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Adpversarial local distribution regularization for knowledge distillation

1. Asymptotic analysis of adversarial local dis-
tribution approximation.

The kernel F' is the radial basis function kernel used in
our paper, as shown in Eq. 1
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The update function ¢ can be rewritten as
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When o — o0, it is obvious that

O(Tadn) — KZV s (e (@) z:6). 3)
Therefore, our approach reduces exactly to FGSM [2],
PGD [3], and Auto-Attack [!] with K independent parti-
cles, where in the update quantity is the average of the gra-
dients at each particle as shown in Eq. (5). Evidently, in the
update rule in Eq. (5), there does not exist any term that pro-
motes the particle diversity. In addition, when using a single
particle (i.e., n = 1), our approach under its asymptotic case
reduces exactly to the aforementioned approaches.
Particularly, in our update formula in Eq. (8), the first
term encourages the particles to seek the optimal values
of the loss surface as in FGSM [2], PGD [3], and Auto-
Attack [ 1], while the second term plays a role of a repulsive
term to push the particles away for enhancing the particle di-
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versity. The reason is that when x;; * moves closer to €4y,

the weight k(x fuﬁ) , Tady ) becomes larger to push them fur-
ther away from each other.

We present the asymptotic analysis when o — 0. Con-
sidering the RBF kernel, the update function ¢ can be
rewritten as
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When o — 0, it is obvious that
H(Tadv) Z 1 ,zjéz)v 3, (z)ﬁ( adv 7m 0), (5)
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where 14 is the indicator function which returns 1 if A 1s057

true and O if otherwise. Here we note that we have used the 058
following equations in the above derivation. 059
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Therefore, the update amount ¢ (.4, ) in Eq. (5) reduces;,

to only one gradient. It is evident that when n = 1, ourys,
approach reduces exactly to FGSM [2], PGD [3], and Auto-,5
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2. Experimental setting details 076
2.1. Diversity of teacher adversarial particles vs.077
random initialization 078

079

We set ¢ = 0.3, 7 =0.01, L=200, 7=1.0. 080
2.2. TALD regularization with existing methods on"®’
CIFAR-100 and ImageNet 082

083

For CIFAR-100, we set € = 0.3, n =0.1, L=1, K=4,pg4
7=10.0, A=0.01. All methods used in our experiments areggs
trained by SGD. The learning rate is initialized as 0.05, andggg
decayed it by 0.1 every 30 epochs after the first 150 epochsgg
until the last 240 epoch. We use a learning rate of 0.01 forggg
MobileNetV2, ShuffleNetV1 and ShuffleNetV2, while 0.055g9
is optimal for other models. Batch size is 64. 090

For ImageNet, we use settings from config files ofjg4

Torchdistill'. We set € = 0.3, n =0.2, L=1, K=4, 7=5.0,992
A=0.01. 093
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