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Figure 8: Example scenarios of the DRAMA dataset. Risks are perceived while interacting with different vehicles
in (a-c), infrastructure in (d), cyclists (e,f), and pedestrians(g-i).

A. Additional Analysis of DRAMA

A.1. Example Scenarios

We visual various scenarios of our DRAMA dataset
in Figure 8. Each scenario includes video- and agent-
level attributes annotated from sequence and motion
observations. Some actions of vehicles such as turning
left, stopped, lane changing are shown in Figure 8a-8c
respectively in various interactive environments (inter-
section, wide and narrow road) where the reasoning of

the important object is described by ‘because of traffic
light’ in 8a, ‘because it is being unloaded’ in 8b, ‘ be-
cause of a stopped vehicle’ in 8c, respectively. We show
cyclists interacting with the ego car at ‘intersections or
crosswalks’ in 8e and ‘narrow roads or driving in ego
lane’ 8f. Pedestrians are also identified as important
agents interacting with the ego-car while performing
different actions such as ‘standing’, ‘pushing’,‘crossing
the street’ as shown in Figure 8g-8i. Their importance
is reasoned by behaviors like ‘because of parked vehicle’
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Object-level Q/A Attributes Bounding Box Captioning
Class visual attr motion attr location motion direc ext fact no of normalized unique total
(what) (which) (which) (where) (where) (why) boxes mean box size words occurrences

Veh 24,546 13,829 12,350 10,462 14,712 12,273 0.0846 533 214,511
Ped/Cyc 7,338 3,829 3,454 3,571 4,080 3,344 0.0405 608 75,576
Inf 3,154 - 1,505 - - 1,449 0.0102 268 16,616
All 35,038 17,658 17,309 14,033 18,792 17,066 0.0697 992 306,708

Table 4: The statistics of obect-level Q/A attributes, bounding box, and captions.

in 8g and ‘because there is no side walk’ in 8h. In case
of Figure 8i, the risk is caused by internal stimuli rather
than affected by external influences, so WHY is not an-
notated in this scenario. Similarly, the infrastructure
only has visual and location questions in Figure 8d.

A.2. Statistics

We show the data statistics of DRAMA in Table 4.
Note that video-level Q/A attributes are not included
in the table as the annotated number is same as the
number of scenarios (17,785).

The visual attributes for vehicles are 2 per a bound-
ing box on average (PBA) as they can be described by
the color and type of the vehicle. Whereas, pedestri-
ans/cyclists has 2.19 PBA, which indicates these agents
have more descriptive representations. The visual at-
tributes for the infrastructure usually include it’s state
and name, PBA is measured at 2.17. The motion at-
tributes for vehicles is 1.12 PBA, as it describes the
motion state like stopped, parked, etc. Similarly for
pedestrians/cyclists, it is 1.14 PBA. The location at-
tributes for vehicles, pedestrians/cyclists, and infras-
tructure are respectively 1.00, 1.03, 1.06 PBA. The
motion direction for pedestrian/cyclists is 1.06 PBA,
which is higher than that of vehicles (0.85 PBA). This
is mainly because most of the influence happens when
pedestrians/cyclists cross the road or cyclists move
slowly away/towards the ego-car, which requires more
descriptions. On the other hand, in case of vehicles,
they are identified important when they slow down (or
braking) in front of the ego-vehicle without describing
the direction. The external factors or second level of
reasoning (reasoning for the important agent’s behav-
ior) for vehicles is 1.20 PBA and pedestrians/cyclists
1.22 PBA. The infrastructure neither moves nor gets
influenced by other external factors, so the last two
columns in agent level VQA attributes in Table 4.

