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Layers Configurations Output
Input grayscale image 100× 32

Conv1 c : 32 k : 3× 3 100× 32
Conv2 c : 64 k : 3× 3 100× 32

Dropout - 100× 32
Pool1 k : 2× 2 s : 2× 2 50× 16

Block1
[
c : 128,k : 3× 3
c : 128,k : 3× 3

]
× 1 50× 16

Conv3 c : 128 k : 3× 3 50× 16
Dropout - 50× 16
Pool2 k : 2× 2 s : 2× 2 25× 8

Block2
[
c : 256,k : 3× 3
c : 256,k : 3× 3

]
× 2 25× 8

Conv4 c : 256 k : 3× 3 25× 8
Dropout - 25× 8

Pool3 k : 2× 2
26× 4

s : 1× 2 p : 1× 0

Block3
[
c : 512,k : 3× 3
c : 256,k : 3× 3

]
× 5 26× 4

Conv5 c : 512 k : 3× 3 26× 4
Dropout - 26× 4

Block4
[
c : 512,k : 3× 3
c : 512,k : 3× 3

]
× 3 26× 4

Conv6 c : 512 k : 2× 2
27× 2

s : 1× 2 p : 1× 0

Conv7 c : 512 k : 2× 2
26× 1

s : 1× 2 p : 0× 0
Dropout - 26× 1

Table 1. ResNet architecture configuration for the text recognition
model. Here, c, k, s, and p stand for no. of channels, filter size,
stride, and padding, respectively.

A. Dataset Descriptions
A.1. Handwriting Recognition Datasets
CVL [13]: 310 individual writers contributed to this hand-
written English text dataset, which was divided into two
parts: training and testing. 27 of the writers created 7 texts,
while the remaining 283 created 5 texts.

IAM [15]: 657 different writers contributed to this English
handwritten text dataset, which was partitioned into writer
independent training, validation, and test.

A.2. Scene-Text Datasets

ICDAR-15 (IC15) [10]: The images in the dataset were
gathered by people wearing Google Glass, therefore many
of the images have perspective inscriptions and some are
fuzzy. It includes 4,468 training images and 2,077 evaluation
images.

ICDAR-13 IC13 [11]: The dataset was created for the
ICDAR 2013 Robust Reading competition. It contains 848
images for training and 1,015 images for evaluation.

IIIT5k-Words (IIIT) [16]: Google image searches with
query phrases like ”billboards” and ”movie posters” yielded
the text-images. It includes 2,000 training photos and 3,000
evaluation images.

Street View Text (SVT) [25]: The dataset is prepared
based on Google Street View and includes text included
in street photos. It includes 257 training images and 647
evaluation images.

SVT Perspective (SVTP) [18]: Similar to SVT, SVTP is
gathered from Google Street View. In contrast to SVT, SVTP
features a large number of perspective texts. It includes 645
images for evaluation.

CUTE80 (CUTE) [19]: CUTE contains curved text im-
ages. The images are captured by a digital camera or col-
lected from the Internet. It contains 288 cropped images for
evaluation.

COCO-Text (COCO) [24]: This dataset is created from
text instances from the original MS-COCO dataset [14].
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RCTW [20]: RCTW stands for the Reading Chinese
Text in the Wild dataset. Primarily containing Chinese text.
Nonetheless, we used the non-Chinese text images in the
training set.

Uber-Text (Uber) [28]: Bing Maps Streetside was used
to obtain Uber-Text image data. Many of them are house
numbers, while others are text on billboards.

Arbritary-shaped Text (ArT) [5]: This dataset contains
images with perspective, rotation, or curved text.

Large-scale Street View Text (LSVT) [22, 23]: Data col-
lected from the streets in China. Thus, most of the text is in
Chinese.

Multi-Lingual Text (MLT) [17]: This dataset is created to
recognize multi-lingual text. It consists of text images from
seven languages: Arabic, Latin, Chinese, Japanese, Korean,
Bangla, and Hindi.

Reading Chinese Text on Signboard (ReCTS) [27]: Cre-
ated for the Reading Chinese Text on Signboard competition.
It features a large number of irregular texts that are grouped
in various layouts or written in different typefaces.

For further extensive details on the used scene-text
datasets and the adopted preprocessing we refer the readers
to [2, 3].

B. Text-Recongnition Model Architecture
We adopt the best performing recognition model used

in [1], [2], and [3], dubbed as TRBA which consists of
a thin-plate-spline [9] Transformation module, a ResNet-
based feature extraction network as used in [4], two BiLSTM
layers with 256 hidden units per layer to converts visual
features to contextual sequence of features, and lastly an
Attention based LSTM sequential decoder with the hidden
state dimension of 256 to convert the sequential features to
machine-readable text. Additionally, in the ResNet backbone
we introduce dropout layers for Monte-Carlo sampling as
depicted in Table 11.

