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1. Data Collection
1.1. Aerial Imagery Collection

Our border imagery dataset is comprised of of 612,374
overhead aerial images covering the entire world’s interna-
tional land borders, each with metadata describing the im-
age space coordinates of the border. This section provides
details on the collection and processing of the global bor-
ders dataset. As discussed in the main paper, the image
tiles in our dataset are each 256x256 RGB pixels and cover
a geographical area of 400m by 400m, leading to a total
worldwide land coverage of over 90 billion square meters.

We start with the ground truth for political border loca-
tions from the International-Borders-2 dataset from Sim-
mons and Kenwick [6], a Shapefile in which each border
between two countries is given as one or more linestrings of
GPS coordinates. Our high-level approach is to walk along
each border and query the Bing Maps API for image tiles
at intervals that achieve close to full image coverage of the
border. For tiles with geographic side length L (400 me-
ters, in our case), we sample points spaced at intervals of L
along the border using the Haversine distance formula. The
geographic extent of a tile for a given zoom level varies due
to the map projection. As a result, we dynamically select
the zoom level (in practice, 16 or 17) that results in a side
length as close as possible to our target dimension of 400
meters.

The Bing Maps API provides two mechanisms
for retrieving image tiles; one (https://dev.
virtualearth.net/REST/v1/Imagery/Map)
yields a custom-cropped image with the requested center
coordinates, zoom level, and spatial extent, while the
other (https://dev.virtualearth.net/REST/
v1/Metadata/Map) returns metadata including links
to fixed-resolution map tiles stored internally by Bing
that contain the query point. While centering each tile
around a point on the border would provide consistent
context surrounding the border, the former method has the
drawback that the returned image may be composited from

multiple different underlying tiles that were not necessarily
taken at the same time. While not very common, we found
that the custom cropped images sometimes contained clear
boundaries between composited images taken under differ-
ent conditions. The resulting seams are easily mistaken for
border features, and have the potential to corrupt both the
human annotations and fool our automated methods. As
a result, we use the imagery metadata API, which returns
metadata and URLs for tiles containing the query point.
This means that the border location may not go through the
center of the image.

Saved alongside each image in our dataset is an ordered
list of pixel indices corresponding to the physical location
of the GPS coordinates captured by the image. To deter-
mine where exactly the border lies within the image’s geo-
graphical area, we use Shapely [3]] to calculate the intersec-
tion between the image’s GPS bounding box and the bor-
der’s line string. The calculated intersection, along with any
other border coordinate contained within the bounding box,
are collected as data points associated with the given tile.
Before saving, we convert the data points from GPS coor-
dinates within a geographical bounding box to pixel coor-
dinates within the image boundaries. The conversion be-
tween GPS coordinates, (x, y), and pixel coordinates, (i, j)
given a GPS bounding box, (Zimin, Ymins Tmazs Ymaz) 1S
described by:
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Where S is the side length in pixels of each side of the im-
age returned from the Bing Maps API (256 in our case).
The saved pixel coordinates can be turned into segmenta-
tion masks when necessary by drawing interpolated lines
between each pair of coordinates in pixel space. The saved
coordinates and segmentation masks comprise the ground

truth for border locations.
While the Bing Maps API terms of use prevent us
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from releasing the dataset, we will make publicly available
upon publication data and code necessary to reproduce our
dataset. This will include the query location and border
metadata for each tile, as well as the scraping code we used
to generate the query locations and download the tiles.

1.2. Ground Truth Legibility Comparisons

We collected a dataset of ground truth pairwise legibility
comparisons among 1000 images chosen from the global
imagery dataset. We selected 1000 random tiles; to avoid
tiles where the border just barely nicks the corner of the im-
age, for example, we filtered out tiles with negligible border
length and/or negligible image content on either side of the
border. Carlson and Montgomery’s framework [2] suggests
collecting approximately 20 comparisons per datum. To ac-
count for the possibility of bad annotators, we added a 20%
buffer and generated 12,030 pairs such that a given image
should, on average, be compared to about 24 others.

We collected ground truth annotations using Amazon
Mechanical Turk (AMT), asking workers to choose one of
two tiles presented with the more legible border. The loca-
tion of the border was drawn on the tiles, but could be tog-
gled off. Tasks were grouped in batches of 30 pairs. Before
performing the task, annotators were given detailed instruc-
tions (included as a separate document in the supplemental
material) and required to complete a qualification test with
six test pairs to demonstrate their understanding of the task.

1.3. Annotator Quality and Problem Ambiguity

To validate the quality of the human annotations, we
calculated each annotator’s accuracy with respect to the
majority-vote winner for all pairs of images they anno-
tated. [Figure I| plots each annotator’s accuracy (red) along-
side four points of reference (blue). All annotators landed
well above the Random Simulated Worker, suggesting that
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Figure 1: Accuracy (compared to the final ground-truth
ranking) of annotators, a simulated random worker, two of
our methods, and a majority-vote oracle.

none of our annotators were making entirely random or un-
informed guesses. The ranking framework helps to con-
trol noise due to low-quality annotations by simultaneously
modeling annotator skill and putting tiles on a single, glob-
ally consistent scale.

To help quantify the underlying problem ambiguity that
remains after tiles are globally ranked, we computed an “or-
acle” upper-bound accuracy from the ranking: the rate at
which the rank order of a pair agreed with the majority-
vote annotations for a given pair was 87.83%. This suggests
that even a perfectly designed method may only score up to
about 88% on the accuracy metric for the ground truth set.
In future work, we plan to more rigorously quantify sources
of error and devise additional metrics that take underlying
problem ambiguity into account.

