPE and GwcNet 8t,,. The results suggest that our
proposed framework in theory should be applicable to other
stereo networks.

C.2. End-to-End Fine-tuning

We note that our framework is designed to be end-to-end
differentiable. Thus, during fine-tuning, we can in theory
directly fine-tune all components together, instead of first
fine-tuning the stereo network and then the other compo-
nents. However, due to the gradients from different losses
back-propagating to the stereo network, in comparison to
only the stereo losses in the case of per-frame stereo net-
work, end-to-end fine-tuning may not be a fair comparison.
Thus, we report these additional results in appendix.

Denoting the loss of stereo network as /g, the loss of
motion network as £y, and the loss of fusion network as /g,
during end-to-end fine-tuning, the total loss is the weighted
sum of all sub-network losses:

leoe = asls + ambém + aple . 5)

We use ay = 0.5 while keeping s = ar = 1.0 in our
experiments to balance the losses. A batch size of 16 is
used for end-to-end fine-tuning due to memory constraint.
All learning rates are linearly decayed from 2e—5 following
the learning rate of the per-frame stereo model.

The results on different benchmarks are summarized in
Tab. 3, where the end-to-end training (E2E) result is compa-
rable to the stage-wise fine-tuning results in Sect.5.3. Other
than TartanAir, end-to-end fine-tuning leads to better re-
sults. In either training setup, our results are favorable com-
pared to the per-frame results. The results suggest that our
framework is not sensitive to the specific training strategics
we have used.

C.3. Zero-shot Generalization

Dataset We report zero-shot generalization results of our
pre-trained network from FlyingThings3D on the TartanAir,
KITTI Depth and MPI Sintel dataset finalpass [2]. MPI Sin-
tel contains animated characters with deformation. It con-
tains 23 video sequences, totaling 1064 images.



Table 3: End-to-end fine-tuning results. Ours: Fine-tune
stereo network first and then freeze its parameters. Ours
(E2E): end-to-end fine-tuning.

| TEPE &, | TEPE: &l | EPE &

Stereo [11] | 0.876 0.053 | 9.039 0.339 | 0.934 0.055
] CODD 0.751 0.045 | 6.206 0.240 | 0.904 0.053
CODD (E2E) | 0.763 0.047 | 6.976 0270 | 0.905 0.052

Stereo [11] | 0.289 0.001 | 3.630 0.156 | 0.423 0.004
CODD 0.258 0.001 | 2.764 0.132 | 0.418 0.003
CODD (E2E) | 0.251 0.001 | 2.408 0.129 | 0.409 0.003

Stereo [11] | 0.570 0.026 | 10.672 0.126
CODD 0.507 0.022 | 8.740 0.112 08110033
CODD (E2E) | 0.505 0.024 | 8.132 0.111 | 0.806 0.032

Tartan Air
dataset [

KITTI Depth
dataset [ 14]

KITTI 2015
dataset [8]

Table 4: Zero-shot generalization experiments on MPI Sin-
tel [2] datasets. All networks are trained only on FlyingTh-
ings3D [7].

| TEPE 0%, | TEPE, 4y, | EPE 3

Stereo [11] 2.621 0.127 | 298.674 0.515 | 5.028 0.199
Kalman Filter [17] | 2.583 0.126 | 287.456 0.460 | 5.027 0.199
CODD (Ours) | 2270 0.092 | 191.445 0.439 | 5.009 0.199

Results As shown in Tab. 4, our model is able to general-
ize well onto a new data domain and significantly improves
over the per-frame stereo [11] and Kalman filter [17] in
terms of temporal metrics, up to 36% (TEPE,: from 298.674
to 191.445). CODD also outperforms the competing ap-
proaches in terms of EPE.

C.4. Additional Fusion Network Ablation

We provide additional ablation experiments to further
understand how different design choices may affect the per-
formance in Tab. 5.

Correlation window We experiment with different correla-
tion window size W to see the effect of increasing receptive
field. We increase the correlation window size of correlation
from 3 to 5 or 7, with a constant dilation of 2. We do not
observe significant benefits of increasing the window size.
The result suggests that a window size of 3 with dilation 2
already provides enough information for the network. Our
final model uses a window size of 3 for efficiency.

Correlation type In addition to our proposed pixel-to-patch
correlation, we also experiment with: 1) pixel-to-pixel cor-
relation, where correlation values are obtained pixel-wise,
and 2) patch-to-patch correlation, where correlation values
are computed pixel-wise over the whole patch. We find that
pixel-to-patch correlation performs best across all metrics.

D. Dataset Details

For long sequences (several thousands), we chunk the
video into sub-sequences of 50 frames following [2].

Table 5: Additional ablation studies of fusion network.
Underline: the base configuration.

| TEPE 6%, | TEPE, &lgp, | EPE  d3p

Correlation 3 0.756  0.035] 15.013 0211 | 0.604 0.029
window 5 0.756  0.035 | 15.005 0.210 | 0.603 0.029
w 7 0.756 0.035 | 15.014 0.210 | 0.603 0.029
Correlation | PiXel-to-patch | 0.756 0.035 | 15013 0.212 | 0.604 0.029
Type pixel-to-pixel | 0.758 0.036 | 15.103 0.211 | 0.610 0.030
patch-to-patch | 0.759 0.035 | 15.134 0.210 | 0.609 0.030

Table 6: Comparison of training schemes for stereo depth
network on the FlyingThings3D datset [7].

| TEPE | TEPE, | EPE

0.821 | 16.450 | 0.609
0.998 | 19.199 | 0.715

default training
multi-frame training

FlyingThings3D: We follow the official split information.

TartanAir: We validate on the seasonforest sequence and
test on the carwelding sequence.

KITTI Depth [14]*: We follow the official split on the
KITTT Depth dataset, except the People scene for train-
ing due to little variation. We use the last training se-
quence 2011_10_03_drive_0042_sync for validation. Due to
the missing ground truth optical flow information, we use
an off-the-shelf network to generate the optical flow infor-
mation [12] and use forward-backward flow consistency to
determine flow occluded regions and outliers. The disparity
change is then computed from optical flow.

KITTI 2015 [8]*: We use a 5-fold split that splits the data
into train, validation, test data.

E. Training Stereo Depth Network in Multi-
frame Setting

One of the simplest idea we have tried to improve tem-
poral consistency of stereo depth network is to train stereo
networks in a multi-frame setting instead of randomly sam-
pling images from the whole dataset. For fair comparison,
we reduce the cropping height by two times and insert a
subsequent frame from the same video sequence, such that
the total number of pixels that the network sees is the same.
However, we find this does not perform well compared to
original training scheme as shown in Tab. 6, which may be
attributed to the reduced diversity in the sample size.

F. Optical Flow as Alignment Mechanism

One alternative to our motion network is to predict an
inter-frame optical flow (i.e. without disparity change com-
pared to scene flow) to provide past information. However,

3http://www.cvlibs.net/datasets/kitti/eval _depth_all.php
“http://www.cvlibs.net/datasets/kitti/eval _scene_flow.php



since depth is not translation invariant, the past informa-
tion can only provide past trending information instead of
directly aggregated. As a proof-of-concept, we replace the
motion network with the ground truth optical flow provided
to test the optical flow idea. However, we find that the tem-
poral stability often doesn’t benefit from the past informa-
tion, and in fact, becomes worse on the FlyingThings3D
dataset.
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