Content-Based Music-Image Retrieval
Using Self- and Cross-Modal Feature Embedding Memory
—Supplementary Material—

Takayuki Nakatsuka

Masahiro Hamasaki

Masataka Goto

National Institute of Advanced Industrial Science and Technology (AIST)

{takayuki.nakatsuka, masahiro.hamasaki, m.goto}Raist.go.jp

A. Introduction

In the supplementary material, we analyze our loss func-
tions and present the pseudocode of the proposed self- and
cross-modal feature embedding memory (SCFEM) mecha-
nism.

B. Analysis of Loss Functions L.y and L,

In practice, the general pair weighting (GPW) formula-
tion [2] of L.r can be obtained by using Eq. (2) as written
in our paper as follows:

F(8) =
1 m E—1
EZ Z wi Sy + Z wi; S
=1 e=0 \ (x! x'"*)eN (viy; IEN
1O
SR X wnsse X ebsy
i=1 e= (x;,x;fe)GIP (yz YE)er
)
Here, w Zj - ‘ 3533) 1 and w% - ‘agég) l are weights

at the [-th iteration; S is a similarity matrix whose element
(i, 7) is defined as the cosine similarity between an instance
of a mini-batch and an instance stored in the self-modal fea-
ture embedding memory, as follows:

u%={i;m (Cix ™ €P)s)
Xij ((Xiaxj) € N) ;
S* /T
Xij :% 5% /7 ! g=7 (D
e it + Z(xt xf—(')eNe ij
z?c7tT)s,t—e

i J

y e 0Ly 9EP) g
Y x (yhyi) eN)
%] AR ’
1 Sl T
y __
Xij , (14
J 7—6@*/7—4—2 t C)eNe 317/
y.t' y,t—e
V= — e, 7 Ce MY, (15)
|z} |25

Similarly to Lgeyr, the GPW formulation of L., can
be formulated as follows:

F(C) =
1 m E-1
c AC A
5 9 Sl IID SRTICTRND SRt 1c)
i=1e=0 \ (xtyi)eN (yixim)eEN
1 m E-1
c ~C A
R 35 Sl D SR SRS SR e}
=1 e=0 \ (x}y;)P (yi.x;)eP
(16)
c _ oc(C) i
Here, w;; = 0, |, and W ” = ‘ acs, l‘ are weights

at the [-th 1terat10n C’ is a similarity matrix whose element
(i, 7) is defined as the cosine similarity between an instance
of a mini-batch and an instance stored in the cross-modal
feature embedding memory, as follows:

1 c t—
wC =7 " Xij ((x 573’3 VeEP). (17)
’ Xg ((’L’yJ 6) GN)’
1 Cij/T
=2 ‘ ., 1)
7 reCit/T 4 Z(xt, yiTO)EN el
Z)_(,tTZ)_',t—e
Cij= 770, 2 e MY, (19)

x,t y,t—e|’ 7J
|2 (|25
2 J

1 ~C t—
SV kS 7 ((%Xg °)eP), 00
2 > —
! Xg ((le?’X] e))a
%G == Gl @1)
T Tl Yyt eyen €90
Zy,tTZx,t—e
. yitT % .
Cos = ey % €M% (D
i J

C. Algorithm for Self- and Cross-Modal Fea-
ture Embedding Memory

Algorithm 1 presents the pseudocode of the proposed
SCFEM mechanism. This pseudocode is written in Py-
Torch [1]. The SCFEM mechanism, which stores both
the music and image feature embeddings across epochs, is
based on cross-batch memory (XBM) [3]. The difference
from XBM is that we initialize memory at the beginning
of the training to store the embeddings in memory across
epochs. Then, the SCFEM mechanism can mine at most
2FE — 1(E > 1) informative positive pairs from both the
self- and cross-modal feature embedding memory for the
case of a positive (i.e., original) music-image pair, where F/
is the number of epochs to be stored in the feature memories
as written in our paper. The proposed mechanism can thus
be directly integrated into existing pair-based deep metric
learning (DML) frameworks.

References

[1] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch: An
imperative style, high-performance deep learning library. In
Proceedings of the Advances in Neural Information Process-
ing Systems (NeurIPS), pages 8024-8035, 2019.

[2] Xun Wang, Xintong Han, Weilin Huang, Dengke Dong,
and Matthew R Scott. Multi-similarity loss with general
pair weighting for deep metric learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5022-5030, 2019.

[3] Xun Wang, Haozhi Zhang, Weilin Huang, and Matthew R
Scott. Cross-batch memory for embedding learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 6388-6397, 2020.

Algorithm 1 Pseudocode of SCFEM.

warm-up the music encoder f_M and the
image encoder f_I with T epochs

initialize memory which stores embeddings
M = Memory ()

define pair-based loss function

Loss = LossFunction ()

for epoch in range(T+1, EPOCH_END) :
for x, y, ids in dataloader: # x:
y: image, ids: song_ids

music,

embed music and image
mus_emb = f_M(x)
img_emb = f_TI(y)

store the embeddings in memory

replace the earliest embeddings in
memory with the embeddings at the
current iteration when the number
of the stored embeddings exceeds
the size of memory

M.update (mus_emb.detach (), img_emb.
detach (), ids)

calculate similarity matrix

sim_1 = torch.matmul (torch.t (mus_emb),
img_emb)

sim_2 = torch.matmul (torch.t (img_emb),
mus_emb)

calculate pair-based loss
loss = Loss(sim_1, ids) + Loss(sim_2,
ids)

extract the stored embeddings from M
mus_emb_M, img_emb_M, ids_M = M.get ()

calculate similarity matrix using the
embeddings in the self-modal
feature embedding memory

sim_sl = torch.matmul (torch.t (mus_emb),
mus_emb_M)
sim_s2 = torch.matmul (torch.t (img_emb),

img_emb_M)

calculate similarity matrix using the
embeddings in the cross-modal
feature embedding memory

sim_cl = torch.matmul (torch.t (mus_emb),
img_emb_M)
sim_c2 = torch.matmul (torch.t (img_emb),

mus_emb_M)

calculate pair-based loss using both
the self-modal feature embedding
memory and the cross-modal feature
embedding memory

loss += Loss(sim_sl1, ids_M)

+ Loss (sim_s2, ids_M)
+ Loss(sim_cl, ids_M)
+ Loss (sim_c2, ids_M)

update trainable parameters of the
encoders

loss.backward ()

optimizer.step ()

