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A. Introduction

In the supplementary material, we analyze our loss func-
tions and present the pseudocode of the proposed self- and
cross-modal feature embedding memory (SCFEM) mecha-
nism.

B. Analysis of Loss Functions L.y and L,

In practice, the general pair weighting (GPW) formula-
tion [2] of L.r can be obtained by using Eq. (2) as written
in our paper as follows:
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at the [-th iteration; S is a similarity matrix whose element
(i, 7) is defined as the cosine similarity between an instance
of a mini-batch and an instance stored in the self-modal fea-
ture embedding memory, as follows:
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Similarly to Lgeyr, the GPW formulation of L., can
be formulated as follows:
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at the [-th 1terat10n C’ is a similarity matrix whose element
(i, 7) is defined as the cosine similarity between an instance
of a mini-batch and an instance stored in the cross-modal
feature embedding memory, as follows:
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C. Algorithm for Self- and Cross-Modal Fea-
ture Embedding Memory

Algorithm 1 presents the pseudocode of the proposed
SCFEM mechanism. This pseudocode is written in Py-
Torch [1]. The SCFEM mechanism, which stores both
the music and image feature embeddings across epochs, is
based on cross-batch memory (XBM) [3]. The difference
from XBM is that we initialize memory at the beginning
of the training to store the embeddings in memory across
epochs. Then, the SCFEM mechanism can mine at most
2FE — 1(E > 1) informative positive pairs from both the
self- and cross-modal feature embedding memory for the
case of a positive (i.e., original) music-image pair, where F/
is the number of epochs to be stored in the feature memories
as written in our paper. The proposed mechanism can thus
be directly integrated into existing pair-based deep metric
learning (DML) frameworks.
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Algorithm 1 Pseudocode of SCFEM.

# warm-up the music encoder f_M and the
image encoder f_I with T epochs

# initialize memory which stores embeddings
M = Memory ()

# define pair-based loss function

Loss = LossFunction ()

for epoch in range(T+1, EPOCH_END) :
for x, y, ids in dataloader: # x:
y: image, ids: song_ids

music,

# embed music and image
mus_emb = f_M(x)
img_emb = f_TI(y)

# store the embeddings in memory

# replace the earliest embeddings in
memory with the embeddings at the
current iteration when the number
of the stored embeddings exceeds
the size of memory

M.update (mus_emb.detach (), img_emb.
detach (), ids)

# calculate similarity matrix

sim_1 = torch.matmul (torch.t (mus_emb),
img_emb)

sim_2 = torch.matmul (torch.t (img_emb),
mus_emb)

# calculate pair-based loss
loss = Loss(sim_1, ids) + Loss(sim_2,
ids)

# extract the stored embeddings from M
mus_emb_M, img_emb_M, ids_M = M.get ()

# calculate similarity matrix using the
embeddings in the self-modal
feature embedding memory

sim_sl = torch.matmul (torch.t (mus_emb),
mus_emb_M)
sim_s2 = torch.matmul (torch.t (img_emb),

img_emb_M)

# calculate similarity matrix using the
embeddings in the cross-modal
feature embedding memory

sim_cl = torch.matmul (torch.t (mus_emb),
img_emb_M)
sim_c2 = torch.matmul (torch.t (img_emb),

mus_emb_M)

# calculate pair-based loss using both
the self-modal feature embedding
memory and the cross-modal feature
embedding memory

loss += Loss(sim_sl1, ids_M)

+ Loss (sim_s2, ids_M)
+ Loss(sim_cl, ids_M)
+ Loss (sim_c2, ids_M)

# update trainable parameters of the
encoders

loss.backward ()

optimizer.step ()




