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A. Additional results

This section provides additional results in the 5-way (1-
shot and 5-shot) classification tasks for models using larger
backbones, namely ResNet-10 and ResNet-12 [11], as well
as and expanded version of Table 1 from the main text, con-
taining more baselines . We provide the results for ResNet-
10 on the CUB and mini-ImageNet datasets in Table 1, for
ResNet-12 on mini-ImageNet dataset in Table 2 and for
Conv4 on the CUB and mini-ImageNet datasets in Table 3.
It should be noted that the results for ResNet-10 on mini-
ImageNet for all methods were obtained by us using a uni-
fied codebase [3, 27]. On the other hand, for benchmarks
of ResNet-10 on CUB and ResNet-12 on mini-ImageNet
we report the accuracies of methods other than HyperShot
as reported in [27] and [45], respectively.

ResNet-10 – CUB and mini-ImageNet In the CUB
dataset classification tasks (see Table 1), HyperShot is
amongst the state-of-the-art models achieving classification
accuracy often equal within the variance to the best mod-
els. Considering the 5-shot scenario, the highest classifica-
tion result across the evaluated methods (86.38% ± 0.15)
obtained the GPLDLA model based on the Gaussian Pro-
cesses framework. However, the HyperShot performance,
86.28% ± 0.29, is the second-best but even lies within the
variance of the best model. In the 1-shot setting, ProtoNet
obtains the highest result (73.22%± 0.92), whereas Hyper-

†Denotes equal contribution.

Shot is the third one (71.99%± 0.70) but still equal accord-
ing to the variances.

In the mini-ImageNet classification task with the
ResNet-10 backbone, HyperShot achieves the second-best
accuracy in both 1-shot and 5-shot settings*. In the 1-shot
setting, the DKT model [27] achieved the best result, with
HyperShot being a close second, with only 0.04 pp differ-
ence. In the 5-shot setting, the baseline++ approach outper-
forms all others by a large margin [3], whereas HyperShot
and ProtoNet [35] achieve similar, second-best results. We
observe that apart from HyperShot, which achieves second-
best results in both settings, models which perform well in
one setting are outperformed by others in the second and
vice versa.

ResNet-12 – mini-ImageNet In the mini-ImageNet clas-
sification task with the ResNet-12 backbone (see Table
2), HyperShot ranks relatively low in terms of accuracy
(63.30% and 76.21% in the 1-shot and 5-shot settings, re-
spectively), as compared to recently proposed approaches
such as RENet [14] and FEAT [45], which outperform it by
a large margin. Nevertheless, we note that for the experi-
ments on ResNet-12 we used the same set of hyperparame-
ters as in the ResNet-10 experiments, which may not be an
optimal choice for a larger backbone.

*In the case of the mini-ImageNet classification with ResNet10, we
benchmarked all of the listed models ourselves. To our best knowledge,
previously, there were no reported benchmarks on this dataset with the
ResNet-10 backbone.



It is worth noticing that HyperShot without adaptation
steps performances sometimes slightly better than the same
with adaptation. We even observe that a few first steps of
adaptation procedure result in an unnoticeable increase of
accuracy of the basic model. However, the usual 10 steps
result in this setting in slightly worse performance, so one
should use it cautiously. We decided to report the results
after the standard adaptation procedure only.

B. Training details
In this section, we present in detail the architecture and

hyperparameters of HyperShot.

Architecture overview From a high-level perspective,
the architecture of HyperShot consists of three parts:

• backbone - a convolutional feature extractor.

• neck - a sequence of zero or more fully-connected lay-
ers with ReLU nonlinearities in between.

• heads - for each parameter of the target network, a se-
quence of one or more linear layers, which predicts the
values of that parameter. All heads of HyperShot have
identical lengths, hidden sizes, and input sizes that de-
pend on the generated parameter’s size.

The target network generated by HyperShot re-uses its
backbone. We outline this architecture in Figure 1.

