
Content-Based Music-Image Retrieval
Using Self- and Cross-Modal Feature Embedding Memory

—Supplementary Material—

Takayuki Nakatsuka Masahiro Hamasaki Masataka Goto
National Institute of Advanced Industrial Science and Technology (AIST)

{takayuki.nakatsuka, masahiro.hamasaki, m.goto}@aist.go.jp

A. Introduction

In the supplementary material, we analyze our loss func-
tions and present the pseudocode of the proposed self- and
cross-modal feature embedding memory (SCFEM) mecha-
nism.

B. Analysis of Loss Functions Lself and Lcross

In practice, the general pair weighting (GPW) formula-
tion [2] of Lself can be obtained by using Eq. (2) as written
in our paper as follows:
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at the l-th iteration; S is a similarity matrix whose element
(i, j) is defined as the cosine similarity between an instance
of a mini-batch and an instance stored in the self-modal fea-
ture embedding memory, as follows:
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Similarly to Lself , the GPW formulation of Lcross can
be formulated as follows:
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at the l-th iteration; C is a similarity matrix whose element
(i, j) is defined as the cosine similarity between an instance
of a mini-batch and an instance stored in the cross-modal
feature embedding memory, as follows:
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, (21)
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C. Algorithm for Self- and Cross-Modal Fea-
ture Embedding Memory

Algorithm 1 presents the pseudocode of the proposed
SCFEM mechanism. This pseudocode is written in Py-
Torch [1]. The SCFEM mechanism, which stores both
the music and image feature embeddings across epochs, is
based on cross-batch memory (XBM) [3]. The difference
from XBM is that we initialize memory at the beginning
of the training to store the embeddings in memory across
epochs. Then, the SCFEM mechanism can mine at most
2E − 1(E ≥ 1) informative positive pairs from both the
self- and cross-modal feature embedding memory for the
case of a positive (i.e., original) music-image pair, where E
is the number of epochs to be stored in the feature memories
as written in our paper. The proposed mechanism can thus
be directly integrated into existing pair-based deep metric
learning (DML) frameworks.
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Algorithm 1 Pseudocode of SCFEM.

# warm-up the music encoder f_M and the
image encoder f_I with T epochs

# initialize memory which stores embeddings
M = Memory()

# define pair-based loss function
Loss = LossFunction()

for epoch in range(T+1, EPOCH_END):
for x, y, ids in dataloader: # x: music,

y: image, ids: song_ids

# embed music and image
mus_emb = f_M(x)
img_emb = f_I(y)

# store the embeddings in memory
# replace the earliest embeddings in

memory with the embeddings at the
current iteration when the number
of the stored embeddings exceeds
the size of memory

M.update(mus_emb.detach(), img_emb.
detach(), ids)

# calculate similarity matrix
sim_1 = torch.matmul(torch.t(mus_emb),

img_emb)
sim_2 = torch.matmul(torch.t(img_emb),

mus_emb)

# calculate pair-based loss
loss = Loss(sim_1, ids) + Loss(sim_2,

ids)

# extract the stored embeddings from M
mus_emb_M, img_emb_M, ids_M = M.get()

# calculate similarity matrix using the
embeddings in the self-modal

feature embedding memory
sim_s1 = torch.matmul(torch.t(mus_emb),

mus_emb_M)
sim_s2 = torch.matmul(torch.t(img_emb),

img_emb_M)

# calculate similarity matrix using the
embeddings in the cross-modal

feature embedding memory
sim_c1 = torch.matmul(torch.t(mus_emb),

img_emb_M)
sim_c2 = torch.matmul(torch.t(img_emb),

mus_emb_M)

# calculate pair-based loss using both
the self-modal feature embedding
memory and the cross-modal feature
embedding memory

loss += Loss(sim_s1, ids_M)
+ Loss(sim_s2, ids_M)
+ Loss(sim_c1, ids_M)
+ Loss(sim_c2, ids_M)

# update trainable parameters of the
encoders

loss.backward()
optimizer.step()