The bounding box proportions across different ob-
ject categories are also shown in Table 4. The vehi-
cle bounding boxes are the most dominant ones 12,273
(71.91%) of the all the boxes. The normalized mean
bounding boxes size (NMBS) of the vehicle category
is 8% from the entire image as they are often very

close to the ego-vehicle. There are 2,909 pedestrians
and 435 cyclists, which is 19.19% of all the bounding
boxes in the DRAMA dataset. The NMBS of this ob-
ject category is 4% of the image. We can infer that
the ego-car slows or stops from a distant location when
their sizes are small from the egocentric perspective.
The bounding boxes of infrastructure are the least per-
centage 1,449 (8.49%), with NMBS of 1.02%. Most of
infrastructure is construction cones, traffic lights, and
traffic signs, which cover only a small portion of the im-
age. Resulting in poorer performance for object local-
ization for infrastructure compared to others in Table
3 can be partially described from their NMBS.

In total, the vocabulary used in the dataset consists
of 992 unique words, with total occurrences of 306,708.
The vocabulary size of vehicles is 533, with total oc-
currences of 214,511 (69.94%). The vocabulary size of
pedestrians and cyclists is 608 with total occurrences of
75,576 (24.64%). The vocabulary size of infrastructure
is 268 with total occurrences of 16,616 (5.41%). The
proportions of the words are proportional to number
of those objects present in the dataset. The common
unique words used in captioning across all classes are
112 with total occurrences of 265,922 (86.7%). Addi-
tional information can be found in the main manuscript
in Section 3.2 and Figure 4.

A.3. Privacy

An open-source tool, Anonymizer [37] is used to
anonymize faces and vehicle number plates as a coarse
annotation step. The annotators find unblurred faces
or license plates and manually blurred them.

A.4. Question Representation

For a comprehensive annotation of DRAMA, we
generate a set of questions that can yield various forms
of answers from closed-ended such as boolean (yes or
no) to open-ended such as ‘pedestrian wearing black
pants and white shirt’ or ‘orange traffic cones on the
right’. We used elementary operations (i.e., what,
which, where, why, and how) to reason about ego-
driver’s behavioral response to perceived risk that acti-
vates braking of the vehicle. The questions for querying
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Layer Kernal shape Output shape

Flow/Visual Encoder

0 resnet.Conv2d 0 [3, 64, 7, 7] [1, 64, 370, 500]
1 resnet.BatchNorm2d 1 [64] [1, 64, 370, 500]
2 resnet.ReLU 2 - [1, 64, 370, 500]
3 resnet.MaxPool2d 3 - [1, 64, 185, 250]

.. ... (resnet layers)

306 resnet.7.2.Conv2d conv3 [512, 2048, 1, 1] [1, 2048, 24, 32]
307 resnet.7.2.BatchNorm2d bn3 [2048] [1, 2048, 24, 32]
308 resnet.7.2.ReLU relu - [1, 2048, 24, 32]
309 AdaptiveAvgPool2d adaptive pool - [1, 2048, 14, 14]

Decoder

310(a) concat.visual flow - [1, 4096, 14, 14]
310(b) module.Embedding embedding [512, W] [1, T, 512]
311(a) Linear init h [4096, 512] [1, 512]
311(b) Linear init c [4096, 512] [1, 512]
312 LSTM cell with attention - [1, 512]
313 word dropout 0 - [1, 512]
314 word fc [512,W] [1, W]
315 word softmax - [1, W]

316 rollout LSTM for M times, from step 312 to 315

317 Self-attention Step, Sec 4 [1, 512]

318 bbox predictor.Linear 0 [512, 4] [1, 4]
319 bbox predictor.Sigmoid 1 - [1,4]

Table 5: DRAMA summary, for input image of size (3,740,1000), batch size as 1, vocabulary size (W) as 989 and
max sentence length (M) as 50

video- and object-level attributes are as follows.
Video-level questions:

• Is there any ‘risk ’ in the scene?

• What is the ‘intention’ of the ego-car?

• What is this ‘scene’?

• What ‘suggestions’ do you give for the driver to
avoid risk?

If risks are perceived in the video, questions regard-
ing the important agent are:

• ‘What ’ agent is it?

• If Pedestrian/Cyclist, ‘Which’ visual attributes
best describe the important agent?

• If Vehicles, ‘Which’ type of the vehicle is it? (vi-
sual attributes)

• If Vehicles, ‘Which’ color is the vehicle? (visual
attributes)

• If Infrastructure, ‘Which’ name is the infrastruc-
ture called? (visual attributes)

• If Infrastructure, ‘Which’ state is it in? (visual
attributes)

• ‘Which’ motion attributes best describe the agent?

