
Q: Why does Table 2 not have “tuned PWC-Net w/ [1] warping”?
Reply: One cannot simply take [1] and plug it into a deep learning setting since
it, among other concerns, is unclear how one would implement its outside-in
filling as an efficient and differentiable operation. Indeed, one of our contribu-
tions is to show how to perform [1] better and in a differentiable manner, which
enables end-to-end fine-tuning of the underlying flow estimator.

Q: Why does the approach yield state-of-the-art results at high resolutions like
like on Xiph-4K but not lower ones like on Vimeo-90k?
Reply: A synthesis approach like ours that solely relies on splatting will never
be able to surpass an equivalent version that also utilizes a subsequent refinement
network. As such, while our computational efficiency is unmatched, we consider
the quantitative performance of our proposed interpolation pipeline as “good”
but not “state-of-the-art” at low resolutions. The only reason we are able to
claim state-of-the-art results at high resolutions is due to our proposed iterative
upsampling, but other methods could equally make use of this technique to
likewise boost the quality of the interpolation results at high resolutions.

Q: Why upsampling the flow instead of the result?
Reply: Downsampling the input frames to 1/4 resolution and then performing
the video frame interpolation at that resolution before upsampling the results
back to the original resolution only yields a PSNR of 29.54 on the Xiph-2K
dataset, which is as staggering 5.27 dB lower than what we propose.

Q: Why is there no comparison to other upsampling techniques?
Reply: We do not claim state-of-the-art optical flow upsampling, we only
demonstrate that our simple iterative scheme in the context of our frame inter-
polation framework is beneficial in terms of quality and speed at high resolutions.
Furthermore, using spatially-varying upsampling kernels [6], normalized convo-
lution upsampling [2], or self-guided upsampling [3] would be computationally
more demanding which counteracts the underlying efficiency goal.

Q: Why only include SepConv++[5] and SoftSplat [4] in Figure 1?
Reply: We include SepConv++[5] as a representative of fixed-time interpolation
techniques and SoftSplat [4] as a representative of arbitrary-time interpolation
techniques. Even if we included all other interpolation methods that we compare
to, this figure would still tell the same story that the higher the interpolation
factor the better our proposed approach performs in comparison.

Q: What values do αp, αf, αv for M splat and Mmerge converge to?
Reply: They converge to αs

p = 2.35, αs
f = 5.89, and αs

v = 1.24 for M splat as
well as αm

p = 164.96, αm
f = 108.04, and αm

v = 1.18 for Mmerge. As such, the
photometric consistency ψphoto is less important than the flow consistency ψflow

for the splatting metric and vice versa for the merging metric.

Q: Why not use an outside-in strategy like in [1] to fill holes after splatting?
Reply: We did not experiment with outside-in filling to close holes after splat-
ting since it is unclear how to make this operation sufficiently fast. Specifically,
one has to call the outside-in filling potentially many times since each invocation
only fills a single slice of pixels at the boundary of the holes.

Q: Which standard deviation was used for the 4× 4 Gaussian splatting kernel?
Reply: We use a σ = 0.6 which we determined through a hyperparameter
sweep, which roughly equals the commonly used (ksize− 1)/6 formula.

Q: Why is softmax splatting with Z = 0 essentially average splatting?
Reply: One needs to avoid divisions by zero when normalizing the splatted
values by dividing by the splatted importance metric. As such, one needs to
add an ϵ in the denominator. However, if Z consists of sufficiently small values,
the ϵ in the denominator would reduce the overall brightness of the splatted
result. As such, a correctly implemented softmax splatting operator should add
an ϵ to the importance metric Z before using it to avoid divisions by zero while
also making sure that the overall brightness is maintained.

Q: How does the proposed method differ from SoftSplat [4]?
Reply: First, [4] employs a synthesis network to obtain the interpolation result
from splatted feature pyramids. However, splatting these pyramids and invoking
the synthesis network requires 800 ms on a V100 to yield a 4K output. In
contrast, we warp colors and combine the warped inputs using a merge metric
(Equation 1) which only takes 36 ms (on the same hardware and resolution).
This is the key benefit of our proposed splatting-only synthesis.

Second, [4] extracts a feature pyramid from each input frame and then splats
them to the desired interpolation instant. However, this is challenging at high
resolutions since at 4K, each of the four feature pyramids requires 1.7 GB of
memory and the synthesis network implemented in PyTorch requires another
23.0 GB. In contrast, we splat inverse flow vectors and then use these to gather
colors from the input frames (Figure 5) which at 4K requires 0.5 GB.

Third, [4] computes photo-consistency and refines it through a neural network
to obtain the importance metric Z that is used to disambiguate pixels that
splat to the same location. However, invoking this network at 4K takes 226 ms.
Our splatting metric M splat, which combines photo- with flow-consistency and
flow variance, is learnable (Equation 5) and only takes 17 ms at 4K.

Fourth, [4] estimates bidirectional optical flow at the input resolution. How-
ever, this is slow (467 ms at 4K) and also error-prone as existing flow methods
are typically not trained at such resolutions. Our new iterative flow upsampling
lets us estimate the flow at, for example, 1K before iteratively upsampling it to
4K. This not only makes the optical flow estimation more likely to succeed and
leads to better results (Table 3), but it is also much faster (157 ms).

Fifth, [4] proposes softmax splatting but their implementation is not numer-
ically stable. In contrast, we show how to stabilize this operation which leads to
subtle but consistent improvements in the interpolation quality (Table 5). As
such, related work that makes use of softmax splatting [16, 17, 23, 32, 69] could
likewise get better results if they were to adopt our stable softmax splatting.

Sixth, [4] utilizes a bilinear 2× 2 splatting kernel, which leads to small holes
in the result where the flow diverges locally (Figure 8). Our 4 × 4 Gaussian
splatting kernel is less prone to such errors due to its larger footprint.

Consequently, we are not only 33× faster than [4] on XTEST-4k (Table 6)
due to (1, 2, 3) but also 5.86 dB better due to (4). Furthermore, by only relying
on splatting we are able to perform real-time interpolation from given optical
flow estimates as demonstrated in the supplementary ”visualization.html” which
performs our splatting-based synthesis implemented in Javascript without GPU
acceleration on the fly. This would not have been possible with [4].
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