
Supplementary for GEMS: Generating Efficient Meta-Subnets

Varad Pimpalkhute
TCS Research,
Mumbai, India
varad.p@tcs.com

Shruti Kunde
TCS Research,
Mumbai, India

shruti.kunde@tcs.com

Rekha Singhal
TCS Research,
Mumbai, India

rekha.singhal@tcs.com

A. Experimental Setup
All experiments are conducted in isolation on a dedicated

MIG A100 GPU setup, with 30 GB RAM, 8vCPUS and
10GB GPU memory. For each experiment we record the
model accuracy and time required for training. Each ex-
periment has been repeated 3 times with different seeds to
ensure sufficient randomness.

A.1. Architecture Details

The model architecture is similar to the original MAML
[2] paper, i.e., 4 modules with 3 x 3 convolutions and 64
filters with a stride of 2, followed by batch normalization,
a ReLU nonlinearity and 2 × 2 max-pooling. The MLP is
a fully connected network, where each layer consists of 2N
hidden units, where N is the number of layers of the base
learner network. The ReLU activation function is placed
between the MLP layers.

A.2. Dataset Details

We have used 4 quasi-benchmark datasets (CuBirds,
VGGFlowers, Aircraft, Fungi) from the field of meta-
learning for our experimentation purpose. The CU-Birds
dataset contains 11,788 images of 200 bird species. The
data is split into 200 classes that are divided into 100, 50
and 50 for meta-training, meta-validation and meta-testing
respectively. VGGFlower is a dataset consisting of 102
flower categories. Each class consists between 40-258 im-
ages. The aircraft dataset contains 10,200 images. There
are 100 images for each of the 102 aircraft model variants.
The data is divided into 3 equally-sized training, validation
and test subsets. The Fungi dataset contains 1394 species of
fungi. It has 85578 training images, 4182 validation images
and 9758 testing images. The table below provides a de-
tailed list of hyper-parameters that were used when setting
up the experiments.

A.3. Training Details

The default setting for adaption steps is 5 and fast LR
is 0.01. We use 0.5 as the random initialization for spar-
sity in the MMSUP experiments and the value for sparsity

is learned during training. These settings are used in our ex-
periment setup for comparing performance of MMSUP and
BMP to MAML (base line) and Multi-MAML. The varying
sparsity, inner loop learning rate and adaptation steps val-
ues depicted in Table 1 are used for setting up experiments
conducted as a part of ablation studies outline in the main
paper.

Table 1. Experiment setup parameters
Parameter Value
Iterations 30000

Meta-batch size 5
Shots 1
Ways 5

Adaptation steps 1,2,3,4,5
Fast LR 0.1, 0.5, 0.05, 0.001, 0.005
Meta-LR 0.0001

Random seeds 21, 42, 56
Sparsity% 10, 20, ..., 90

B. Additional Results
Table 2 depicts a snapshot of additional combinations of

datasets on which we tested performance of BMP and MM-
SUP.

C. Analysis of GEMS
C.1. Analysis of convergence of MMSUP

In this section, we will study whether there is any positive
learning in the network after each training iteration. We want to
prove that

Ln+1 < Ln

where, n is the current training iteration.
Let us consider a neuron whose weights are getting masked or

unmasked after every iteration. Masking depends on the sparsity
value of the layer, i.e., if sparsity is k, then top k weights will be
fed to the neuron. Consider two weights – Wi and Wj . In nth

iteration, Wj is fed as input to the neuron whereas Wi is masked.
While, in the n + 1th iteration, Wi is fed as input to the neuron
whereas Wj is masked. This signifies that,

Table 2. 5ways, 1 shot

Train
Dist

Test
Dist

Meta-learning Architectures
MAML Multi-MAML BMP MMSUP

Accuracy Time Accuracy Time Accuracy Time Accuracy Time

CUB200
+ Aircraft

CUB 0.468
7.07

0.533
15.51

0.528
12.13

0.545
8.76

Aircraft 0.309 0.399 0.428 0.397

VGG102
+ Aircraft

VGG102 0.656
7.05

0.728
14.92

0.738
12.09

0.722
8.2

Aircraft 0.342 0.399 0.448 0.414

Fungi
+ Aircraft

Fungi 0.372
8.6

0.424
16.92

0.437
13.7

0.393
14.31

Aircraft 0.324 0.399 0.438 0.427

W̄i −Wi > W̄j −Wj

Thus, during backpropagation, we can say that the value of
gradients of Wi is greater than that of Wj , which bring us to the
following equation:

− δL
δIp

WiZi > − δL
δIp

WjZj (1)

where, Ip is the input and Zi is the activation function for the
ith weight. Hence, after swapping the weights / edges of the neural
network, the equation of the input Ip changes from

Ip =
∑

WkZk +WiZi

to
Īp =

∑
WkZk +WjZj

Hence, change in the input is given by:

Īp − Ip = WjZj −WiZi (2)

We now compute the change in the loss from iteration n to
iteration n+ 1.

L(Īp) = L(Ip + (Īp − Ip))

Expanding the Taylor’s series and approximating it, we get,

L(Īp) = L(Ip) +
δL
δIp

(Īp − Ip)

Thus, substituting Equation 2 in the above equation, we get,

L(Īp) = L(Ip) +
δL
δIp

(WjZj −WiZi) (3)

From Equation 1 and Equation 3, we conclude that, L(Īp) <
L(Ip). We can henceforth conclude that as the network learns on
the subnetwork, it also converges towards the global minima.