• ‘Where’ is the location of the agent?

• ‘Where’ is the agent moving (from or to)?

• ‘Why ’ is the object behaving the way it is?

B. Implementation Details

B.1. Bounding Box Parameterization

The bounding box is notated using {cx,cy,l,w},
where (cx,cy) is the center coordinate and (l,w) are the
dimension of the bounding box. They are normalized
using the size of the image (L,W). During inference,
we use a sigmoid activation function to find the values
in the range of [0,1] and project it back to the origi-
nal pixel coordinates to evaluate the output using the
metrics (i.e., Mean-IOU and Accuracy).

B.2. Network Architecture

The network architecture is shown in Table 5. Both
visual encoder and flow encoder use ResNet-101 to ex-
tract features using the layers 0-309. Layer 0-308 is
taken from original ResNet-101, and we add Layer 309
to generate features with a fixed size of (2048,14,14).
In the decoder, Layer 310(a) concatenate both visual
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(a) (b)

Figure 9: (a) CIDEr score on validation set during training and (b) Mean-IOU score on validation set during
training.

Metrics B1 B4 M R C S Mean-IOU Acc(IOU¿0.5)
LCP (Ours) 0.739±0.0065 0.547±0.011 0.391±0.0045 0.700±0.004 3.724±0.0765 0.560 ±0.009 0.614±0.0075 0.684±0.0115

Table 6: Table showing standard deviations of our model for each metrics

Figure 10: Comparison of our decoder (LCP) with that
of two baselines (CLP and ICL).

and flow features and the output size is (4096,14,14).
Layer 310(b) is to convert the word representations
from LongTensor to embeddings with a size of 512 with
T as maximum sentence length 50 (after padding ze-
ros). Layer 311(a,b) converts the concatenated embed-
ding to initial hidden state (a) and cell state (b) for the
LSTM, followed by the cell update in Layer 312, using
attention mechanism on the encoded image features,
please refer to SAT[30] for more details. Layer 313
(dropout), 314 (fully connected), and 315 (softmax)
is the conversion of LSTM hidden state to the output
word at each time step. We rollout for T times through
Layer 312-315. In practice, to save computation time
each sentence is rolled out only till the length of the
ground truth sentence during training. In Layer 317,
we use the self-attention mechanism explained in the
main draft Sec 4 (sub-section decoder), which takes all
the hidden states of the LSTM and performs the self-
attention operation. The output from self attention
is converted to bounding box parameters from Layer

318-319 using fully connected layer (Layer 318) and
Sigmoid operation (Layer 319).

B.3. Block Diagrams

In Figure 10, we visualize the block diagram of de-
coders used for evaluation. We refer to Section 4 and
5 in the main manuscript for overview ours (LCP)
as well as other baseline models (CLP and ICL). De-
tails of ROI pooling used in CLP is presented in Fast-
RCNN [36].

B.4. Model Training

We build our framework using the PyTorch frame-
work with Tesla V100-SXM2-32GB GPUs. The batch
size is set to 16, and we use Adam optimizer with a
learning rate of 1e-4 for the encoder and 4e-4 for the de-
coder. The dropout ratio is 0.5 in the word dropout 0
layer in Table 5. The model is trained for 120 epochs,
and we report the best checkpoint (i.e., saved using
the CIDEr score measured from the validation set) to
evaluate the model on the test set.

C. Additional Evaluation

C.1. Model Robustness

We ran our best model for three times and com-
puted the standard deviation for the metrics on the test
set. As shown in Table 6, the small value of standard
deviation demonstrates that our approach consistently
provides robust prediction capabilities.
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Figure 11: Caption Length vs Average CIDEr Score
are evaluated on the test set.

C.2. Caption Length vs CIDEr Score

In Figure 11, we plot the CIDEr score of our model
with respect to the length of generated captions using
the test set. The CIDEr score is sorted in the order of
ascending length. In general the performance degrades
with the increase in the length or complexity of the sen-
tence. The increase in performance at several lengths
is because the captions are more commonly observed
with those lengths.

