A. Related Work

Video Semantic Auto-Annotation. Pseudo-labeling and semi-supervised learning are the two popular types of methods for
automating video semantic segmentation annotations. The pseudo-labeling approaches [27] use a pre-trained teacher model
to generate labels for the test video sequences. However, these approaches are typically frame-based and do not consider
the rich temporal constraints in the videos. Therefore, the pseudo-labels are inevitably noisy, especially when the pre-trained
model is trained with the data from a different domain from the input video. This work proposes a novel test-time fine-tuning
method to adapt the pre-trained model to the specific video to generate pseudo labels more accurately.

Among the semi-supervised learning approaches, Label Propagation (LP) is widely adapted [3, 2, 30, 18, 32]. Most work
uses optical flow to guide the LP process. These methods rely on accurate optical flow estimation, which is difficult to
obtain. Otherwise, the erroneous flow estimation can result in propagated labels that are misaligned with their corresponding
frames. Rather than conducting direct LP, our method uses the optical flow to generate consistency constraints as a loss to
fine-tune the segmentation model, which makes it more robust to flow noise. Moreover, the proposed fine-tuning considers
both semantic and temporal information to predict temporally consistent semantic annotations across the full video without
the limitations of traditional LP methods.

Active Learning. Rooted in traditional machine learning, active learning [39] allows learners to actively query the specific
labels they want to obtain, saving labeling costs dramatically. Inspired by the success of active learning, previous methods
[17, 40] studied how to select instances to refine a network for segmentation tasks. Our framework’s objective is different
from them, as we are querying samples from a video such that their annotations could boost the label propagation accuracy
on the input video. There is one work [43] studies the active frame selection problem for label propagation. Our work is
different in two ways: First, the method in [43] selects frames for just once, while our method could select video frames,
rectangles of frames, or even super-pixels in a human-in-the-loop manner for multiple iterations. Second, the existing method
closely ties with a particular LP technique and does not comply with modern deep networks. Our method is generic and can
work with different segmentation networks.

Human-in-the-Loop for Visual Annotations. Some researchers aim to reduce the annotation cost in a human-in-the-loop
model learning [1, 34]. And [20, 12] studied the interactive video object segmentation frameworks. However, solving video
semantic segmentation problem in the human-in-the-loop framework has never been studied.

B. Detailed Experimental Settings
B.1. Training Settings

We perform three iterations of ASS for each testing sequence. The annotation budget for each iteration is divided equally
from the total budget.

We use the HRNet-W48 [44] as the backbone network (other networks can be easily incorporated). We set the consistency
loss weight A = 1. The initial learning rate in each iteration is 0.004. In each iteration, we fine-tune the network for 15
epochs with a learning rate of 0.004 and SGD optimizer [37] with momentum 0.9. We follow the “poly” learning rate policy
to reduce the learning rate gradually. The batch size is 14 for SceneNet RGB-D [29] dataset, and 2 for VEIS [38] dataset.

In the ASS diversity sampling, we transform each frame to feature space using the previous iteration backbone network
without segmentation head:
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where i denotes the segmentation network backbone. More concretely, the feature map F; is the concatenation of four
feature maps after the fourth stage of HRNet-W48. The number of channels of F} is 720.

We use the RAFT-things checkpoint [42] to generate the flow correspondence and use SpixelFCN-bsd checkpoint [21] to
generate the super-pixels. All the settings in RAFT and SpixelFCN are as default. We use openCV [5] connectedComponents,
findContours, and approxPolyDP functions to estimate the “Boundary Click” positions. The parameter € in approxPolyDP
controlling the fineness of simplified polygons is set to 1.

For HRNet backbone, RAFT and SpixelFCN, we use the code from their official implementation in Pytorch [33]. All the
experiments run on machines with 4 xNvidia 1080s.

B.2. Evaluation and Metrics.

We use four metrics to evaluate our method thoroughly, which are pixel accuracy, mean Intersection over Union (mloU),
boundary Intersection over Union (Boundary-IoU), and temporal consistency. The first two are commonly used in segmen-
tation tasks to measure the accuracy of predictions. Here we only illustrate the last two metrics in detail.
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Figure 10. Visualization of our generated annotations in VEIS. (a) is the video frame, (b) costs about 10.4% clicks with annotating Frame,
and (c) costs about 44% clicks with annotating Frame. (d) is the mimic manual annotation, and (e) is the ground-truth.

Boundary-IoU. The boundary-IoU is proposed in [11]. The boundary-IoU between our prediction Q and ground-truth G is
calculated as:
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where G4 and Qg are the sets of pixels in the boundary region of the ground-truth mask and the prediction mask respectively.
d is the pixel width of the boundary region. We set d to 2 in all experiments.
Temporal consistency (TC). We also measure the temporal consistency (TC) of the generated annotations by measuring the
mloU between two consecutive predictions similar to [26].

We measure the temporal consistency (TC) of the generated annotations by measuring the mloU between two consecutive
predictions similar to [26]. The TC between frame ¢ and frame ¢ — 1:
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where Q; is the prediction of frame ¢, Q;_ is the prediction of frame ¢t — 1. QEA_/IB is the warped prediction from frame ¢t — 1

to frame ¢, and pixels where does not pass the forward-backward check M;_;_,; will be marked as ignored label in Qﬁﬂ).
The calculation of TC' (Q;—1, Q) is very similar with calculating the standard IoU in the segmentation task, where we treat
prediction as Q;, and ground truth as ngl). So the TC on all the test sequences can be calculated similar to IoU and mIoU

on the whole test set in a segmentation task.

C. More Experimental Results on VEIS Dataset

Table 3. This table shows the most efficient sample granularity for different mloU benchmarks in VEIS. The last row represents manually
annotating all the frames.

Annotation mloU  Granularity ~Anno. Clicks  Anno. Pixel

80% Rec40 4.3% 1.3%
85% Frame 10.4% 10%
90% Frame 44% 51%
96% Frame 100% 100%

Click Cost for Label Quality Benchmarks. Tab. 3 lists the least annotation clicks required to generate 80%, 85%, and
90% mloU labels, and the corresponding sample granularity. Notice that in the VEIS dataset, the mloU for fully manual
annotation is 96%, which is lower than 99% of SceneNet. This difference is mainly because the RDP algorithm simplifies



the over-detailed “bicycle” ground-truth in VEIS. As a result, we test up to 90% mloU annotation quality. Annotating Rec40
makes the model generate 80% mloU annotations with the least clicks, which is only 4.3%. Annotating frames outperforms
other granularity settings when targeting 85% and 90% mlIoU annotations. The percentages of clicks are 10.4% and 44%
respectively.

We noticed that the percentage of clicks needed in VEIS is much larger than in SceneNet. This is mainly because VEIS
images are of higher resolution, and objects include more details. This leads to more clicks in segmentation annotation.
Comparison of Boundary-IoU. In VEIS, the observation is similar to it in SceneNet: Larger granularity samples give better
predictions on the boundary, and training on SP gives the worst boundary quality.

Generated annotation visualization. Fig. 10 shows the visualizations in VEIS. The 85% mloU annotations in (b) cost
10.4% clicks, and only details of “tree” are imperfect. The 90% mloU annotations in (c) cost 44% clicks and are without a
significant visual difference to MA.