Backbone For each experiment described in the main
body of this work, we follow [27] in using a shallow back-
bone (feature extractor) for HyperShot as well as referential
models. This backbone consists of four convolutional lay-
ers, each consisting of a convolution, batch normalization,
and ReLU nonlinearity. Apart from the first convolution,
which has the number of input size equal to the number of
image channels, each convolution has an input and output
size of 64. We apply max-pooling between each convolu-
tion, which decreases by half the resolution of the processed
feature maps. The output of the backbone is flattened so that
the further layers can process it.

We perform additional experiments described in Ap-
pendix A where instead of the above backbone, we utilize
ResNet-10 [11].

Datasets For the purpose of making a fair comparison,
we follow the procedure presented in, e.g., [27, 3]. In the
case of the CUB dataset [41], we split the whole amount
of 200 classes (11788 images) across train, validation, and
test consisting of 100, 50, and 50 classes, respectively [3].
The mini-ImageNet dataset [32] is created as the subset
of ImageNet [34], which consists of 100 different classes
represented by 600 images for each one. We followed the

standard procedure and divided the mini-ImageNet into 64
classes for the train, 16 for the validation set, and the re-
maining 20 classes for the test. The well-known Omniglot
dataset [17] is a collection of characters from 50 different
languages. The Omniglot contains 1623 white and black
characters in total. We utilize the standard procedure to in-
clude the examples rotated by 90◦ and increase the size of
the dataset to 6492, from which 4114 were further used in
training. Finally, the EMNIST dataset [4] collects the char-
acters and digits coming from the English alphabet, which
we split into 31 classes for the test and 31 for validation.

Data augmentation We apply data augmentation during
model training in all experiments, except Omniglot →
EMNIST cross-domain classification. The augmentation
pipeline is identical to the one used by [27] and consists of
the random crop, horizontal flip, and color jitter steps.

C. Hyperparameters
Below, we outline the hyperparameters of architecture

and training procedures used in each experiment.
We use cosine similarity as a kernel function and aver-

aged support embeddings aggregation in all experiments.
HyperShot is trained with the learning rate of 0.001 with
the Adam optimizer [16] and no learning rate scheduler.
Task-specific adaptation is also performed with the Adam
optimizer and the learning rate of 0.0001.

For the natural image tasks (CUB, mini-ImageNet,
mini-ImageNet → CUB classification), we use a hyper-
network with the neck length o 2, head lengths of 3, and a
hidden size of 4096, which produce a target network with a
single fully-connected layer. We perform training for 10000
epochs.

For the simpler Omniglot→ EMNIST character classi-
fication task, we train a smaller hypernetwork with the neck
length of 1, head lengths of 2, and the hidden size of 512,
which produces a target network with two fully-connected
layers and a hidden size of 128. We train this hypernetwork
for a shorter number of epochs, namely 2000.

We summarize all the above hyperparameters in Table 4.

D. Source code
The source code required for running the experi-

ments is available at https://github.com/gmum/
few-shot-hypernets-public.
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Table 1. The classification accuracy results for the inference tasks in the CUB and mini-ImageNet dataset in the 5-way (1-shot and 5-shot)
scenarios. We consider models using the ResNet-10 backbone. The highest results are bold and second-highest in italic (the larger, the
better).

CUB mini-ImageNet
Method 1-shot 5-shot 1-shot 5-shot

Feature Transfer 63.64± 0.91 81.27± 0.57 – –
Baseline++ [3] 69.55± 0.89 85.17± 0.50 54.35± 0.34 75.26± 0.16
MatchingNet [40] 71.29± 0.87 83.47± 0.58 54.18± 0.09 67.71± 0.20
ProtoNet [35] 73.22± 0.92 85.01± 0.52 53.28± 0.17 73.04± 0.15
MAML [6] 70.32± 0.99 80.93± 0.71 – –
RelationNet [38] 70.47± 0.99 83.70± 0.55 51.88± 0.45 67.21± 0.16
DKT + CosSim [27] 70.81± 0.52 83.26± 0.50 – –
DKT + BNCosSim [27] 72 .27 ± 0 .30 85.64± 0.29 56.03± 0.50 71.28± 0.12
SimpleShot [42] 53.78± 0.21 71.41± 0.17 – –
GPLDLA [15] 71.30± 0.16 86.38± 0.15 – –