2. Additional Baseline Methods

We experimented with several baseline methods in addi-
tion to those given in Section 4.1 of the main paper. This
section describes a class of methods using Gaussian Mix-
ture Models. Results including these methods are given in
Table 1} which is an expanded version of the main paper’s
Table 1.

Gaussian Mixture Models. Given the performance of our
clustering baseline, we experimented with Gaussian Mix-
ture Models as a similar but more probabilistically princi-
pled approach. Our high-level idea was to fit GMMs for
each segment and use the likelihood of pixels from one seg-
ment given the model fit from another as an indication of
similarity or differences among segments.

We fit three Gaussian Mixture Models, one trained on the
features in each of Fla, Fig, Fo. The dissimilarity between
each pair of segments is then calculated as the difference
in likelihood between another segment and a segment with
itself. After fitting GM M4, GM Mp, and GM M¢ to the
features in each segment, D(F4, Fi5) is the difference in
per-sample average log likelihood of B to GM M 4 and A
to GM M 4. In other words,

D(Fa,FB) =pamma(B) — pamm, (A)

We compute D(+, -) for all (ordered) pairs of feature col-
lections, taking the maximum score as the legibility score.
In our experiments, we fit mixture models with three com-
ponents. Though arguably more principled, this approach
performed worse the corresponding clustering baseline with
pixels as input features.

Cosine Distance GMM. Fitting GMMs on CNN and
transformer features gave unstable results due to their
higher dimensionality. To get around this issue, we ex-
perimented with computing GMMs of pairwise feature dis-
tances, with the idea that these 1D quantities would still



¢P ¢R(1) ¢R(2) ¢R(3) ¢T
Method Acce. T Footrule Acc. T Footrule Acc. T Footrule Acc. T Footrule Acc. T Footrule
Distance 6240 0.151 27791 6028 0.084 301.38 58.17 0.059 31326 56.19 0.261 24482  51.63 -0.027  332.82

Clustering 61.28 0.075  305.33
Pixel GMM 60.33  0.065 310.69

6342 0.116  290.92

Distance GMM 60.51 0.061 29448 57091

60.19 0209 26253 5880 0.449 186.68 49.86 0.032 314.49

0.081 25433 5236 -0.016 33502 5520 -0.004 320.01

Table 1: An expanded version of Table 1 from the main paper giving baseline results on the annotated validation set. Distance:
Average Pairwise Feature Distance; Cluster: Cluster Assignment Distributions; Pixel GMM: Gaussian Mixture Models;
Distance GMM: Cosine Distance GMM. Feature extractors ¢ are as described in the main paper. Higher is better for accuracy

and 7, while lower is better for Footrule.

be informative and might outperform the simple averaging
approach of our Distance baseline. We perform the same
cosine distance operation as in our Distance method, but
then fit a unique GMM for each pair of segments. In other
words, instead of averaging as in Equation 2 of the main
paper, we fit GM M 5 to the collection of pairwise feature
distances D15 = {d(fl, fg) : f1 € Fl,fQ € FQ} We build
one GMM for each pair of segments AB, AC, BC', and de-
fine the pairwise dissimilarity D(D4p, Dpc) analogously
to above:

D(Dap,Dac) =pcrvriag(DaC) —parinias (DaB)

The overall legibility score is once again the maximum such
dissimilarity over all (ordered) pairs of AB, AC, AB. This
method did not turn out to achieve a clear improvement over
the distance averaging, and also underperformed the Clus-
tering method even at its best, using ¢7*(1) features.

3. Other Methods Considered

Early on in our experimentation, we considered various
alternative methods unrelated to those discussed in Section
4 of the main paper. While we ultimately decided not to
pursue these methods further, we briefly discuss them here.

Direct Prediction We considered using border location
prediction as a proxy task, with the idea that a model trained
to predict the border would do well on highly legible bor-
ders and poorly on illegible borders. In this context, we con-
sidered multiple deep and low-level approaches: Semantic
Segmentation[4]], Edge Detection [[1], Deep Line Detection
[[7, 18, 9], and directly regressing an angle and offset to rep-
resent the border as a single line.

While many of these methods are capable at locating
image features which may be considered border-like, they
are not equipped to deal with the context and properties
unique to political borders. In particular, border-like fea-
tures are common even when they don’t correspond to the
border (e.g., two vibrant cities divided by a wall will have
many edge features in addition to the wall itself). Mean-
while, many other (illegible) tiles have no features whatso-
ever (e.g., a featureless desert), and thus providing no train-

ing signal in the proxy task. As mentioned in the main pa-
per, this makes for a challenging learning task and our at-
tempts did not result in models that outperformed our sim-
pler baselines.

Inpainting We considered framing border legibility as the
ability for a model to reconstruct a border tile given a miss-
ing segment of the border. The intuition is that certain seg-
ments of an image that are crucial for border identification,
such as a fence along the length border, will have substan-
tially worse reconstruction scores when removed. Using
the Masked AutoEncoder [3]], we find impressive decod-
ing performance on masked portions of images from our
dataset. For straightforward scenarios like a fence along the
border, we found that this framing of the task works. How-
ever, for images where features do not follow the border
exactly (e.g., a single road that is partially, but not entirely,
covered by the border mask) it is possible for a model to
reconstruct the missing features with high accuracy despite
partial masking. In practice we found that a large number of
tiles had features that did not align perfectly with the border,
so the overall performance remained poor.
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