D. Resources
The results reported in the paper are produced using open

source and free software. We build up on learn2learn 1 [1] to make

1learn2learn is an open-source PyTorch library for meta-learning re-
search https://github.com/learnables/learn2learn.

custom modules for BMP and MMSUP keeping in spirits with
the PyTorch [9] framework. We also made use of Numpy [4] and
Pandas [7] libraries for building custom few-shot learning dataset
modules and sparsity in the network using lottery ticket hypothe-
sis. All plots were generated using Matplotlib [5].

All the final experiments were run in a Linux environment.
For producing and debugging, we made use of Google Colab Pro
that also ran on a Linux environment. The datasets were hand-
picked from public domain datasets allowing usage for research
purposes.cub200 We made use of CUBirds [10], VGGFlowers
[8], FGVC Aircraft [6] and FGVC Fungi [3] datasets.

E. PyTorch Code Snippets
In this section, we walkthrough some of the important modules

required for implementation of BMP and MMSUP approaches.
We present pseudo codes on how to reproduce the algorithms in
PyTorch.

1 class BinaryMask(torch.autograd.Function):
2 def __init__(self):
3 super(BinaryMask, self).__init__()
4

5 @staticmethod
6 def forward(ctx, input):
7 # Compute Binary mask --
8 # 1: Values greater than zero
9 # 0: Values less than or equal to zero

10

11 @staticmethod
12 def backward(ctx, grad):
13 # Return grad without computing gradients
14 # Straight Through Estimator (STE)

Code Listing 1. Binary Mask

1 # Number of adaptation steps
2 for step in range(adaptation_steps):
3 # Compute loss on input batch
4 train_error = loss(learner(data_batch),

true_labels)
5 param_dict = # Get backbone parameters
6 # Compute gradients using training error and

param dict
7 support_loss_grad = grad(train_error,

param_dict.values(), retain_graph=True)
8 task_embedding = # Stack mean of weights and

gradient per layer

9 layer_pred = regularizer(torch.mul(
task_embedding, inp_embedding))

10 # Use previously learned knowledge
11 # to compute binary mask
12 mask = BinaryMask.apply(layer_pred)
13 # Update weights of the backbone
14 learner.adapt(train_error, mask)

Code Listing 2. Inner Loop Optimization

1 class ComputeMask(torch.autograd.Function):
2 @staticmethod
3 def forward(ctx, params, sparsity):
4 # k is the sparsity of the layer
5 # 1: For top k parameters
6 # 0: Rest of the parameters
7

8 @staticmethod
9 def backward(ctx, g):

10 # Return gradient as it is
11

Code Listing 3. Generate Sparsity Mask

1 class SupermaskConv(nn.Conv2d):
2 def __init__(self, *args, **kwargs):
3 super().__init__(*args, **kwargs)
4 # Set an initialization (e.g., kaiming

normal)
5

6 def forward(self, x, sparsity):
7 self.scores = self.weight.detach()
8 # Compute a subnetwork from backbone
9 subnet = ComputeMask.apply(self.scores,

sparsity)
10 # Apply the mask on the network
11 w = self.weight * subnet
12 return F.conv2d(x, w, self.bias, self.

stride, self.padding, self.dilation, self.
groups)

13

Code Listing 4. Compute Sparse Network

References
[1] Sébastien M R Arnold, Praateek Mahajan, Debajyoti Datta,

Ian Bunner, and Konstantinos Saitas Zarkias. learn2learn: A
library for Meta-Learning research. Aug. 2020.

[2] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep networks.
CoRR, abs/1703.03400, 2017.

[3] Tobias Guldberg Frøslev, Jacob Heilmann-Clausen, Chris-
tian Lange, Thomas Læssøe, Jens Henrik Petersen, Ulrik
Søchting, Thomas Stjernegaard Jeppesen, and Jan Vester-
holt. Danish mycological society, fungal records database,
2022.

[4] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt,
Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric
Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith,
Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández
del Rı́o, Mark Wiebe, Pearu Peterson, Pierre Gérard-
Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser,
Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant.

Array programming with NumPy. Nature, 585(7825):357–
362, Sept. 2020.

[5] J. D. Hunter. Matplotlib: A 2d graphics environment. Com-
puting in Science & Engineering, 9(3):90–95, 2007.

[6] S. Maji, J. Kannala, E. Rahtu, M. Blaschko, and A. Vedaldi.
Fine-grained visual classification of aircraft. Technical re-
port, University of Massachusetts Amherst, 2013.

[7] Wes McKinney et al. Data structures for statistical comput-
ing in python. In Proceedings of the 9th Python in Science
Conference, volume 445, pages 51–56. Austin, TX, 2010.

[8] Maria-Elena Nilsback and Andrew Zisserman. Automated
flower classification over a large number of classes. In 2008
Sixth Indian Conference on Computer Vision, Graphics Im-
age Processing, pages 722–729, 2008.

[9] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-
perative style, high-performance deep learning library. In H.
Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E.
Fox, and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc., 2019.

[10] Catherine Wah, Steve Branson, Peter Welinder, Pietro Per-
ona, and Serge J. Belongie. The caltech-ucsd birds-200-2011
dataset. In Caltech-UCSD, 2011.

