Supplementary for GEMS: Generating Efficient Meta-Subnets

Varad Pimpalkhute Shruti Kunde Rekha Singhal
TCS Research, TCS Research, TCS Research,
Mumbai, India Mumbai, India Mumbai, India

varad.p@tcs.com

A. Experimental Setup

All experiments are conducted in isolation on a dedicated
MIG A100 GPU setup, with 30 GB RAM, 8vCPUS and
10GB GPU memory. For each experiment we record the
model accuracy and time required for training. Each ex-
periment has been repeated 3 times with different seeds to
ensure sufficient randomness.

A.l. Architecture Details

The model architecture is similar to the original MAML
[2] paper, i.e., 4 modules with 3 x 3 convolutions and 64
filters with a stride of 2, followed by batch normalization,
a ReLU nonlinearity and 2 x 2 max-pooling. The MLP is
a fully connected network, where each layer consists of 2N
hidden units, where N is the number of layers of the base
learner network. The ReLU activation function is placed
between the MLP layers.

A.2. Dataset Details

We have used 4 quasi-benchmark datasets (CuBirds,
VGGFlowers, Aircraft, Fungi) from the field of meta-
learning for our experimentation purpose. The CU-Birds
dataset contains 11,788 images of 200 bird species. The
data is split into 200 classes that are divided into 100, 50
and 50 for meta-training, meta-validation and meta-testing
respectively. VGGFlower is a dataset consisting of 102
flower categories. Each class consists between 40-258 im-
ages. The aircraft dataset contains 10,200 images. There
are 100 images for each of the 102 aircraft model variants.
The data is divided into 3 equally-sized training, validation
and test subsets. The Fungi dataset contains 1394 species of
fungi. It has 85578 training images, 4182 validation images
and 9758 testing images. The table below provides a de-
tailed list of hyper-parameters that were used when setting
up the experiments.

A.3. Training Details

The default setting for adaption steps is 5 and fast LR
is 0.01. We use 0.5 as the random initialization for spar-
sity in the MMSUP experiments and the value for sparsity

shruti.kunde@tcs.com

rekha.singhal@tcs.com

is learned during training. These settings are used in our ex-
periment setup for comparing performance of MMSUP and
BMP to MAML (base line) and Multi-MAML. The varying
sparsity, inner loop learning rate and adaptation steps val-
ues depicted in Table 1 are used for setting up experiments
conducted as a part of ablation studies outline in the main

paper.

Table 1. Experiment setup parameters

Parameter Value
Iterations 30000
Meta-batch size 5
Shots 1
Ways 5
Adaptation steps 1,2,3,4,5
Fast LR 0.1, 0.5, 0.05, 0.001, 0.005
Meta-LR 0.0001
Random seeds 21,42, 56
Sparsity% 10, 20, ..., 90

B. Additional Results

Table 2 depicts a snapshot of additional combinations of
datasets on which we tested performance of BMP and MM-
SUP.

C. Analysis of GEMS
C.1. Analysis of convergence of MMSUP

In this section, we will study whether there is any positive
learning in the network after each training iteration. We want to
prove that

Lnt1 < Ly

where, n is the current training iteration.

Let us consider a neuron whose weights are getting masked or
unmasked after every iteration. Masking depends on the sparsity
value of the layer, i.e., if sparsity is k, then top k weights will be
fed to the neuron. Consider two weights — W; and W;. In nt"
iteration, W; is fed as input to the neuron whereas WW; is masked.
While, in the n + 1*" iteration, W; is fed as input to the neuron
whereas W is masked. This signifies that,

Table 2. Sways, 1 shot

Meta-learning Architectures
Train Test MAML Multi-MAML BMP MMSUP

Dist Dist Accuracy Time | Accuracy Time | Accuracy Time | Accuracy Time
4 . .52 .54

CUB200 CUB | 0468 ;| 0333 55 0328y, 131 0385 g4
+ Aircraft Ajreraft| 0.309 0.399 0.428 0.397
2 0.656 0.728 0.738 0.722

VGG102 VGGIO 7.05 14.92 12.00 8.2
+ Aircraft Ajrcraft| 0.342 0.399 0.448 0.414
i Fungi 0.372 0.424 0.437 0.393

Fungi RSl 8.6 16.92 137 P 431
+ Aircraft Ajreraft| 0.324 0.399 0.438 0.427

ﬁQ —W; > ﬁ@‘—-ﬂ@
Thus, during backpropagation, we can say that the value of

gradients of W; is greater than that of W;, which bring us to the
following equation:

oL oL
- —WiZi > ——W;Z;
51, ST AMEEE
where, I, is the input and Z; is the activation function for the
i'" weight. Hence, after swapping the weights / edges of the neural

network, the equation of the input I, changes from

1)

Iy=> Wiz + WiZi

to
Iy => WiZp+W,;Zj

Hence, change in the input is given by:

I,—I,=W;Z5 —W.Zi)

We now compute the change in the loss from iteration n to
iteration n + 1.

l:(-fp) = ‘C(IP + (—fp - IP))
Expanding the Taylor’s series and approximating it, we get,

oL

ﬁ(ip) = E(]p) + E

(ip - IP)

Thus, substituting Equation 2 in the above equation, we get,

L \w,zj — wizi)

ﬁ(l_p) =L(Ip) + 51,

3

From Equation 1 and Equation 3, we conclude that, £(I,) <
L(I). We can henceforth conclude that as the network learns on
the subnetwork, it also converges towards the global minima.