C.3. Multi-Task Training

We compare two metrics, CIDEr and Mean-IOU,
while training our model with (LCP Ours) and with-
out (LCP without DTL) multi-task weighting. The
captioning metric CIDEr performance is shown in Fig-
ure 9a. The important object identification metric
Mean-IOU performance is shown in Figure 9b. We
weigh the model ‘LCP without DTL’ with λ = 15 in
Equation 4, which we found the best performing model
from the manual weighting. The model ‘LCP (Ours)’ is
trained using the loss in Equation 3. Lc, Lb refers to the
caption loss and bounding box loss as mentioned in Sec-
tion 4 of the main manuscript. As shown in Figure 9,
‘LCP (Ours)’ shows the continuous improvement of the
performance for both tasks. However, ‘LCP without
DTL’ sacrifices the capability of one task (captioning)
while improving the other (object identification).

Lsum = Lc + λ ∗ Lb (4)

C.4. Qualitative Analysis

In Figure 12, we visualize additional successful cases
in addition to Figure 7 shown in the main manuscript.
12a and 12c are two different pedestrians walking on a
narrow road and at the intersection. In both cases, the
visual, location, motion direction attributes are gener-
ated correctly. Similarly, the cyclist in 12b is identified
as an important agent with a good reasoning (‘because
there is no bicycle lane’). In 12d, the traffic light is pre-
dicted correctly even when there is a vehicle in front of
the ego car.

In Figure 13, we show the captioning failures while
the localization of the important agent is correct. In
13a, the truck is found correctly but its reasoning is
incomplete. In 13b, the network reasoned about stop-
ping as red traffic light. The model might be confused
because the traffic congestion is hard to see in this sce-
nario. In contrast, 13c is an example of the opposite
case, where our model is hard to see the traffic light as
a reason for stopping. In 13d, the cyclist’s motion di-
rection is predicted wrong which resulted in incomplete
reasoning.

In Figure 14, localization failures are shown. The
network sometimes gets confused to identify the impor-
tant object when there are multiple objects shown rea-
sonably important in the scene. We show several cases:
‘vehicle→pedestrian’ in 14a, ‘pedestrian→vehicle’
in 14b, ‘infrastructure→pedestrian’ in 14c,
‘infrastructure→ infrastructure’ in 14d . In sce-
narios of 14a-c, the identified important object is
rather closer to the ego-vehicle whereas the ground
truth is annotated very far. The encoder of our model
might be hard to extract image features of those agents
(as their size is very small). The advancement of the
algorithm to cover such cases are our future research
direction. In scenario 14d, there exist multiple traffic
lights showing the same traffic information. Although
our identification is different from the ground truth,
the model successfully reasons about the interaction
as a caption, which activated braking of the vehicle.

D. Limitations

There has been a significant progress in computer vi-
sion and machine learning algorithms for autonomous
and cooperative driving. However, explainable models
that ground language and vision in this domain is less
highlighted. In this work, we introduce a new dataset
and address risk localization with its reasoning as a
language description in driving scenarios where such
a model can benefit to situational awareness in au-
tonomous driving and driving assistant systems. Our
setting of interest and the dataset have an objective of
addressing driving risks that implicitly and explicitly
influence safety-critical design of intelligent systems.
Therefore, real-world applications that adopt such rea-
soning models may cause injury or death to personnel
or loss of property if they fail to make appropriate pre-
dictions. Although we provided several failure cases to
better understand the limitation of the models and our
problem settings, the users should be aware of other
failures not explored in this paper. Besides the model,
our dataset is labeled by humans, which may incorpo-
rate biases due to errors in interpretation. The users
are also requested to assess the risk while using our
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Figure 12: Successful cases. Ground truth in green color and Prediction in red color.

Figure 13: Captioning failures. Ground truth in green color and Prediction in red color.

Figure 14: Localization fail cases. Ground truth in green color and Prediction in red color.

dataset for their safety critical applications.
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