HyperShot 71.99± 0.70 86.28± 0.29 55.36± 0.64 73 .06 ± 0 .30
HyperShot + adaptation 71.60± 0.59 86 .22 ± 0 .30 55 .99 ± 0 .63 72.87± 0.33

Figure 1. A detailed outline of the architecture of HyperShot, with the denoted flow of parameters generated by the hypernetwork heads.
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in the mini-ImageNet dataset in the 5-way (1-shot and 5-shot)
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Table 3. The classification accuracy results for the inference tasks on CUB and mini-ImageNet datasets in the 1-shot and 5-shot settings.
The highest results are in bold and second-highest in italic (the larger, the better). This is an expanded version of Table 1 from the main
text.

CUB mini-ImageNet
Method 1-shot 5-shot 1-shot 5-shot

ML-LSTM [32] – – 43.44± 0.77 60.60± 0.71
SNAIL [22] – – 45.10 55.20
LLAMA [10] – – 49.40± 1.83
VERSA [9] – – 48.53± 1.84 67.37± 0.86
Amortized VI [9] – – 44.13± 1.78 55.68± 0.91
Meta-Mixture [13] – – 49.60± 1.50 64.60± 0.92
SimpleShot [42] – – 49.69± 0.19 66.92± 0.17
Feature Transfer [49] 46.19± 0.64 68.40± 0.79 39.51± 0.23 60.51± 0.55
Baseline++ [3] 61.75± 0.95 78.51± 0.59 47.15± 0.49 66.18± 0.18
MatchingNet [40] 60.19± 1.02 75.11± 0.35 48.25± 0.65 62.71± 0.44
ProtoNet [35] 52.52± 1.90 75.93± 0.46 44.19± 1.30 64.07± 0.65
RelationNet [38] 62.52± 0.34 78.22± 0.07 48.76± 0.17 64.20± 0.28
DKT + CosSim [27] 63.37± 0.19 77.73± 0.26 48.64± 0.45 62.85± 0.37
DKT + BNCosSim [27] 62.96± 0.62 77.76± 0.62 49.73± 0.07 64.00± 0.09
VAMPIRE [24] – – 51.54± 0.74 64.31± 0.74
PLATIPUS [7] – – 50.13± 1.86 –
ABML [31] 49.57± 0.42 68.94± 0.16 45.00± 0.60 –
OVE PG GP + Cosine (ML) [36] 63.98± 0.43 77.44± 0.18 50.02± 0.35 64.58± 0.31
OVE PG GP + Cosine (PL) [36] 60.11± 0.26 79.07± 0.05 48.00± 0.24 67.14± 0.23
Reptile [25] – – 49.97± 0.32 65.99± 0.58
R2-D2 [2] – – 48.70± 0.60 65.50± 0.60
VSM [48] – – 54.73± 1.60 68.01± 0.90
PPA [28] – – 54.53± 0.40 –
MAML [6] 56.11± 0.69 74.84± 0.62 45.39± 0.49 61.58± 0.53
MAML++ [1] – – 52.15± 0.26 68.32± 0.44
iMAML-HF [30] – – 49.30± 1.88 –
SignMAML [5] – – 42.90± 1.50 60.70± 0.70
Bayesian MAML [46] 55.93± 0.71 53.80± 1.46 64.23± 0.69
Unicorn-MAML [43] – – 54.89 –
Meta-SGD [19] – – 50.47± 1.87 64.03± 0.94
MetaNet [23] – – 49.21± 0.96 –
PAMELA [29] – – 53.50± 0.89 70 .51 ± 0 .67
FEAT [44] 68.87± 0.22 82.90± 0.15 55 .15 ± 0 .20 71.61± 0.16
DFSVLwF [8] – – 56.20± 0.86 –

HyperShot 65.27± 0.24 79.80± 0.16 52.42± 0.46 68.78± 0.29
HyperShot+ adaptation 66 .13 ± 0 .26 80 .07 ± 0 .22 53.18± 0.45 69.62± 0.20
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Table 4. Hyperparameters
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