RAM CPU VRAM GPU

251 GB Intel Core i9-10940X 11×4 GB Nvidia RTX 2080Ti

Table 2. Configuration of the system used to train the models

1Implementation based on: https://github.com/clovaai/
deep-text-recognition-benchmark

C. Training and Evaluation Details

To train the models we use the AdaDelta [26] optimizer
with a learning rate of 1 and a decay rate of ρ = 0.95.
Furthermore, in total we perform 4 pseudo-label based fully-
supervised re-training of the model in a bootstrapped fashion
after the initial fully-supervised training with the partially
labeled dataset. For each of the fully-supervised training, we
train the model for 100K iterations with a batch size of 192.
Furthermore, for stable training we use gradient clipping of
magnitude 5. Moreover, we use He’s method to initialize all
parameters. All the models were trained on a single GPU on
a server with the configuration described in 2. Algorithm 1
describes the the pseudo-label assignment and selection of
the unlabelled data samples, that return Dtrain updated with
the pseudo-labeled samples.

Also, MC-Dropout [6] is notorious for being computation-
ally inefficient since it requires passing every input to each of
the sampled model to compute the uncertainty. However, in
our implementation we utilize an efficient batch implemen-
tation that can easily replace the vanilla Dropout layers in
PyTorch2. The efficient dropout layer keeps a set of dropout
masks fixed while scoring the pool set and exploit batch
parallelization for scalibility [12], thus, alleviating the need
to pass the input multiple times and the explicit sampling of
the models in the ensemble, thus making the system both
memory and computationally efficient.

To train the handwriting recognition model we utilize the
training splits of the IAM [15] and the CVL [13] and for the
scene-text recognition model, contrary to the previous works
[1, 2] that use synthetic datasets [7, 8], we use a combination
of multiple real scene-text datasets, following the work in [3],
for training, that include: IC15 [10], IC13 [11], IIIT [16],
SVT [25], SVTP [18], CUTE [19], COCO-Text [24], RCTW
[20], Uber-Text [28], ArT [5], MLT [17], and ReCTS [27]
consolidating a total of 276k processed images in the training
set3.

The models are evaluated on the IAM [15] and CVL [13]
test sets for handwriting recognition. For scene-text recog-
nition we benchmark on six scene-text datasets: IC13 [11],
IC15 [10], IIIT [16], SVT [25], SVTP [18], CUTE [19]. For
comparison, we also determine the total accuracy, which
is the accuracy of the six benchmark datasets combined.
Specifically, for scene-text evaluation, the accuracy is cal-
culated only on alphabet and digits, after removing non-
alphanumeric characters and normalizing alphabet to lower
case. Furthermore, we execute three trials with different seed
values for the experiments and report the averaged accura-
cies.

2https : / / blackhc . github . io / batchbald _ redux /
consistent_mc_dropout.html

3Preprocessed scene-text dataset with the training, validation, and test splits
are made available by the authors of [3] at: https://github.com/
ku21fan/STR-Fewer-Labels

https://github.com/clovaai/deep-text-recognition-benchmark
https://github.com/clovaai/deep-text-recognition-benchmark
https://blackhc.github.io/batchbald_redux/consistent_mc_dropout.html
https://blackhc.github.io/batchbald_redux/consistent_mc_dropout.html
https://github.com/ku21fan/STR-Fewer-Labels
https://github.com/ku21fan/STR-Fewer-Labels
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Figure 1. Prediction Rejection Curves w.r.t Character Error Rate (CER). Values in parenthesis in the legend field represent the Prediction
Rejection Ratio (PRR) of the corresponding curve.
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Figure 2. Iteration-wise metric trends of the pseudo-labeling based semi-supervised learning methodology with randomly initialized weights
of individual benchmark scene-text datasets.

D. Additional Results
In Figure 1, we visualize the prediction rejection curves

w.r.t to the character error rate (CER) of the baseline text
recognition model trained on different portions of labeled
data on the handwriting and the scene-text datasets.

In Figure 2, we show our vanilla PL-SSL method’s per-
formance on word prediction accuracy and CER at the end
of each supervised training iteration, starting with differ-
ent portions of labeled training dataset, for each individual
scene-text benchmarks.

Moreover, We conduct experiments with all the text im-
ages in the labeled set (276K instances) and the text instances
from the TextVQA dataset [21] (463K instances) as the un-
labeled set, in Table 3. We found our methods to give on par
and in some cases better performance to SeqCLR [1].
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