D. Resources

The results reported in the paper are produced using open
source and free software. We build up on learn2learn ! [1] to make

llearn2learn is an open-source PyTorch library for meta-learning re-
search https://github.com/learnables/learn2learn.

custom modules for BMP and MMSUP keeping in spirits with
the PyTorch [9] framework. We also made use of Numpy [4] and
Pandas [7] libraries for building custom few-shot learning dataset
modules and sparsity in the network using lottery ticket hypothe-
sis. All plots were generated using Matplotlib [5].

All the final experiments were run in a Linux environment.
For producing and debugging, we made use of Google Colab Pro
that also ran on a Linux environment. The datasets were hand-
picked from public domain datasets allowing usage for research
purposes.cub200 We made use of CUBirds [10], VGGFlowers
[8], FGVC Aircraft [6] and FGVC Fungi [3] datasets.

E. PyTorch Code Snippets

In this section, we walkthrough some of the important modules
required for implementation of BMP and MMSUP approaches.
We present pseudo codes on how to reproduce the algorithms in
PyTorch.

class BinaryMask (torch.autograd.Function) :
def _ _init_ (self):

super (BinaryMask, self)._ _init__ ()
@staticmethod
def forward(ctx, input):

Compute Binary mask --

1: Values greater than zero
0: Values less than or equal to zero
@staticmethod

def backward(ctx, grad):
Return grad without computing gradients
Straight Through Estimator (STE)

Code Listing 1. Binary Mask

Number of adaptation steps

> for step in range (adaptation_steps) :

Compute loss on input batch

train_error = loss(learner (data_batch),
true_labels)

param_dict = # Get backbone parameters

Compute gradients using training error and
param dict

support_loss_grad = grad(train_error,
param_dict.values (), retain_graph=True)
task_embedding = # Stack mean of weights and
gradient per layer

layer_pred = regularizer (torch.mul (
task_embedding, inp_embedding))

Use previously learned knowledge
to compute binary mask

mask = BinaryMask.apply (layer_pred)
Update weights of the backbone
learner.adapt (train_error, mask)

Code Listing 2. Inner Loop Optimization

class ComputeMask (torch.autograd.Function) :

@staticmethod
def forward(ctx, sparsity) :
k i1s the sparsity of the layer

params,

1: For top k parameters
0: Rest of the parameters
@staticmethod

def backward(ctx, g):
Return gradient as it is

Code Listing 3. Generate Sparsity Mask

class SupermaskConv (nn.Conv2d) :

def __init__ (self, xargs, =*xkwargs):

super () .__init__ (xargs, =**kwargs)

Set an initialization (e.g., kaiming
normal)
def forward(self, x, sparsity):

self.scores = self.weight.detach()

Compute a subnetwork from backbone

subnet = ComputeMask.apply (self.scores,
sparsity)

Apply the mask on the network

w = self.weight * subnet

return F.conv2d(x, w, self.bias, self.
stride, self.padding, self.dilation, self.
groups)

Code Listing 4. Compute Sparse Network

References

(1]

(2]

(3]

(4]

Sébastien M R Arnold, Praateek Mahajan, Debajyoti Datta,
Ian Bunner, and Konstantinos Saitas Zarkias. learn2learn: A
library for Meta-Learning research. Aug. 2020.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep networks.
CoRR, abs/1703.03400, 2017.

Tobias Guldberg Frgslev, Jacob Heilmann-Clausen, Chris-
tian Lange, Thomas Lessge, Jens Henrik Petersen, Ulrik
Sgchting, Thomas Stjernegaard Jeppesen, and Jan Vester-
holt. Danish mycological society, fungal records database,
2022.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt,
Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric
Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith,
Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernandez
del Rio, Mark Wiebe, Pearu Peterson, Pierre Gérard-
Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser,
Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant.

(5]

[6

—_

[7

—

[8

—_—

(9]

(10]

Array programming with NumPy. Nature, 585(7825):357—
362, Sept. 2020.

J. D. Hunter. Matplotlib: A 2d graphics environment. Com-
puting in Science & Engineering, 9(3):90-95, 2007.

S. Maji, J. Kannala, E. Rahtu, M. Blaschko, and A. Vedaldi.
Fine-grained visual classification of aircraft. Technical re-
port, University of Massachusetts Amherst, 2013.

Wes McKinney et al. Data structures for statistical comput-
ing in python. In Proceedings of the 9th Python in Science
Conference, volume 445, pages 51-56. Austin, TX, 2010.
Maria-Elena Nilsback and Andrew Zisserman. Automated
flower classification over a large number of classes. In 2008
Sixth Indian Conference on Computer Vision, Graphics Im-
age Processing, pages 722-729, 2008.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-
perative style, high-performance deep learning library. In H.
Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E.
Fox, and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 32, pages 8024—8035. Curran Asso-
ciates, Inc., 2019.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Per-
ona, and Serge J. Belongie. The caltech-ucsd birds-200-2011
dataset. In Caltech-UCSD, 2011.

